lasdi.gplasdi
Classes
Functions
|
|
|
Collect n_samples of ROM trajectories on param_grid. |
|
Computes the maximum standard deviation accross the parameter space grid and finds the corresponding parameter location |
|
Module Contents
- lasdi.gplasdi.average_rom(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid)
- lasdi.gplasdi.sample_roms(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid, n_samples)
Collect n_samples of ROM trajectories on param_grid. gp_dictionary: list of Gaussian process regressors (size of n_test) param_grid: numpy 2d array n_samples: integer assert(len(gp_dictionnary) == param_grid.shape[0])
output: np.array of size [n_test, n_samples, physics.nt, autoencoder.n_z]
- lasdi.gplasdi.get_fom_max_std(autoencoder, Zis)
Computes the maximum standard deviation accross the parameter space grid and finds the corresponding parameter location
- lasdi.gplasdi.optimizer_to(optim, device)
- class lasdi.gplasdi.BayesianGLaSDI(physics, autoencoder, latent_dynamics, param_space, config)
- X_train
- X_test
- autoencoder
- latent_dynamics
- physics
- param_space
- timer
- n_samples
- lr
- n_iter
- max_iter
- max_greedy_iter
- ld_weight
- coef_weight
- optimizer
- MSE
- path_checkpoint
- path_results
- best_loss
- best_coefs = None
- restart_iter = 0
- train()
- get_new_sample_point()
- export()
- load(dict_)