lasdi.gplasdi

Classes

BayesianGLaSDI

This class runs a full GPLaSDI training. It takes into input the autoencoder defined as a PyTorch object and the

Functions

average_rom(autoencoder, physics, latent_dynamics, ...)

sample_roms(autoencoder, physics, latent_dynamics, ...)

Collect n_samples of ROM trajectories on param_grid.

get_fom_max_std(autoencoder, Zis)

Computes the maximum standard deviation accross the parameter space grid and finds the corresponding parameter location

optimizer_to(optim, device)

Module Contents

lasdi.gplasdi.average_rom(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid)
lasdi.gplasdi.sample_roms(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid, n_samples)

Collect n_samples of ROM trajectories on param_grid. gp_dictionary: list of Gaussian process regressors (size of n_test) param_grid: numpy 2d array n_samples: integer assert(len(gp_dictionnary) == param_grid.shape[0])

output: np.array of size [n_test, n_samples, physics.nt, autoencoder.n_z]

lasdi.gplasdi.get_fom_max_std(autoencoder, Zis)

Computes the maximum standard deviation accross the parameter space grid and finds the corresponding parameter location

lasdi.gplasdi.optimizer_to(optim, device)
class lasdi.gplasdi.BayesianGLaSDI(physics, autoencoder, latent_dynamics, param_space, config)

This class runs a full GPLaSDI training. It takes into input the autoencoder defined as a PyTorch object and the dictionnary containing all the training parameters. The “train” method with run the active learning training loop, compute the reconstruction and SINDy loss, train the GPs, and sample a new FOM data point.

X_train
X_test
autoencoder
latent_dynamics
physics
param_space
timer
n_samples
lr
n_iter
max_iter
max_greedy_iter
ld_weight
coef_weight
optimizer
MSE
path_checkpoint
path_results
best_loss
best_coefs = None
restart_iter = 0
training_loss = []
ae_loss = []
ld_loss = []
coef_loss = []
train()
get_new_sample_point()
export()
load(dict_)