lasdi.gplasdi

Classes

BayesianGLaSDI

Functions

average_rom(autoencoder, physics, latent_dynamics, ...)

sample_roms(autoencoder, physics, latent_dynamics, ...)

Collect n_samples of ROM trajectories on param_grid.

get_fom_max_std(autoencoder, Zis)

Computes the maximum standard deviation accross the parameter space grid and finds the corresponding parameter location

optimizer_to(optim, device)

Module Contents

lasdi.gplasdi.average_rom(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid)
lasdi.gplasdi.sample_roms(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid, n_samples)

Collect n_samples of ROM trajectories on param_grid. gp_dictionary: list of Gaussian process regressors (size of n_test) param_grid: numpy 2d array n_samples: integer assert(len(gp_dictionnary) == param_grid.shape[0])

output: np.array of size [n_test, n_samples, physics.nt, autoencoder.n_z]

lasdi.gplasdi.get_fom_max_std(autoencoder, Zis)

Computes the maximum standard deviation accross the parameter space grid and finds the corresponding parameter location

lasdi.gplasdi.optimizer_to(optim, device)
class lasdi.gplasdi.BayesianGLaSDI(physics, autoencoder, latent_dynamics, param_space, config)
X_train
X_test
autoencoder
latent_dynamics
physics
param_space
timer
n_samples
lr
n_iter
max_iter
max_greedy_iter
ld_weight
coef_weight
optimizer
MSE
path_checkpoint
path_results
best_loss
best_coefs = None
restart_iter = 0
train()
get_new_sample_point()
export()
load(dict_)