lasdi.gp
Functions
|
Trains each GP given the interpolation dataset. |
|
Computes the GPs predictive mean and standard deviation for points of the parameter space grid |
|
Generates sample sets of ODEs for one given parameter. |
Module Contents
- lasdi.gp.fit_gps(X, Y)
Trains each GP given the interpolation dataset. X: (n_train, n_param) numpy 2d array Y: (n_train, n_coef) numpy 2d array We assume each target coefficient is independent with each other. gp_dictionnary is a dataset containing the trained GPs (as sklearn objects)
- lasdi.gp.eval_gp(gp_dictionnary, param_grid)
Computes the GPs predictive mean and standard deviation for points of the parameter space grid
- lasdi.gp.sample_coefs(gp_dictionnary, param, n_samples)
Generates sample sets of ODEs for one given parameter. coef_samples is a list of length n_samples, where each terms is a matrix of SINDy coefficients sampled from the GP predictive distributions