lasdi.gplasdi ============= .. py:module:: lasdi.gplasdi Classes ------- .. autoapisummary:: lasdi.gplasdi.BayesianGLaSDI Functions --------- .. autoapisummary:: lasdi.gplasdi.average_rom lasdi.gplasdi.sample_roms lasdi.gplasdi.get_fom_max_std lasdi.gplasdi.optimizer_to Module Contents --------------- .. py:function:: average_rom(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid) .. py:function:: sample_roms(autoencoder, physics, latent_dynamics, gp_dictionary, param_grid, n_samples) Collect n_samples of ROM trajectories on param_grid. gp_dictionary: list of Gaussian process regressors (size of n_test) param_grid: numpy 2d array n_samples: integer assert(len(gp_dictionnary) == param_grid.shape[0]) output: np.array of size [n_test, n_samples, physics.nt, autoencoder.n_z] .. py:function:: get_fom_max_std(autoencoder, Zis) Computes the maximum standard deviation accross the parameter space grid and finds the corresponding parameter location .. py:function:: optimizer_to(optim, device) .. py:class:: BayesianGLaSDI(physics, autoencoder, latent_dynamics, param_space, config) .. py:attribute:: X_train .. py:attribute:: X_test .. py:attribute:: autoencoder .. py:attribute:: latent_dynamics .. py:attribute:: physics .. py:attribute:: param_space .. py:attribute:: timer .. py:attribute:: n_samples .. py:attribute:: lr .. py:attribute:: n_iter .. py:attribute:: max_iter .. py:attribute:: max_greedy_iter .. py:attribute:: ld_weight .. py:attribute:: coef_weight .. py:attribute:: optimizer .. py:attribute:: MSE .. py:attribute:: path_checkpoint .. py:attribute:: path_results .. py:attribute:: best_loss .. py:attribute:: best_coefs :value: None .. py:attribute:: restart_iter :value: 0 .. py:method:: train() .. py:method:: get_new_sample_point() .. py:method:: export() .. py:method:: load(dict_)