import numpy as np
from astropy.time import Time
import astropy.units as u
from .body import get_body
from .constants import RGEO, LD, EARTH_RADIUS, EARTH_MU, MOON_RADIUS, MOON_MU
from .propagator import KeplerianPropagator
from .utils import (
norm, normed, unitAngle3, get_angle, LRU_Cache, lb_to_unit, sunPos, _gpsToTT,
iers_interp, rotation_matrix_from_vectors, angle_between_vectors, gcrf_to_itrf
)
from .orbit import Orbit
from .ellipsoid import Ellipsoid
try:
import erfa
except ImportError:
# Let this raise
import astropy._erfa as erfa
def _doSqueeze(squeezeOrbit, squeezeTime, *args):
out = []
for i, arg in enumerate(args):
if squeezeTime:
if squeezeOrbit:
out.append(arg[0, 0]) # scalar
else:
out.append(np.squeeze(arg, axis=1)) # (nOrbit,)
else:
if squeezeOrbit:
out.append(np.squeeze(arg, axis=0)) # (nTime,)
else:
out.append(arg) # (nOrbit, nTime)
if len(out) == 1:
return out[0]
return tuple(out)
def _countOrbit(orbit):
# orbit is one of:
# 1) scalar Orbit
# 2) vector Orbit
# 3) list of scalar Orbit
# convert to (2), set nOrbit, squeezeOrbit, and orbit.
# check 1) and 2)
if isinstance(orbit, Orbit):
# check shape of r to decide scalar vs vector
if orbit.r.ndim == 1: # scalar Orbit
nOrbit = 1
squeezeOrbit = True
if 'kozaiMeanKeplerianElements' in orbit.__dict__:
kMKE = orbit.__dict__['kozaiMeanKeplerianElements']
else:
kMKE = None
orbit = Orbit(
np.atleast_2d(orbit.r),
np.atleast_2d(orbit.v),
np.atleast_1d(orbit.t),
mu=orbit.mu,
propkw={k: np.atleast_1d(v) for k, v in orbit.propkw.items()},
)
# Copying just kozaiMeanKeplerianElements for now, though maybe
# ought to retain other (all?) lazy_properties attributes too?
if kMKE is not None:
orbit.kozaiMeanKeplerianElements = kMKE
else: # vector Orbit
nOrbit = orbit.r.shape[0]
squeezeOrbit = False
else:
import warnings
warnings.warn(
"list of Orbit syntax is deprecated. "
"Please use a vector Orbit instead.",
DeprecationWarning
)
# list of scalar orbit
nOrbit = len(orbit)
squeezeOrbit = False
# assumes all orbits have the same keywords and mu!
propkeys = [] if nOrbit == 0 else orbit[0].propkw.keys()
mu = None if nOrbit == 0 else orbit[0].mu
orbit = Orbit(
np.array([o.r for o in orbit]),
np.array([o.v for o in orbit]),
np.array([o.t for o in orbit]),
mu=mu,
propkw={k: np.array([o.propkw[k] for o in orbit])
for k in propkeys}
)
return nOrbit, squeezeOrbit, orbit
def _countTime(time):
if isinstance(time, Time):
time = time.gps
squeezeTime = False
try:
nTime = len(time)
except TypeError:
time = np.array([time])
nTime = 1
squeezeTime = True
return nTime, squeezeTime, time
def _countR(r):
# orbit is one of:
# 1) scalar r
# 2) vector r
# 3) list of scalar Orbit
# convert to (2), set nOrbit, squeezeOrbit, and orbit.
squeezeR = False
if np.shape(r)[-1] == 3:
pass
else:
raise ValueError(f"Incorrect r dimensions. Expected shape (n, 3), but got {np.shape(r)}.")
# check 1) and 2)
if r.ndim < 3: # scalar r
nR = 1
r = np.reshape(np.atleast_3d(r), (nR, np.shape(r)[0], np.shape(r)[1]))
squeezeR = True
else:
nR = np.shape(r)[0]
return nR, squeezeR, r
def _processObserver(
observer, obsPos, obsVel, nTime, squeezeTime, time, doObsVel=False
):
# We always need obsPos output, but only sometimes obsVel. So only require
# obsVel if doObsVel is True. (but always return it, and always compute it
# if what we got as input was in an observer).
squeezeObsPos = False
if observer is None:
if obsPos is None:
raise ValueError(
"Exactly one of obsPos and observer must be specified"
)
if doObsVel and obsVel is None:
raise ValueError(
"Exactly one of obsVel and observer required for doObsVel"
)
if observer is not None:
if obsPos is not None:
raise ValueError(
"Exactly one of obsPos and observer must be specified"
)
if doObsVel and obsVel is not None:
raise ValueError(
"Exactly one of obsVel and observer required for doObsVel"
)
try:
nObservers = len(observer)
except TypeError:
observer = [observer]
nObservers = 1
squeezeObsPos = squeezeTime
# Now generate obsPos
if nObservers == nTime:
obsPos = np.empty((nObservers, 3), dtype=float)
obsVel = np.empty((nObservers, 3), dtype=float)
for i, (obs, t) in enumerate(zip(observer, time)):
obsPos[i], obsVel[i] = obs.getRV(t)
else:
if nObservers == 1:
obsPos, obsVel = observer[0].getRV(time)
elif nTime == 1:
obsPos = np.empty((nObservers, 3), dtype=float)
obsVel = np.empty((nObservers, 3), dtype=float)
for i, obs in enumerate(observer):
obsPos[i], obsVel[i] = obs.getRV(time[0])
else:
raise ValueError("observer and time must be broadcastable")
if doObsVel:
obsPos, obsVel = np.broadcast_arrays(obsPos, obsVel)
obsPos = np.atleast_1d(obsPos)
if obsPos.ndim == 2:
nObsPos = obsPos.shape[0]
else:
obsPos = np.atleast_2d(obsPos)
nObsPos = 1
squeezeObsPos = True
# times and obsPos must align
if nObsPos != nTime:
if nObsPos == 1:
obsPos = np.broadcast_to(obsPos, (nTime, 3))
if doObsVel:
obsVel = np.broadcast_to(obsVel, (nTime, 3))
nObsPos = nTime
elif nTime == 1:
time = np.broadcast_to(time, (nObsPos,))
nTime = nObsPos
else:
raise ValueError("obsPos and time must be broadcastable")
squeezeTime &= squeezeObsPos
return obsPos, obsVel, time, squeezeTime
class HashableArrayContainer:
def __init__(self, arr):
self.arr = arr
self.arr.flags.writeable = False
def __hash__(self):
return hash(self.arr.data.tobytes())
def __eq__(self, rhs):
return np.all(self.arr == rhs.arr)
[docs]
def rv(orbit, time, propagator=KeplerianPropagator()):
"""Calculate positions and velocities on the outer product of all supplied
orbits and times.
Parameters
----------
orbit : Orbit or list of Orbit (n,)
Desired orbit(s)
time : array_like or astropy.time.Time (m,)
If float (array), then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
propagator : Propagator, optional
The propagator instance to use.
Notes
-----
If orbit or time is scalar valued (as opposed to a list of Orbit, e.g.) then
the corresponding dimension of the output will be squeezed out.
For Keplerian orbit propagation it is more efficient to use a "vector Orbit"
instead of a list of single scalar Orbits.
Returns
-------
r : array_like (n, m, 3)
Position in meters.
v : array_like (n, m, 3)
Velocity in meters per second.
"""
nOrbit, squeezeOrbit, orbit = _countOrbit(orbit)
nTime, squeezeTime, time = _countTime(time)
outR, outV = _rv(orbit, HashableArrayContainer(time), propagator)
return _doSqueeze(squeezeOrbit, squeezeTime, outR, outV)
def __rv(orbit, time, propagator):
outR, outV = propagator._getRVMany(orbit, time.arr)
return outR, outV
_rv = LRU_Cache(__rv, maxsize=16)
[docs]
def groundTrack(orbit, time, propagator=KeplerianPropagator(), format='geodetic'):
"""Calculate satellite ground track on the outer product of all supplied times and
state vectors or orbits.
Parameters
----------
r : array_like (n,3) Position (m)
time : array_like or astropy.time.Time (m,)
If float (array), then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
or
orbit : r : array_like (n,3) Position (m) or
Orbit or list of Orbit (n,)
Desired orbit(s)
propagator : Propagator, optional
The propagator instance to use.
format : 'geodetic' or 'cartesian'
If 'geodetic', then returns longitude, latitude, height.
If 'cartesian', then returns xyz in ITRF frame.
Notes
-----
If orbit or time is scalar valued (as opposed to a list of Orbit, e.g.) then
the corresponding dimension of the output will be squeezed out.
For Keplerian orbit propagation it is more efficient to use a "vector Orbit"
instead of a list of single scalar Orbits.
Returns
-------
lon, lat, height : array_like (n, m, 3)
Radians and meters.
or
x, y, z : array_like(n, m, 3)
Meters.
"""
if format not in ['cartesian', 'geodetic']:
raise ValueError("Format must be either 'cartesian' or 'geodetic'")
nTime, squeezeTime, time = _countTime(time)
if isinstance(orbit, Orbit):
nOrbit, squeezeOrbit, orbit = _countOrbit(orbit)
r, v = rv(orbit, time, propagator=propagator) # (n, m, 3)
else:
nOrbit, squeezeOrbit, r = _countR(orbit) # (n, m, 3)
# Reverse the math in EarthObserver.getRV
mjd_tt = _gpsToTT(time)
d_ut1_tt_mjd, pmx, pmy = iers_interp(time)
pn = erfa.pnm80(2400000.5, mjd_tt)
gst = erfa.gst94(2400000.5, mjd_tt + d_ut1_tt_mjd)
cg, sg = np.cos(gst), np.sin(gst)
gstMat = np.zeros([len(time), 3, 3], dtype=float)
gstMat[:, 0, 0] = cg
gstMat[:, 0, 1] = sg
gstMat[:, 1, 0] = -sg
gstMat[:, 1, 1] = cg
gstMat[:, 2, 2] = 1.0
polar = np.zeros([len(time), 3, 3], dtype=float)
polar[:] = np.eye(3)
polar[:, 0, 2] = pmx
polar[:, 1, 2] = -pmy
polar[:, 2, 0] = -pmx
polar[:, 2, 1] = pmy
U = gstMat @ pn
itrs = np.einsum(
"tab,ntb->nta",
(polar @ U),
r
)
x = itrs[..., 0]
y = itrs[..., 1]
z = itrs[..., 2]
if format == 'cartesian':
return _doSqueeze(squeezeOrbit, squeezeTime, x, y, z)
elif format == 'geodetic':
ellipsoid = Ellipsoid()
lon, lat, height = ellipsoid.cartToSphere(x, y, z)
return _doSqueeze(squeezeOrbit, squeezeTime, lon, lat, height)
def _obsAngleCorrection(
r, v, obsPos, obsVel, orbit, time, propagator, correctionType, max_iter=10
):
if correctionType == "linear":
# First order correction is to back up satellite by v * dt
# where dt is the approximate time delay from the 0th order distance.
# Important: *don't* do anything to the observer position, since we
# really did do the observation at the originally given time and place.
dt = norm(r - obsPos) / 299792458
r -= np.einsum("nmi,nm->nmi", v, dt)
# no change to v since linear assumption _is_ that v is constant for the
# light time duration.
elif correctionType == "exact":
# Solve |r(t-dt) - r_obs(t)| = c dt for dt.
dist = norm(r - obsPos)
dt, dt_previous = dist / 299792458, np.inf
iter = 0
while np.any(np.abs(dt - dt_previous)) > 1e-12: # picosecond accurate
if iter > max_iter:
raise RuntimeError(
"Exact light time correction did not converge in "
"{} iterations".format(iter)
)
# Unfortunately, can't just do
# r, v = rv(orbit, time-dt, propagator=propagator)
# because ssapy.rv isn't parallelized for n orbits and n, m times.
# so do one orbit at a time.
r = np.empty((len(orbit), len(time), 3))
v = np.empty((len(orbit), len(time), 3))
for i, o in enumerate(orbit):
r[i], v[i] = rv(o, time - dt[i], propagator=propagator)
dist = norm(r - obsPos)
dt, dt_previous = dist / 299792458, dt
iter += 1
else:
raise ValueError(
"Invalid value for correctionType: {}"
.format(correctionType)
)
# Apply velocity correction (i.e., diurnal aberration for an Earth-based
# observer, and whatever you call the analogous correction for an orbital
# observer).
dr = norm(r - obsPos)
r += obsVel * dr[..., None] / 299792458
return r, v
[docs]
def dircos(
orbit, time, obsPos=None, obsVel=None, observer=None,
propagator=KeplerianPropagator(), obsAngleCorrection=None
):
""" Calculate observed direction-cosines of orbiting objects as viewed at
specified times and positions.
The direction cosines are the cosines of the angles between the vector
pointing towards the orbiting object and the x, y, z axes. An equivalent
description is that they are the components of the unit vector pointing
towards the orbiting object.
Parameters
----------
orbit : Orbit or list of Orbit (n,)
Orbit(s) for which to calculate direction cosines.
time : array_like or astropy.time.Time (m,)
If float (array), then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
obsPos : array_like (m, 3), optional
Position of observer at given time.
obsVel : array_like (m, 3), optional
Velocity of observer at given time. Only required if correcting for
diurnal aberration.
observer : Observer or list of Observers (m,), optional
Observer(s) used to calculate obsPos and obsVel.
propagator : Propagator, optional
The propagator instance to use.
obsAngleCorrection : {None, "linear", "exact"}, optional
Correct actual angle to observed angle, meaning account for light-time
delay, and aberration due to the observer's velocity. None means don't
do any correction. "linear" means do an aberration correction and first
order light-time correction. "exact" means do an aberration correction
and iteratively solve for the exact light-time correction. (The
"linear" correction is almost always sufficiently accurate).
Notes
-----
Exactly 1 of `obsPos` and `observer` must be supplied. `observer` and
`obsPos` follow similar broadcasting rules as detailed below explicitly only
for `obsPos`.
The length of `time` and `obsPos` must match or be broadcastable to match.
If `orbit` is scalar-valued (an Orbit instead of a list of Orbit), then that
dimension will be squeezed out in the return value. Likewise, if both
`time` and `obsPos` are scalar, that dimension will be squeezed out.
For Keplerian orbit propagation it is more efficient to use a "vector Orbit"
instead of a list of single scalar Orbits.
When doing light time corrections, the time argument is the arrival time of
the photons at the observer, as opposed to the emission time at the
satellite.
Returns
-------
dircos : array_like (n, m, 3)
Direction cosines on the outer product of orbit(s) and time/obsPos.
"""
nTime, squeezeTime, time = _countTime(time)
nOrbit, squeezeOrbit, orbit = _countOrbit(orbit)
obsPos, obsVel, time, squeezeTime = _processObserver(
observer, obsPos, obsVel, nTime, squeezeTime, time,
doObsVel=obsAngleCorrection
)
# At this point, should have len(orbit) == n
# and len(obsPos) == len(time) == nTime
# So get positions of orbits...
r, v = rv(orbit, time, propagator=propagator) # (n, m, 3)
if obsAngleCorrection:
r, v = _obsAngleCorrection(
r, v, obsPos, obsVel, orbit, time, propagator, obsAngleCorrection
)
dc = normed(r - obsPos)
return _doSqueeze(squeezeOrbit, squeezeTime, dc)
[docs]
def radec(
orbit, time, obsPos=None, obsVel=None, observer=None,
propagator=KeplerianPropagator(), obsAngleCorrection=None, rate=False
):
""" Calculate observed right ascension, declination, and slant range of
orbiting objects as viewed at specified times and positions.
Parameters
----------
orbit : Orbit or list of Orbit (n,)
Orbit(s) for which to calculate ra and dec.
time : array_like or astropy.time.Time (m,)
If float (array), then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
obsPos : array_like (m, 3), optional
Positions of observers at given times.
obsVel : array_like (m, 3), optional
Velocity of observers at given times.
observer : Observer or list of Observers (m,), optional
Observer(s) used to calculate obsPos.
propagator : Propagator, optional
The propagator instance to use.
rate : bool
If True, return additionally the time derivatives of the quantity, times
cos(dec) in the case of right ascension.
obsAngleCorrection : {None, "linear", "exact"}, optional
Correct actual angle to observed angle, meaning account for light-time
delay, and aberration due to the observer's velocity. None means don't
do any correction. "linear" means do an aberration correction and first
order light-time correction. "exact" means do an aberration correction
and iteratively solve for the exact light-time correction. (The
"linear" correction is almost always sufficiently accurate).
Notes
-----
Exactly 1 of `obsPos` and `observer` must be supplied. `observer` and
`obsPos` follow similar broadcasting rules as detailed below explicitly only
for `obsPos`.
The length of `time` and `obsPos` must match or be broadcastable to match.
If `orbit` is scalar-valued (an Orbit instead of a list of Orbit), then that
dimension will be squeezed out in the return value. Likewise, if both
`time` and `obsPos` are scalar, that dimension will be squeezed out.
For Keplerian orbit propagation it is more efficient to use a "vector Orbit"
instead of a list of single scalar Orbits.
When doing light time corrections, the time argument is the arrival time of
the photons at the observer, as opposed to the emission time at the
satellite.
Returns
-------
ra, dec : array_like (n, m)
Right ascension and declination in radians.
range : array_like (n, m)
(Slant) range in meters.
If rate, also:
raRate : array_like (n, m)
Time derivatives of right ascension times cos(dec), rad / sec.
decRate : array_like (n, m)
Time derivative of declination, rad / sec.
rangeRate : array_like (n, m)
Time derivative of range, meter / s.
"""
nTime, squeezeTime, time = _countTime(time)
nOrbit, squeezeOrbit, orbit = _countOrbit(orbit)
obsPos, obsVel, time, squeezeTime = _processObserver(
observer, obsPos, obsVel, nTime, squeezeTime, time,
doObsVel=obsAngleCorrection
)
if rate and obsVel is None:
raise ValueError('obsVel must not be None if rate is True.')
# At this point, should have len(orbit) == n
# and len(obsPos) == len(time) == nTime
# So get positions of orbits...
r, v = rv(orbit, time, propagator=propagator) # (n, m, 3)
if obsAngleCorrection:
r, v = _obsAngleCorrection(
r, v, obsPos, obsVel, orbit, time, propagator, obsAngleCorrection
)
ra, dec, slantRange, raRate, decRate, rangeRate = rvObsToRaDecRate(
r, v, obsPos, obsVel
)
res = (ra, dec, slantRange)
if rate:
res = res + (raRate, decRate, rangeRate)
return _doSqueeze(*((squeezeOrbit, squeezeTime) + res))
[docs]
def altaz(
orbit, time, observer, propagator=KeplerianPropagator(),
obsAngleCorrection=None
):
""" Calculate observed altitude and azimuth of orbiting objects as viewed at
specified times and locations.
Parameters
----------
orbit : Orbit or list of Orbit (n,)
Orbits for which to calculate direction cosines.
time : array_like or astropy.time.Time (m,)
If float (array), then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
observer : EarthObserver
Where on Earth to compute alt and az.
propagator : Propagator, optional
The propagator instance to use.
obsAngleCorrection : {None, "linear", "exact"}, optional
Correct actual angle to observed angle, meaning account for light-time
delay, and aberration due to the observer's velocity. None means don't
do any correction. "linear" means do an aberration correction and first
order light-time correction. "exact" means do an aberration correction
and iteratively solve for the exact light-time correction. (The
"linear" correction is almost always sufficiently accurate).
Notes
-----
If `orbit` is scalar-valued (an Orbit instead of a list of Orbit), then that
dimension will be squeezed out in the return value. Likewise, if `time` is
scalar, that dimension will be squeezed out.
For Keplerian orbit propagation it is more efficient to use a "vector Orbit"
instead of a list of single scalar Orbits.
When doing light time corrections, the time argument is the arrival time of
the photons at the observer, as opposed to the emission time at the
satellite.
Returns
-------
alt, az : array_like (n, m)
Altitude and azimuth in radians.
"""
from astropy.coordinates import SkyCoord, AltAz, GCRS
nTime, squeezeTime, time = _countTime(time)
nOrbit, squeezeOrbit, orbit = _countOrbit(orbit)
obsPos, obsVel = observer.getRV(time)
r, v = rv(orbit, time, propagator=propagator) # (n, m, 3)
if obsAngleCorrection:
r, v = _obsAngleCorrection(
r, v, obsPos, obsVel, orbit, time, propagator, obsAngleCorrection
)
# Using astropy backend for AltAz computation
sc = SkyCoord(
x=r[..., 0], y=r[..., 1], z=r[..., 2],
unit='m',
representation_type='cartesian',
frame=GCRS(obstime=Time(time, format='gps'))
)
aa = sc.transform_to(AltAz(location=observer._location))
return _doSqueeze(squeezeOrbit, squeezeTime, aa.alt.radian, aa.az.radian)
[docs]
def quickAltAz(
orbit, time, observer, propagator=KeplerianPropagator(),
obsAngleCorrection=None
):
""" Quickly estimate observed altitude and azimuth of orbiting objects as
viewed at specified times and locations.
This algorithm approximates "up" as pointing directly away from the center
of the Earth, instead of normal to the reference ellipsoid. Use `altAz` if
you want values wrt the reference ellipsoid.
Parameters
----------
orbit : Orbit or list of Orbit (n,)
Orbits for which to calculate direction cosines.
time : array_like or astropy.time.Time (m,)
If float (array), then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
observer : EarthObserver
Where on Earth to compute alt and az.
propagator : Propagator, optional
The propagator instance to use.
obsAngleCorrection : {None, "linear", "exact"}, optional
Correct actual angle to observed angle, meaning account for light-time
delay, and aberration due to the observer's velocity. None means don't
do any correction. "linear" means do an aberration correction and first
order light-time correction. "exact" means do an aberration correction
and iteratively solve for the exact light-time correction. (The
"linear" correction is almost always sufficiently accurate).
Notes
-----
If `orbit` is scalar-valued (an Orbit instead of a list of Orbit), then that
dimension will be squeezed out in the return value. Likewise, if `time` is
scalar, that dimension will be squeezed out.
For Keplerian orbit propagation it is more efficient to use a "vector Orbit"
instead of a list of single scalar Orbits.
When doing light time corrections, the time argument is the arrival time of
the photons at the observer, as opposed to the emission time at the
satellite.
Returns
-------
alt, az : array_like (n, m)
Altitude and azimuth in radians.
"""
nTime, squeezeTime, time = _countTime(time)
nOrbit, squeezeOrbit, orbit = _countOrbit(orbit)
ro, vo = observer.getRV(time) # (m, 3)
r, v = rv(orbit, time, propagator=propagator) # (n, m, 3)
if obsAngleCorrection:
r, v = _obsAngleCorrection(
r, v, ro, vo, orbit, time, propagator, obsAngleCorrection
)
up = normed(ro)
east = normed(vo)
north = np.cross(up, east)
dr = r - ro
northing = np.einsum("nmi,mi->nm", dr, north)
easting = np.einsum("nmi,mi->nm", dr, east)
alt = np.pi / 2 - unitAngle3(
normed(np.broadcast_to(ro, r.shape)), normed(dr)
)
az = np.arctan2(easting, northing)
az %= 2 * np.pi
return _doSqueeze(squeezeOrbit, squeezeTime, alt, az)
[docs]
def radecRate(
orbit, time, obsPos=None, obsVel=None, observer=None,
propagator=KeplerianPropagator(),
obsAngleCorrection=None
):
"""Calculate ra/dec rate and slant range rate of orbit at specified times
and observer positions and velocities.
DEPRECATED. Use radec(..., rate=True) in new code.
Parameters
----------
orbit : Orbit or list of Orbit (n,)
Orbit(s) for which to calculate slant range rate.
time : array_like or astropy.time.Time (m,)
If float (array), then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
obsPos : array_like (m, 3), optional
Positions of observers at given times.
obsVel : array_like (m, 3), optional
Velocity of observers at given times.
observer : Observer or list of Observers (m,), optional
Observer(s) used to calculate obsPos and obsVel.
propagator : Propagator, optional
The propagator instance to use.
obsAngleCorrection : {None, "linear", "exact"}, optional
Correct actual angle to observed angle, meaning account for light-time
delay, and aberration due to the observer's velocity. None means don't
do any correction. "linear" means do an aberration correction and first
order light-time correction. "exact" means do an aberration correction
and iteratively solve for the exact light-time correction. (The
"linear" correction is almost always sufficiently accurate).
Notes
-----
Exactly 1 of `obsPos` and `observer` must be supplied. `observer` and
`obsPos` follow similar broadcasting rules as detailed below explicitly only
for `obsPos`. If `obsPos` is specified, `obsVel` must also be specified and
congruent to `obsPos`.
The length of `time` and `obsPos` must match or be broadcastable to match.
If `orbit` is scalar-valued (an Orbit instead of a list of Orbit), then that
dimension will be squeezed out in the return value. Likewise, if both
`time` and `obsPos` are scalar, that dimension will be squeezed out.
For Keplerian orbit propagation it is more efficient to use a "vector Orbit"
instead of a list of single scalar Orbits.
When doing light time corrections, the time argument is the arrival time of
the photons at the observer, as opposed to the emission time at the
satellite.
Returns
-------
ra : array_like (n, m)
right ascension in radians
raRate : array_like (n, m)
Rate of change of right ascension*cos(dec) in radians per second.
dec : array_link (n, m)
declination in radians
decRate : array_like (n, m)
Rate of change of declination in radians per second.
slantRange : array_like (n, m)
Range in meters
slantRangeRate : array_like (n, m)
Slant range rate in meters per second.
"""
import warnings
warnings.warn("This function is deprecated; use "
"ssapy.compute.radec(..., rate=True)")
ra, dec, slant, raRate, decRate, slantRate = radec(
orbit, time, obsPos=obsPos, obsVel=obsVel, observer=observer,
propagator=propagator, obsAngleCorrection=obsAngleCorrection
)
return raRate, decRate, slantRate
[docs]
def rvObsToRaDecRate(r, v, obsPos=None, obsVel=None):
"""Convert object and observer position and velocity to angles.
This only does the geometric part; it ignores light travel time,
which may be applied to the object location before input. Assumes
that r, v, obsPos, and obsVel all have common shape.
Parameters
----------
r : array_like (..., 3)
object position in meters
v : array_like (..., 3)
object velocity in meters per second
obsPos : array_like (..., 3)
observer position in meters
obsVel : array_like (..., 3), optional
observer velocity in meters per second
Returns
-------
ra : array_like (...)
right ascension in radians
dec : array_link (...)
declination in radians
slantRange : array_like (...)
Range in meters
raRate : array_like (...)
Rate of change of right ascension*cos(dec) in radians per second.
decRate : array_like (...)
Rate of change of declination in radians per second.
slantRangeRate : array_like (...)
Slant range rate in meters per second.
"""
if obsPos is None:
obsPos = np.zeros_like(r)
dr = r - obsPos
slantRange = norm(dr)
ra = np.arctan2(dr[..., 1], dr[..., 0])
dec = np.arcsin(dr[..., 2] / slantRange)
if obsVel is None:
obsVel = np.zeros_like(v)
dv = v - obsVel
# Now need to rotate to ra/dec coords
sd, cd = np.sin(dec), np.cos(dec)
sa, ca = np.sin(ra), np.cos(ra)
rHat = normed(dr) # (n, m, 3)
raHat = np.zeros_like(rHat, dtype=float)
raHat[..., 0] = -sa
raHat[..., 1] = ca
decHat = np.zeros_like(raHat)
decHat[..., 0] = -sd * ca
decHat[..., 1] = -sd * sa
decHat[..., 2] = cd
raRate = np.einsum("...i,...i->...", dv, raHat) / slantRange
decRate = np.einsum("...i,...i->...", dv, decHat) / slantRange
rangeRate = np.einsum("...i,...i->...", dv, rHat)
return ra, dec, slantRange, raRate, decRate, rangeRate
[docs]
def radecRateObsToRV(ra, dec, slantRange, raRate=None, decRate=None, slantRangeRate=None, obsPos=None, obsVel=None):
"""Convert object angles and observer position to 3D observer position
This only does the geometric part; it ignores light travel time. This
is the inverse of rvObsToRaDecRate.
If obsVel is None, then the returned velocity will also be None.
Parameters
----------
ra : array_like (...)
right ascension in radians
dec : array_like (...)
declination in radians
slantRange : array_like (...)
Range in meters
raRate : array_like (...)
Rate of change of right ascension*cos(dec) in radians per second.
decRate : array_like (...)
Rate of change of declination in radians per second.
slantRangeRate : array_like (...)
Slant range rate in meters per second.
obsPos : array_like (..., 3)
Observer position in meters
obsVel : array_like (..., 3)
Observer velocity in meters
Returns
-------
r : array_like (..., 3)
object position in meters
v : array_like (..., 3)
object velocity in meters per second
observer velocity in meters per second
v is None if obsVel is None.
"""
if obsPos is None:
return ValueError('obsPos must be set!')
rHat = lb_to_unit(ra, dec)
sd, cd = np.sin(dec), np.cos(dec)
sa, ca = np.sin(ra), np.cos(ra)
raHat = np.zeros_like(rHat, dtype=float)
raHat[..., 0] = -sa
raHat[..., 1] = ca
decHat = np.zeros_like(raHat)
decHat[..., 0] = -sd * ca
decHat[..., 1] = -sd * sa
decHat[..., 2] = cd
if len(rHat.shape) > 1:
slantRange = np.array(slantRange)[..., None]
raRate = np.array(raRate)[..., None]
decRate = np.array(decRate)[..., None]
slantRangeRate = np.array(slantRangeRate)[..., None]
r = obsPos + rHat * slantRange
if obsVel is None:
v = None
else:
v = (obsVel + rHat * slantRangeRate + slantRange * (raHat * raRate + decHat * decRate))
return r, v
[docs]
def earthShadowCoords(r, time):
"""Determine components of position `r` parallel and perpendicular to sun
unit vector.
The sun unit vector points from the center of the sun through the center of
the Earth. Decomposing a satellite position into these coordinates yields a
simple model of whether or not the satellite is in Earth's shadow:
r_par, r_perp = earthShadowCoords(r, time)
inShadow = r_par > 0 and r_perp < EARTH_RADIUS
Parameters
----------
r : ndarray (3,)
Position (GCRF) in meters
time : float or astropy.time.Time
If float, then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
Returns
-------
r_par : float
Position of satellite projected onto the sun unit vector in meters.
r_perp : float
Distance of satellite from Earth-Sun line in meters.
"""
if isinstance(time, Time):
time = time.gps
r_sun = sunPos(time, fast=False)
if r.ndim == 1:
n_sun = - r_sun / norm(r_sun)
r_par = np.dot(r, n_sun)
r_perp = norm(r - n_sun * r_par)
else:
n_sun = - r_sun / norm(r_sun)[:, None]
r_par = np.sum(r * n_sun, axis=1)
r_perp = norm(r - n_sun * r_par[:, None])
return r_par, r_perp
[docs]
def find_passes(
orbit, observers,
tStart, tSpan, dt,
propagator=KeplerianPropagator(),
horizon=np.deg2rad(20)
):
"""Find satellite overhead passes for a collection of observers.
Uses a brute force test of a grid of time points from tStart to tStart+tSpan
separated by dt.
Returns passes even if they occur during the daytime or if the satellite is
not illuminated by the sun. The only criterion for a successful "pass" is
for the topocentric altitude of the satellite to be above the input
`horizon`. More details about a pass can subsequently be obtained by
running the `refine_passes` function.
Note this function is only suitable for `EarthObserver`s and not
`OrbitalObserver`s.
Parameters
----------
orbit : Orbit
Satellite orbit in question.
observers : List of EarthObserver.
Earth observers for which to check satellite visibility.
tStart : float or astropy.time.Time
Beginning of search window.
If float, then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
tSpan : float or Quantity
Time span in which to search for passes.
If float, then seconds.
dt : float or Quantity
Time increment to use during search. Satellite visibility will be
computed every dt increment. Smaller values will decrease the
probability that a short duration pass will be missed, but will make the
search take longer to complete.
If float, then seconds.
propagator : Propagator, optional
The propagator instance to use.
horizon : float or Quantity, optional
Minimum altitude for which to consider a satellite "visible".
If float, then should be in radians.
Returns
-------
passDict : dict
keys are `EarthObserver`s.
values are lists (possibly empty) of `astropy.Time` corresponding to
visible passes of the satellite. Only one time is returned per pass,
so multiple times in the return list indicate multiple distinct passes.
"""
import astropy.units as u
if isinstance(tStart, Time):
tStart = tStart.gps
if isinstance(tSpan, u.Quantity):
tSpan = tSpan.to(u.s).value
if isinstance(dt, u.Quantity):
dt = dt.to(u.s).value
if isinstance(horizon, u.Quantity):
horizon = horizon.to(u.rad).value
times = np.arange(tStart, tStart + tSpan, dt)
out = {}
for observer in observers:
out[observer] = []
alt, _ = quickAltAz(orbit, times, observer, propagator=propagator)
w = np.nonzero(alt > horizon)[0]
for wi in w:
if (wi - 1) in w: # already caught this pass
continue
out[observer].append(Time(times[wi], format='gps'))
return out
[docs]
def refine_pass(
orbit,
observer,
time,
propagator=KeplerianPropagator(),
horizon=np.deg2rad(20),
maxSpan=86400.0
):
"""Refine a satellite overhead pass.
Parameters
----------
orbit : Orbit
Orbit in question.
observer : EarthObserver.
Observer for which to refine pass.
time : float or astropy.time.Time
A time when satellite is visible to observer. (Found using
find_passes, for instance)
If float, then should correspond to GPS seconds; i.e., seconds
since 1980-01-06 00:00:00 UTC
propagator : Propagator, optional
The propagator instance to use.
horizon : float or Quantity, optional
Minimum altitude for which to consider a satellite "visible".
If float, then should be in radians.
maxSpan : float or Quantity, optional
Maximum amount of time before or after `time` to search for
rise/set times, or time of max altitude.
If float, then seconds.
Returns
-------
dict
Key/values are:
tStart : Time
Time at which Orbit rises above horizon
tEnd : Time
Time at which Orbit rises above horizon
tMaxAlt : Time
Time Orbit passes through maximum altitude
maxAlt : Quantity
Maximum altitude
duration : Quantity
Duration of pass.
illumAtStart : bool
Is satellite illuminated at `tStart`?
illumAtEnd : bool
Is satellite illuminated at `tEnd`?
tTerminator : Time or None
If illumAtStart != illumAtEnd, then time satellite passes through
cylindrical terminator shadow. Otherwise, None.
sunAltStart : Quantity
Altitude of sun at `tStart`
sunAltEnd : Quantity
Altitude of sun at `tEnd`
"""
from scipy.optimize import bisect, minimize_scalar
import astropy.units as u
import warnings
if isinstance(time, Time):
time = time.gps
if isinstance(horizon, u.Quantity):
horizon = horizon.to(u.rad).value
if isinstance(maxSpan, u.Quantity):
maxSpan = maxSpan.to(u.s).value
def dalt(t):
return (
horizon - quickAltAz(orbit, t, observer, propagator=propagator)[0]
)
# Height "outside" of cylindrical Earth shadow model.
def dshadow(t):
r, _ = rv(orbit, t, propagator=propagator)
r_par, r_perp = earthShadowCoords(r, t)
height = r_perp - EARTH_RADIUS
if r_par < 0:
# a bit of a hack, if the sat is on the sun side, then we'll
# return abs(dshadow) so that the value is positive, which indicates
# illumination.
return abs(height)
else:
return height
# Bracket and then bisect to find rise/set times
def bracket(f, x, dx, xmax):
x0, x1 = x, x + dx
f0, f1 = f(x0), f(x1)
while f0 * f1 > 0 and abs(x1 - x0) < xmax:
x1 += dx
f1 = f(x1)
return x1
tLow = bracket(dalt, time, -300, maxSpan)
if dalt(tLow) * dalt(time) > 0: # didn't bracket, use tLow and issue warning
warnings.warn("Failed to bracket. tStart is not rise time!")
tStart = tLow
else:
tStart = bisect(dalt, tLow, time)
tStart = Time(tStart, format='gps')
tStart.format = 'iso'
tHigh = bracket(dalt, time, 300, maxSpan)
if dalt(tHigh) * dalt(time) > 0:
warnings.warn("Failed to bracket. tEnd is not set time!")
tEnd = tHigh
else:
tEnd = bisect(dalt, time, tHigh)
tEnd = Time(tEnd, format='gps')
tEnd.format = 'iso'
# Find maximum altitude
dalt1 = dalt(tStart.gps)
dalt2 = dalt(time)
dalt3 = dalt(tEnd.gps)
if dalt2 < dalt1 and dalt2 < dalt3:
result = minimize_scalar(dalt, (tStart.gps, time, tEnd.gps))
tMaxAlt = Time(result.x, format='gps')
tMaxAlt.format = 'iso'
maxAlt = -result.fun + horizon
else:
ama = np.argmin([dalt1, dalt2, dalt3])
tMaxAlt = Time([tStart.gps, time, tEnd.gps][ama], format='gps')
tMaxAlt.format = 'iso'
maxAlt = -[dalt1, dalt2, dalt3][ama] + horizon
duration = (tEnd - tStart).to(u.min)
# Find illumination state
illumAtStart = dshadow(tStart.gps) > 0
sunAltStart = np.rad2deg(observer.sunAlt(tStart.gps)) * u.deg
illumAtEnd = dshadow(tEnd.gps) > 0
sunAltEnd = np.rad2deg(observer.sunAlt(tEnd.gps)) * u.deg
# If we transition between shadow/illuminated, then find the time of
# transition (time of terminator pass)
if illumAtStart != illumAtEnd:
tTerminator = bisect(dshadow, tStart.gps, tEnd.gps)
tTerminator = Time(tTerminator, format='gps')
tTerminator.format = 'iso'
else:
tTerminator = None
return {
"orbit": orbit,
"observer": observer,
"propagator": propagator,
"horizon": horizon,
"tStart": tStart,
"tEnd": tEnd,
"altStart": np.rad2deg(-dalt(tStart.gps) + horizon) * u.deg,
"altEnd": np.rad2deg(-dalt(tEnd.gps) + horizon) * u.deg,
"tMaxAlt": tMaxAlt,
"maxAlt": np.rad2deg(maxAlt) * u.deg,
"duration": duration,
"illumAtStart": illumAtStart,
"illumAtEnd": illumAtEnd,
"tTerminator": tTerminator,
"sunAltStart": sunAltStart,
"sunAltEnd": sunAltEnd
}
def nby3shape(arr_):
if arr_.ndim == 1:
return np.reshape(arr_, (1, 3))
if arr_.ndim == 2:
if np.shape(arr_)[1] == 3:
return arr_
else:
return arr_.T
[docs]
def calculate_orbital_elements(r_, v_, mu_barycenter=EARTH_MU):
"""
Calculate the Keplerian orbital elements from position and velocity vectors.
This function computes the Keplerian orbital elements (semi-major axis, eccentricity, inclination, true longitude, argument of periapsis, longitude of ascending node, true anomaly, and specific angular momentum) for one or more celestial objects given their position and velocity vectors.
Parameters:
----------
r_ : (n, 3) numpy.ndarray
Array of position vectors (in meters) of the celestial objects. Each row represents a position vector.
v_ : (n, 3) numpy.ndarray
Array of velocity vectors (in meters per second) of the celestial objects. Each row represents a velocity vector.
mu_barycenter : float, optional
Gravitational parameter (standard gravitational constant times mass) of the central body (default is `EARTH_MU`). This parameter defines the gravitational influence of the central body on the orbiting object.
Returns:
-------
dict
A dictionary containing the orbital elements for each celestial object:
- 'a': Semi-major axis (in meters).
- 'e': Eccentricity (dimensionless).
- 'i': Inclination (in radians).
- 'tl': True longitude (in radians).
- 'ap': Argument of periapsis (in radians).
- 'raan': Longitude of ascending node (in radians).
- 'ta': True anomaly (in radians).
- 'L': Specific angular momentum (in meters squared per second).
Notes:
------
- Position and velocity vectors should be provided in the same units.
- The function assumes that the input vectors are provided in an array where each row corresponds to a different celestial object.
- Orbital elements are computed using standard orbital mechanics formulas.
- The inclination is measured from the reference plane, and the argument of periapsis and true anomaly are measured in the orbital plane.
Example:
--------
>>> r = np.array([[1e7, 1e7, 1e7], [1e8, 1e8, 1e8]])
>>> v = np.array([[1e3, 2e3, 3e3], [4e3, 5e3, 6e3]])
>>> calculate_orbital_elements(r, v, mu_barycenter=3.986e14)
{'a': [1.5707e7, 2.234e8], 'e': [0.123, 0.456], 'i': [0.785, 0.654], 'tl': [2.345, 3.456], 'ap': [0.123, 0.456], 'raan': [1.234, 2.345], 'ta': [0.567, 1.678], 'L': [1.234e10, 2.345e11]}
"""
# mu_barycenter - all bodies interior to Earth
# 1.0013415732186798 #All bodies of solar system
mu_ = mu_barycenter
rarr = nby3shape(r_)
varr = nby3shape(v_)
aarr = []
earr = []
incarr = []
true_longitudearr = []
argument_of_periapsisarr = []
longitude_of_ascending_nodearr = []
true_anomalyarr = []
hmagarr = []
for r, v in zip(rarr, varr):
r = np.array(r) # print(f'r: {r}')
v = np.array(v) # print(f'v: {v}')
rmag = np.sqrt(r.dot(r))
vmag = np.sqrt(v.dot(v))
h = np.cross(r, v)
hmag = np.sqrt(h.dot(h))
n = np.cross(np.array([0, 0, 1]), h)
a = 1 / ((2 / rmag) - (vmag ** 2) / mu_)
evector = np.cross(v, h) / (mu_) - r / rmag
e = np.sqrt(evector.dot(evector))
inc = np.arccos(h[2] / hmag)
if np.dot(r, v) > 0:
true_anomaly = np.arccos(np.dot(evector, r) / (e * rmag))
else:
true_anomaly = 2 * np.pi - np.arccos(np.dot(evector, r) / (e * rmag))
if evector[2] >= 0:
argument_of_periapsis = np.arccos(np.dot(n, evector) / (e * np.sqrt(n.dot(n))))
else:
argument_of_periapsis = 2 * np.pi - np.arccos(np.dot(n, evector) / (e * np.sqrt(n.dot(n))))
if n[1] >= 0:
longitude_of_ascending_node = np.arccos(n[0] / np.sqrt(n.dot(n)))
else:
longitude_of_ascending_node = 2 * np.pi - np.arccos(n[0] / np.sqrt(n.dot(n)))
true_longitude = true_anomaly + argument_of_periapsis + longitude_of_ascending_node
aarr.append(a)
earr.append(e)
incarr.append(inc)
true_longitudearr.append(true_longitude)
argument_of_periapsisarr.append(argument_of_periapsis)
longitude_of_ascending_nodearr.append(longitude_of_ascending_node)
true_anomalyarr.append(true_anomaly)
hmagarr.append(hmag)
return {
'a': aarr,
'e': earr,
'i': incarr,
'tl': true_longitudearr,
'ap': argument_of_periapsisarr,
'raan': longitude_of_ascending_nodearr,
'ta': true_anomalyarr,
'L': hmagarr
}
######################################################################################
# Lambertian brightness functions
######################################################################################
[docs]
def moon_shine(r_moon, r_sat, r_earth, r_sun, radius, albedo, albedo_moon, albedo_back, albedo_front, area_panels): # In SI units, takes single values or arrays returns a fractional flux
"""
Calculate the fractional flux of sunlight reflected from the Moon to the satellite.
This function computes the flux of sunlight reflected from the Moon to the satellite, including contributions from both the front and back surfaces of the satellite's solar panels.
Parameters:
----------
r_moon : (n, 3) numpy.ndarray
Array of coordinates representing the position of the Moon.
r_sat : (n, 3) numpy.ndarray
Array of coordinates representing the position of the satellite.
r_earth : (n, 3) numpy.ndarray
Array of coordinates representing the position of the Earth.
r_sun : (n, 3) numpy.ndarray
Array of coordinates representing the position of the Sun.
radius : float
Radius of the satellite in meters.
albedo : float
Albedo of the satellite's surface.
albedo_moon : float
Albedo of the Moon.
albedo_back : float
Albedo of the back surface of the satellite's solar panels.
albedo_front : float
Albedo of the front surface of the satellite's solar panels.
area_panels : float
Area of the satellite's solar panels in square meters.
Returns:
-------
dict
Dictionary containing the flux contributions from the Moon to the satellite:
- 'moon_bus': Fraction of light reflected off the satellite's bus from the Moon.
- 'moon_panels': Fraction of light reflected off the satellite's panels from the Moon.
Notes:
------
- The function assumes that the solar panels are always facing the Sun and calculates flux based on the phase angles.
- Flux contributions from both the front and back surfaces of the solar panels are computed.
Example:
--------
>>> r_moon = np.array([[1e8, 1e8, 1e8]])
>>> r_sat = np.array([[1e7, 1e7, 1e7]])
>>> r_earth = np.array([[0, 0, 0]])
>>> r_sun = np.array([[1e11, 0, 0]])
>>> moon_shine(r_moon, r_sat, r_earth, r_sun, radius=0.4, albedo=0.20, albedo_moon=0.12, albedo_back=0.50, albedo_front=0.05, area_panels=100)
{'moon_bus': array([...]), 'moon_panels': array([...])}
"""
# https://amostech.com/TechnicalPapers/2013/POSTER/COGNION.pdf
moon_phase_angle = get_angle(r_sun, r_moon, r_sat) # Phase of the moon as viewed from the sat.
sun_angle = get_angle(r_sun, r_sat, r_moon) # angle from Sun to object to Earth
moon_to_earth_angle = get_angle(r_moon, r_sat, r_earth)
r_moon_sat = np.linalg.norm(r_sat - r_moon, axis=-1)
r_earth_sat = np.linalg.norm(r_sat - r_earth, axis=-1) # Earth is the observer.
flux_moon_to_sat = 2 / 3 * albedo_moon * MOON_RADIUS**2 / (np.pi * (r_moon_sat)**2) * (np.sin(moon_phase_angle) + (np.pi - moon_phase_angle) * np.cos(moon_phase_angle)) # Fraction of sunlight reflected from the Moon to satellite
# Fraction of light from back of solar panel
flux_back = np.zeros_like(sun_angle)
flux_back[sun_angle > np.pi / 2] = np.abs(albedo_back * area_panels / (np.pi * r_earth_sat[sun_angle > np.pi / 2]**2) * np.cos(np.pi - moon_to_earth_angle[sun_angle > np.pi / 2]) * flux_moon_to_sat[sun_angle > np.pi / 2]) # Fraction of Moon light reflected off back of solar panels - which are assumed to be always facing the Sun. Angle: Sun - Observer - Sat
flux_front = np.zeros_like(sun_angle)
flux_front[sun_angle < np.pi / 2] = np.abs(albedo_front * area_panels / (np.pi * r_earth_sat[sun_angle < np.pi / 2]**2) * np.cos(moon_to_earth_angle[sun_angle < np.pi / 2]) * flux_moon_to_sat[sun_angle < np.pi / 2]) # Fraction of Sun light scattered off front of the solar panels - which are assumed to be always facing the Sun. Angle: Sun - Sat - Observer
flux_panels = flux_back + flux_front
flux_bus = 2 / 3 * albedo * radius**2 / (np.pi * r_earth_sat**2) * flux_moon_to_sat
return {'moon_bus': flux_bus, 'moon_panels': flux_panels}
[docs]
def earth_shine(r_sat, r_earth, r_sun, radius, albedo, albedo_earth, albedo_back, area_panels): # In SI units, takes single values or arrays returns a flux
"""
Calculate the fractional flux of sunlight reflected from the Earth to the satellite.
This function computes the flux of sunlight reflected from the Earth to the satellite, including contributions from the back surface of the satellite's solar panels.
Parameters:
----------
r_sat : (n, 3) numpy.ndarray
Array of coordinates representing the position of the satellite.
r_earth : (n, 3) numpy.ndarray
Array of coordinates representing the position of the Earth.
r_sun : (n, 3) numpy.ndarray
Array of coordinates representing the position of the Sun.
radius : float
Radius of the satellite in meters.
albedo : float
Albedo of the satellite's surface.
albedo_earth : float
Albedo of the Earth.
albedo_back : float
Albedo of the back surface of the satellite's solar panels.
area_panels : float
Area of the satellite's solar panels in square meters.
Returns:
-------
dict
Dictionary containing the flux contributions from the Earth to the satellite:
- 'earth_bus': Fraction of light reflected off the satellite's bus from the Earth.
- 'earth_panels': Fraction of light reflected off the satellite's panels from the Earth.
Notes:
------
- The function assumes that the solar panels are always facing the Sun and calculates flux based on the phase angle.
- Flux contributions from the back surface of the solar panels are computed.
Example:
--------
>>> r_sat = np.array([[1e7, 1e7, 1e7]])
>>> r_earth = np.array([[1.496e11, 0, 0]])
>>> r_sun = np.array([[0, 0, 0]])
>>> earth_shine(r_sat, r_earth, r_sun, radius=0.4, albedo=0.20, albedo_earth=0.30, albedo_back=0.50, area_panels=100)
{'earth_bus': array([...]), 'earth_panels': array([...])}
"""
# https://amostech.com/TechnicalPapers/2013/POSTER/COGNION.pdf
phase_angle = get_angle(r_sun, r_sat, r_earth) # angle from Sun to object to Earth
earth_angle = np.pi - phase_angle # Sun to Earth to object.
r_earth_sat = np.linalg.norm(r_sat - r_earth, axis=-1) # Earth is the observer.
flux_earth_to_sat = 2 / 3 * albedo_earth * EARTH_RADIUS**2 / (np.pi * (r_earth_sat)**2) * (np.sin(earth_angle) + (np.pi - earth_angle) * np.cos(earth_angle)) # Fraction of sunlight reflected from the Earth to satellite
# Fraction of light from back of solar panel
flux_back = np.zeros_like(phase_angle)
flux_back[phase_angle > np.pi / 2] = albedo_back * area_panels / (np.pi * r_earth_sat[phase_angle > np.pi / 2]**2) * np.cos(np.pi - phase_angle[phase_angle > np.pi / 2]) * flux_earth_to_sat[phase_angle > np.pi / 2] # Fraction of Earth light reflected off back of solar panels - which are assumed to be always facing the Sun. Angle: Sun - Observer - Sat
flux_bus = 2 / 3 * albedo * radius**2 / (np.pi * r_earth_sat**2) * flux_earth_to_sat
return {'earth_bus': flux_bus, 'earth_panels': flux_back}
[docs]
def sun_shine(r_sat, r_earth, r_sun, radius, albedo, albedo_front, area_panels): # In SI units, takes single values or arrays returns a fractional flux
"""
Calculate the fractional flux of sunlight reflected from the Sun to the satellite.
This function computes the flux of sunlight reflected from the Sun to the satellite, including contributions from the front surface of the satellite's solar panels.
Parameters:
----------
r_sat : (n, 3) numpy.ndarray
Array of coordinates representing the position of the satellite.
r_earth : (n, 3) numpy.ndarray
Array of coordinates representing the position of the Earth.
r_sun : (n, 3) numpy.ndarray
Array of coordinates representing the position of the Sun.
radius : float
Radius of the satellite in meters.
albedo : float
Albedo of the satellite's surface.
albedo_front : float
Albedo of the front surface of the satellite's solar panels.
area_panels : float
Area of the satellite's solar panels in square meters.
Returns:
-------
dict
Dictionary containing the flux contributions from the Sun to the satellite:
- 'sun_bus': Fraction of light reflected off the satellite's bus from the Sun.
- 'sun_panels': Fraction of light reflected off the satellite's panels from the Sun.
Notes:
------
- The function assumes that the solar panels are always facing the Sun and calculates flux based on the phase angle.
- Flux contributions from the front surface of the solar panels are computed.
Example:
--------
>>> r_sat = np.array([[1e7, 1e7, 1e7]])
>>> r_earth = np.array([[0, 0, 0]])
>>> r_sun = np.array([[1e11, 0, 0]])
>>> sun_shine(r_sat, r_earth, r_sun, radius=0.4, albedo=0.20, albedo_front=0.05, area_panels=100)
{'sun_bus': array([...]), 'sun_panels': array([...])}
"""
# https://amostech.com/TechnicalPapers/2013/POSTER/COGNION.pdf
phase_angle = get_angle(r_sun, r_sat, r_earth) # angle from Sun to object to Earth
r_earth_sat = np.linalg.norm(r_sat - r_earth, axis=-1) # Earth is the observer.
flux_front = np.zeros_like(phase_angle)
flux_front[phase_angle < np.pi / 2] = albedo_front * area_panels / (np.pi * r_earth_sat[phase_angle < np.pi / 2]**2) * np.cos(phase_angle[phase_angle < np.pi / 2]) # Fraction of Sun light scattered off front of the solar panels - which are assumed to be always facing the Sun. Angle: Sun - Sat - Observer
flux_bus = 2 / 3 * albedo * radius**2 / (np.pi * (r_earth_sat)**2) * (np.sin(phase_angle) + (np.pi - phase_angle) * np.cos(phase_angle)) # Fraction of light reflected off satellite from Sun
return {'sun_bus': flux_bus, 'sun_panels': flux_front}
[docs]
def calc_M_v(r_sat, r_earth, r_sun, r_moon=False, radius=0.4, albedo=0.20, sun_Mag=4.80, albedo_earth=0.30, albedo_moon=0.12, albedo_back=0.50, albedo_front=0.05, area_panels=100, return_components=False):
"""
Calculate the apparent magnitude (M_v) of a satellite due to reflections from the Sun, Earth, and optionally the Moon.
This function computes the apparent magnitude of a satellite based on its reflected light from the Sun, Earth, and optionally the Moon. It uses separate functions to calculate the flux contributions from each of these sources and combines them to determine the overall apparent magnitude.
Parameters:
----------
r_sat : (n, 3) numpy.ndarray
Position of the satellite in meters.
r_earth : (n, 3) numpy.ndarray
Position of the Earth in meters.
r_sun : (n, 3) numpy.ndarray
Position of the Sun in meters.
r_moon : (n, 3) numpy.ndarray or False, optional
Position of the Moon in meters. If False, the Moon's contribution is ignored (default is False).
radius : float, optional
Radius of the satellite in meters (default is 0.4 m).
albedo : float, optional
Albedo of the satellite's surface, representing its reflectivity (default is 0.20).
sun_Mag : float, optional
Solar magnitude (apparent magnitude of the Sun) used in magnitude calculations (default is 4.80).
albedo_earth : float, optional
Albedo of the Earth, representing its reflectivity (default is 0.30).
albedo_moon : float, optional
Albedo of the Moon, representing its reflectivity (default is 0.12).
albedo_back : float, optional
Albedo of the back surface of the satellite (default is 0.50).
albedo_front : float, optional
Albedo of the front surface of the satellite (default is 0.05).
area_panels : float, optional
Area of the satellite's panels in square meters (default is 100 m^2).
return_components : bool, optional
If True, returns the magnitude as well as the flux components from the Sun, Earth, and Moon (default is False).
Returns:
-------
float
The apparent magnitude (M_v) of the satellite as observed from Earth.
dict, optional
If `return_components` is True, a dictionary containing the flux components from the Sun, Earth, and Moon.
Notes:
------
- The function uses separate calculations for flux contributions from the Sun, Earth, and Moon:
- `sun_shine` calculates the flux from the Sun.
- `earth_shine` calculates the flux from the Earth.
- `moon_shine` calculates the flux from the Moon (if applicable).
- The apparent magnitude is calculated based on the distances between the satellite, Sun, Earth, and optionally the Moon, as well as their respective albedos and other parameters.
Example usage:
--------------
>>> r_sat = np.array([[1e7, 2e7, 3e7]])
>>> r_earth = np.array([1.496e11, 0, 0])
>>> r_sun = np.array([0, 0, 0])
>>> Mag_v = calc_M_v(r_sat, r_earth, r_sun, return_components=True)
>>> Mag_v
(15.63, {'sun_bus': 0.1, 'sun_panels': 0.2, 'earth_bus': 0.05, 'earth_panels': 0.1, 'moon_bus': 0.03, 'moon_panels': 0.07})
"""
r_sun_sat = np.linalg.norm(r_sat - r_sun, axis=-1)
frac_flux_sun = {'sun_bus': 0, 'sun_panels': 0}
frac_flux_earth = {'earth_bus': 0, 'earth_panels': 0}
frac_flux_moon = {'moon_bus': 0, 'moon_panels': 0}
frac_flux_sun = sun_shine(r_sat, r_earth, r_sun, radius, albedo, albedo_front, area_panels)
frac_flux_earth = earth_shine(r_sat, r_earth, r_sun, radius, albedo, albedo_earth, albedo_back, area_panels)
if r_moon is not False:
frac_flux_moon = moon_shine(r_moon, r_sat, r_earth, r_sun, radius, albedo, albedo_moon, albedo_back, albedo_front, area_panels)
merged_dict = {**frac_flux_sun, **frac_flux_earth, **frac_flux_moon}
total_frac_flux = sum(merged_dict.values())
Mag_v = (2.5 * np.log10((r_sun_sat / (10 * u.Unit('parsec').to(u.Unit('m'))))**2) + sun_Mag) - 2.5 * np.log10(total_frac_flux)
if return_components:
return Mag_v, merged_dict
else:
return Mag_v
[docs]
def M_v_lambertian(r_sat, times, radius=1.0, albedo=0.20, sun_Mag=4.80, albedo_earth=0.30, albedo_moon=0.12, plot=False):
"""
Calculate the apparent magnitude (M_v) of a satellite due to reflections from the Sun, Earth, and Moon.
This function computes the apparent magnitude of a satellite based on its reflected light from the Sun, Earth, and Moon, using the Lambertian reflection model. It optionally generates plots to visualize the results.
Parameters:
----------
r_sat : (n, 3) numpy.ndarray
Position of the satellite in meters.
times : Time or array_like
The times corresponding to the satellite and celestial body positions. Used to obtain the positions of the Sun and Moon.
radius : float, optional
Radius of the satellite in meters (default is 1.0 m).
albedo : float, optional
Albedo of the satellite's surface, representing its reflectivity (default is 0.20).
sun_Mag : float, optional
Solar magnitude (apparent magnitude of the Sun) used in magnitude calculations (default is 4.80).
albedo_earth : float, optional
Albedo of the Earth, representing its reflectivity (default is 0.30).
albedo_moon : float, optional
Albedo of the Moon, representing its reflectivity (default is 0.12).
plot : bool, optional
If True, generates plots to visualize solar phase angle and magnitudes (default is False).
Returns:
-------
numpy.ndarray
The apparent magnitude (M_v) of the satellite as observed from Earth, considering reflections from the Sun, Earth, and Moon.
Notes:
------
- The function uses a Lambertian reflection model to compute the fraction of sunlight reflected by the satellite, Earth, and Moon.
- The apparent magnitude is calculated based on the distances between the satellite, Sun, Earth, and Moon, as well as their respective albedos.
- The function generates four subplots if `plot` is set to True:
1. Solar phase angle of the satellite.
2. Solar magnitude (M_v) of the satellite due to the Sun.
3. Magnitude (M_v) of the satellite due to reflections from the Earth.
4. Magnitude (M_v) of the satellite due to reflections from the Moon.
Example usage:
--------------
>>> r_sat = np.array([[1e7, 2e7, 3e7]])
>>> times = Time("2024-01-01")
>>> M_v = M_v_lambertian(r_sat, times, plot=True)
>>> M_v
array([15.63])
"""
pc_to_m = 3.085677581491367e+16
r_sun = get_body('Sun').position(times).T
r_moon = get_body('Moon').position(times).T
r_earth = np.zeros_like(r_sun)
r_sun_sat = np.linalg.norm(r_sat - r_sun, axis=-1)
r_earth_sat = np.linalg.norm(r_sat, axis=-1)
r_moon_sat = np.linalg.norm(r_sat - r_moon, axis=-1)
sun_angle = get_angle(r_sun, r_sat, r_earth)
earth_angle = np.pi - sun_angle
moon_phase_angle = get_angle(r_sun, r_moon, r_sat) # Phase of the moon as viewed from the sat.
moon_to_earth_angle = get_angle(r_moon, r_sat, r_earth)
flux_moon_to_sat = 2 / 3 * albedo_moon * MOON_RADIUS**2 / (np.pi * (r_moon_sat)**2) * (np.sin(moon_phase_angle) + (np.pi - moon_phase_angle) * np.cos(moon_phase_angle)) # Fraction of sunlight reflected from the Moon to satellite
flux_earth_to_sat = 2 / 3 * albedo_earth * EARTH_RADIUS**2 / (np.pi * (r_earth_sat)**2) * (np.sin(earth_angle) + (np.pi - earth_angle) * np.cos(earth_angle)) # Fraction of sunlight reflected from the Earth to satellite
frac_flux_sun = 2 / 3 * albedo * radius**2 / (np.pi * (r_earth_sat)**2) * (np.sin(sun_angle) + (np.pi - sun_angle) * np.cos(sun_angle)) # Fraction of light reflected off satellite from Sun
frac_flux_earth = 2 / 3 * albedo * radius**2 / (np.pi * r_earth_sat**2) * flux_earth_to_sat
frac_flux_moon = 2 / 3 * albedo * radius**2 / (np.pi * r_earth_sat**2) * flux_moon_to_sat
Mag_v = (2.5 * np.log10((r_sun_sat / (10 * pc_to_m))**2) + sun_Mag) - 2.5 * np.log10(frac_flux_sun + frac_flux_earth + frac_flux_moon)
if plot:
import matplotlib.pyplot as plt
sun_scale = 149597870700.0 * (RGEO / np.max(r_earth_sat) ) * 0.75
color_map ='inferno_r'
fig = plt.figure(figsize=(18, 4))
ax = fig.add_subplot(1, 4, 1)
ax.scatter(r_earth[:, 0], r_earth[:, 1], c='Blue', s=10)
scatter = ax.scatter(r_sat[:, 0] / RGEO, r_sat[:, 1] / RGEO, c=sun_angle, cmap=color_map)
colorbar = plt.colorbar(scatter)
ax.scatter(r_sun[:, 0] / sun_scale, r_sun[:, 1] / sun_scale, c=plt.cm.Oranges(np.linspace(0.25, 0.75, len(r_sat[:, 0]))), s=10)
ax.set_title('Solar Phase')
ax.set_xlabel('X [GEO]')
ax.set_ylabel('Y [GEO]')
ax.axis('equal')
ax = fig.add_subplot(1, 4, 2)
ax.scatter(r_earth[0], r_earth[1], c='Blue', s=10)
scatter = ax.scatter(r_sat[:, 0] / RGEO, r_sat[:, 1] / RGEO, c=(2.5 * np.log10((r_sun_sat / (10 * pc_to_m))**2) + sun_Mag) - 2.5 * np.log10(frac_flux_sun), cmap=color_map)
colorbar = plt.colorbar(scatter)
ax.scatter(r_sun[:, 0] / sun_scale, r_sun[:, 1] / sun_scale, c=plt.cm.Oranges(np.linspace(0.25, 0.75, len(r_sat[:, 0]))), s=10)
ax.set_title('Solar M_v')
ax.axis('equal')
ax = fig.add_subplot(1, 4, 3)
ax.scatter(r_earth[:, 0], r_earth[:, 1], c='Blue', s=10)
scatter = ax.scatter(r_sat[:, 0] / RGEO, r_sat[:, 1] / RGEO, c=(2.5 * np.log10((r_sun_sat / (10 * pc_to_m))**2) + sun_Mag) - 2.5 * np.log10(frac_flux_earth), cmap=color_map)
colorbar = plt.colorbar(scatter)
ax.scatter(r_sun[:, 0] / sun_scale, r_sun[:, 1] / sun_scale, c=plt.cm.Oranges(np.linspace(0.25, 0.75, len(r_sat[:, 0]))), s=10)
ax.set_title('Earth M_v')
ax.axis('equal')
ax = fig.add_subplot(1, 4, 4)
ax.scatter(r_earth[:, 0], r_earth[:, 1], c='Blue', s=10)
scatter = ax.scatter(r_sat[:, 0] / RGEO, r_sat[:, 1] / RGEO, c=(2.5 * np.log10((r_sun_sat / (10 * pc_to_m))**2) + sun_Mag) - 2.5 * np.log10(frac_flux_moon), cmap=color_map)
ax.scatter(r_moon[:, 0] / RGEO, r_moon[:, 1] / RGEO, c=plt.cm.Greys(np.linspace(0.5, 1, len(r_sat[:, 0]))), s=5)
colorbar = plt.colorbar(scatter)
ax.set_title('Lunar M_v')
ax.axis('equal')
plt.show()
return Mag_v
[docs]
def calc_gamma(r, t):
"""
Calculate the gamma angle between position and velocity vectors in the ITRF frame.
Parameters:
r (numpy.ndarray): The position vectors in the GCRF frame, shaped (n, 3), where n is the number of vectors.
t (numpy.ndarray or astropy.time.Time): The times corresponding to the position vectors. Can be an array of GPS seconds or an Astropy Time object.
Returns:
numpy.ndarray: An array of gamma angles in degrees between the position and velocity vectors for each time point.
Notes:
- This function first converts the given position vectors from the GCRF frame to the ITRF frame.
- It then calculates the angle between the position and velocity vectors at each time point in the ITRF frame.
- If the input time array is an Astropy Time object, it converts it to GPS time before processing.
"""
r_itrf, v_itrf = gcrf_to_itrf(r, t, v=True)
if isinstance(t[0], Time):
t = t.gps
gamma = np.degrees(np.apply_along_axis(lambda x: angle_between_vectors(x[:3], x[3:]), 1, np.concatenate((r_itrf, v_itrf), axis=1))) - 90
return gamma
[docs]
def moon_normal_vector(t):
"""
Calculate the normal vector to the Moon's orbital plane at a given time.
This function computes the normal vector to the Moon's orbital plane by taking the cross product of the Moon's position vectors at two different times: the given time `t` and one week later. The resulting vector is normalized to provide the direction of the orbital plane's normal.
Parameters:
----------
t : Time
The time at which to calculate the normal vector to the Moon's orbital plane.
Returns:
-------
numpy.ndarray
A 3-element array representing the normal vector to the Moon's orbital plane at the given time. The vector is normalized to have a unit length.
Notes:
------
- The function assumes a circular orbit for the Moon and uses a time step of one week (604800 seconds) to calculate the normal vector.
- The normal vector is perpendicular to the plane defined by the Moon's position vectors at the given time and one week later.
Example usage:
--------------
>>> t = Time("2024-01-01")
>>> normal_vector = moon_normal_vector(t)
>>> normal_vector
array([-0.093, 0.014, 0.995])
"""
r = get_body("moon").position(t).T
r_random = get_body("moon").position(t.gps + 604800).T
return np.cross(r, r_random) / np.linalg.norm(r, axis=-1)
[docs]
def lunar_lagrange_points(t):
"""
Calculate the positions of the lunar Lagrange points in the GCRF frame at a given time.
This function computes the positions of the five Lagrange points (L1, L2, L3, L4, and L5) in the Earth-Moon system at a specific time `t`. It considers the positions of the Earth and Moon and uses the orbital period of the Moon to find the Lagrange points.
Parameters:
----------
t : Time
The time at which to calculate the Lagrange points. The position of the Moon at this time is used to compute the Lagrange points.
Returns:
-------
dict
A dictionary containing the coordinates of the five Lagrange points:
- "L1": Position of the first Lagrange point between the Earth and the Moon.
- "L2": Position of the second Lagrange point beyond the Moon.
- "L3": Position of the third Lagrange point directly opposite the Moon, relative to the Earth.
- "L4": Position of the fourth Lagrange point, calculated as the Moon's position offset by one-sixth of the lunar period.
- "L5": Position of the fifth Lagrange point, calculated as the Moon's position offset by negative one-sixth of the lunar period.
Notes:
------
- The function assumes a circular orbit for the Moon.
- The lunar period used is approximately 2.36 million seconds.
- The gravitational parameters of the Earth and Moon are denoted as `EARTH_MU` and `MOON_MU`, respectively.
Example usage:
--------------
>>> t = Time("2024-01-01")
>>> lagrange_points = lunar_lagrange_points(t)
>>> lagrange_points["L1"]
array([1.02e6, 0.0, 0.0])
>>> lagrange_points["L4"]
array([1.5e6, 1.5e6, 0.0])
"""
r = get_body("moon").position(t).T
d = np.linalg.norm(r) # Distance between Earth and Moon
unit_vector_moon = r / np.linalg.norm(r, axis=-1)
# plane_vector = np.cross(r, r_random)
lunar_period_seconds = 2.3605915968e6
# Coefficients of the quadratic equation
a = EARTH_MU - MOON_MU
b = 2 * MOON_MU * d
c = -MOON_MU * d**2
# Solve the quadratic equation
discriminant = b**2 - 4*a*c
if discriminant >= 0:
L1_from_moon = (-b - np.sqrt(discriminant)) / (2*a) * unit_vector_moon
L2_from_moon = (-b + np.sqrt(discriminant)) / (2*a) * unit_vector_moon
else:
print("Discriminate is less than 0! THAT'S WEIRD FIX IT.")
L1_from_moon = None
L2_from_moon = None
return {
"L1": L1_from_moon + r,
"L2": L2_from_moon + r,
"L3": -r,
"L4": get_body("moon").position(t.gps + lunar_period_seconds / 6).T,
"L5": get_body("moon").position(t.gps - lunar_period_seconds / 6).T
}
[docs]
def lunar_lagrange_points_circular(t):
"""
Calculate the positions of the lunar Lagrange points in the GCRF frame for a given time.
This function calculates the positions of the five Lagrange points (L1, L2, L3, L4, and L5) in the Earth-Moon system at a specific time `t`. It accounts for the rotation of the Moon's orbit around the Earth, providing the positions in a circular approximation of the Earth-Moon system.
Parameters:
----------
t : Time
The time at which to calculate the Lagrange points. The position of the Moon at this time is used to compute the Lagrange points.
Returns:
-------
dict
A dictionary containing the coordinates of the five Lagrange points:
- "L1": Position of the first Lagrange point between the Earth and the Moon.
- "L2": Position of the second Lagrange point beyond the Moon.
- "L3": Position of the third Lagrange point directly opposite the Moon, relative to the Earth.
- "L4": Position of the fourth Lagrange point, forming an equilateral triangle with the Earth and Moon.
- "L5": Position of the fifth Lagrange point, forming an equilateral triangle with the Earth and Moon, but on the opposite side.
Notes:
------
- The function assumes a circular orbit for the Moon and uses a rotation matrix to align the z-axis with the Moon's normal vector.
- The positions of L4 and L5 are calculated using a rotation matrix to align with the Moon's orientation.
- The gravitational parameters of the Earth and Moon are denoted as `EARTH_MU` and `MOON_MU`, respectively.
Example usage:
--------------
>>> t = Time("2024-01-01")
>>> lagrange_points = lunar_lagrange_points_circular(t)
>>> lagrange_points["L1"]
array([1.02e6, 0.0, 0.0])
>>> lagrange_points["L4"]
array([1.5e6, 1.5e6, 0.0])
"""
r = get_body("moon").position(t).T
d = np.linalg.norm(r) # Distance between Earth and Moon
unit_vector_moon = r / np.linalg.norm(r, axis=-1)
# Coefficients of the quadratic equation
a = EARTH_MU - MOON_MU
b = 2 * MOON_MU * d
c = -MOON_MU * d**2
# Solve the quadratic equation
discriminant = b**2 - 4*a*c
if discriminant >= 0:
L1_from_moon = (-b - np.sqrt(discriminant)) / (2*a) * unit_vector_moon
L2_from_moon = (-b + np.sqrt(discriminant)) / (2*a) * unit_vector_moon
else:
print("Discriminate is less than 0! THAT'S WEIRD FIX IT.")
L1_from_moon = None
L2_from_moon = None
# L45
# Create the rotation matrix to align z-axis with the normal vector
normal_vector = moon_normal_vector(t)
rotation_matrix = rotation_matrix_from_vectors(np.array([0, 0, 1]), normal_vector)
theta = np.radians(60) + np.arctan2(unit_vector_moon[1], unit_vector_moon[0])
L4 = np.vstack((d * np.cos(theta), d * np.sin(theta), np.zeros_like(theta))).T
L4 = np.squeeze(L4 @ rotation_matrix.T)
theta = -np.radians(60) + np.arctan2(unit_vector_moon[1], unit_vector_moon[0])
L5 = np.vstack((d * np.cos(theta), d * np.sin(theta), np.zeros_like(theta))).T
L5 = np.squeeze(L5 @ rotation_matrix.T)
return {
"L1": L1_from_moon + r,
"L2": L2_from_moon + r,
"L3": -r,
"L4": L4,
"L5": L5
}
[docs]
def lagrange_points_lunar_frame():
"""
Calculate the positions of the lunar Lagrange points in the lunar frame, This frame is defined by the coordinate transformation in utils.py gcrf_to_lunar().
Returns:
-------
dict
A dictionary containing the coordinates of the five Lagrange points:
- "L1": Position of the first Lagrange point between the Earth and the Moon.
- "L2": Position of the second Lagrange point beyond the Moon.
- "L3": Position of the third Lagrange point directly opposite the Moon, relative to the Earth.
- "L4": Position of the fourth Lagrange point, forming an equilateral triangle with the Earth and Moon.
- "L5": Position of the fifth Lagrange point, forming an equilateral triangle with the Earth and Moon, but on the opposite side.
Notes:
------
- The function assumes that the Earth and Moon are the two primary bodies, with the Earth-Moon distance denoted as `LD`.
- The gravitational parameters of the Earth and Moon are denoted as `EARTH_MU` and `MOON_MU`, respectively.
- The positions of L4 and L5 are calculated using the fact that these points form an equilateral triangle with the Earth and Moon.
Example usage:
--------------
>>> lagrange_points = lagrange_points_lunar_frame()
>>> lagrange_points["L1"]
array([1.01e6, 0.0, 0.0])
>>> lagrange_points["L4"]
array([1.5e6, 1.5e6, 0.0])
"""
r = np.array([LD / RGEO, 0, 0])
d = np.linalg.norm(r) # Distance between Earth and Moon
unit_vector_moon = r / np.linalg.norm(r, axis=-1)
# Coefficients of the quadratic equation
a = EARTH_MU - MOON_MU
b = 2 * MOON_MU * d
c = -MOON_MU * d**2
# Solve the quadratic equation
discriminant = b**2 - 4*a*c
if discriminant >= 0:
L1_from_moon = (-b - np.sqrt(discriminant)) / (2*a) * unit_vector_moon
L2_from_moon = (-b + np.sqrt(discriminant)) / (2*a) * unit_vector_moon
else:
print("Discriminate is less than 0! THAT'S WEIRD FIX IT.")
L1_from_moon = None
L2_from_moon = None
# L45
theta = np.radians(60)
L4 = np.squeeze(np.vstack((d * np.cos(theta), d * np.sin(theta), np.zeros_like(theta))).T)
L5 = np.squeeze(np.vstack((d * np.cos(-theta), d * np.sin(-theta), np.zeros_like(-theta))).T)
return {
"L1": L1_from_moon + r,
"L2": L2_from_moon + r,
"L3": -r,
"L4": L4,
"L5": L5
}