Source code for ssapy.accel

"""
Classes for modeling accelerations.
"""

import numpy as np

from . import _ssapy
from .constants import EARTH_MU, EARTH_RADIUS
from .utils import norm, sunPos, _gpsToTT, ntw_to_r
from .ellipsoid import Ellipsoid

try:
    import erfa
except ImportError:
    # Let this raise
    import astropy._erfa as erfa


# Some utility functions
from functools import lru_cache


@lru_cache(maxsize=None)
def _fac(n):
    n = int(n)
    from math import factorial
    return factorial(n)


@lru_cache(maxsize=None)
def _invnorm(n, m):
    n = int(n)
    m = int(m)
    num = (1 if m == 0 else 2) * (2 * n + 1) * _fac(n - m)
    den = _fac(n + m)
    return np.sqrt(num / den)


[docs] class Accel: """Base class for accelerations.""" def __init__(self, time_breakpoints=None): if time_breakpoints is None: self.time_breakpoints = [-np.inf, np.inf] else: self.time_breakpoints = time_breakpoints def __add__(self, rhs): return AccelSum((self, rhs)) def __mul__(self, rhs): return AccelProd(self, rhs) def __sub__(self, rhs): return AccelSum([self, AccelProd(rhs, -1.0)])
[docs] class AccelSum(Accel): """Acceleration defined as the sum of other accelerations. Note, besides directly invoking this class, you can simply use the `+` operator on any two `Accel` subclasses too. Parameters ---------- accels : list of Accel Accelerations to add """ def __init__(self, accels): super().__init__() self.accels = tuple(accels) self.time_breakpoints = np.unique( np.concatenate([a.time_breakpoints for a in accels])) def __call__(self, r, v, t, **kwargs): """Evaluate acceleration at particular place/moment. Parameters ---------- r : array_like, shape(3, ) Position in meters. v : array_like, shape(3, ) Velocity in meters per second. t : float Time as GPS seconds **kwargs : dict Other arguments to pass on to individual terms of sum. Returns ------- accel : array_like, shape(3,) Acceleration in meters per second^2 """ out = self.accels[0](r, v, t, **kwargs) for f in self.accels[1:]: out += f(r, v, t, **kwargs) return out def __hash__(self): return hash(("AccelSum", self.accels)) def __eq__(self, rhs): if not isinstance(rhs, AccelSum): return False return (self.accels == rhs.accels)
[docs] class AccelProd(Accel): """Acceleration defined as the product of an acceleration with a constant factor.""" def __init__(self, accel, factor): super().__init__() self.accel = accel self.factor = factor self.time_breakpoints = accel.time_breakpoints def __call__(self, r, v, t, **kwargs): out = self.accel(r, v, t, **kwargs) out *= self.factor return out def __hash__(self): return hash(("AccelProd", self.accel, self.factor)) def __eq__(self, rhs): if not isinstance(rhs, AccelProd): return False return ( self.accel == rhs.accel and self.factor == rhs.factor )
[docs] class AccelKepler(Accel): """Keplerian acceleration. I.e., force is proportional to 1/|r|^2. Parameters ---------- mu : float, optional Gravitational constant of central body in m^3/s^2. (Default: Earth's gravitational constant in WGS84). """ def __init__(self, mu=EARTH_MU): super().__init__() self.mu = mu def __call__(self, r, v, t, **kwargs): """Evaluate acceleration at particular place/moment. Parameters ---------- r : array_like, shape(3, ) Position in meters. v : array_like, shape(3, ) Velocity in meters per second. Unused. t : float Time as GPS seconds. Unused Returns ------- accel : array_like, shape(3,) Acceleration in meters per second^2 """ return -self.mu * r / norm(r)**3 def __hash__(self): return hash(("AccelKepler", self.mu)) def __eq__(self, rhs): if not isinstance(rhs, AccelKepler): return False return (self.mu == rhs.mu)
[docs] class AccelSolRad(Accel): """Acceleration due to solar radiation pressure. This is a relatively simple model in which the direction of the acceleration is directly away from the sun and the magnitude is modulated by a single solar radiation pressure coefficient `CR`. The coefficient is 1.0 for purely absorbed light, and 2.0 for purely reflected light. Rough typical values for a variety of different satellite components are ~ 1.2 for solar panels ~ 1.3 for a high gain antenna ~ 1.9 for a aluminum coated mylar solar sail. Additionally, this class models the Earth's shadow as a cylinder. Either the satellite is inside the cylinder, in which case the acceleration from this term is 0, or the satellite is outside the cylinder, in which case the full magnitude of the acceleration is computed. More details can be found in Section 3.4 of Montenbruck and Gill. Parameters ---------- defaultkw : dict default parameters for kwargs passed to __call__, (area, mass, CR) """ def __init__(self, **defaultkw): super().__init__() self.defaultkw = defaultkw def __call__(self, r, v, t, **kwargs): """Evaluate acceleration at particular place/moment. Parameters ---------- r : array_like, shape(3, ) Position in meters in GCRF frame. v : array_like, shape(3, ) Velocity in meters per second. Unused. t : float Time as GPS seconds area : float Area in meters^2. mass : flat Mass in kg. CR : float Radiation pressure coefficient. Returns ------- accel : array_like, shape(3,) Acceleration in meters per second^2 """ kw = dict() kw.update(self.defaultkw) kw.update(kwargs) rr = r - sunPos(t) P0 = 4.56e-6 # Solar rad pressure [N/m^2] MG eqn (3.69) AU2 = 2.2379522708536898e22 # 1 AU squared [m^2] # MG (3.75) return P0 * kw['CR'] * kw['area'] / kw['mass'] * rr / norm(rr)**3 * AU2 def __hash__(self): return hash(( "AccelSolRad", frozenset(self.defaultkw.items()) )) def __eq__(self, rhs): if not isinstance(rhs, AccelSolRad): return False return self.defaultkw == rhs.defaultkw
[docs] class AccelEarthRad(Accel): """Acceleration due to Earth radiation pressure. This is a very simple model in which the direction of the acceleration is directly away from the Earth and the magnitude is modulated by a single solar radiation pressure coefficient `CR`. The coefficient is 1.0 for purely absorbed light, and 2.0 for purely reflected light. Rough typical values for a variety of different satellite components are ~ 1.2 for solar panels ~ 1.3 for a high gain antenna ~ 1.9 for a aluminum coated mylar solar sail. The radiation pressure at the Earth's surface is given as (230 + 459*k) W/m^2, where 230 is from the thermal radiation of the earth, and 459 is the reflected sunlight. k is the illuminated fraction of the earth as seen from the satellite, assuming the earth is point-like (i.e., neglecting that the satellite will see less than a full hemisphere for LEO objects). The radiation pressure goes down like 1/r^2 as an object moves away from the earth. This is a simplification of the more complex model presented in MG 3.7.1, neglecting spatial variation in the emitted light and the different angles to different parts of the earth. Parameters ---------- defaultkw : dict default parameters for kwargs passed to __call__, (area, mass, CR) """ def __init__(self, **defaultkw): super().__init__() self.defaultkw = defaultkw def __call__(self, r, v, t, **kwargs): """Evaluate acceleration at particular place/moment. Parameters ---------- r : array_like, shape(3, ) Position in meters in GCRF frame. v : array_like, shape(3, ) Velocity in meters per second. Unused. t : float Time as GPS seconds area : float Area in meters^2. mass : flat Mass in kg. CR : float Radiation pressure coefficient. Returns ------- accel : array_like, shape(3,) Acceleration in meters per second^2 """ kw = dict() kw.update(self.defaultkw) kw.update(kwargs) r_sun = sunPos(t) d_sun = norm(r_sun) r = np.asarray(r) normr = norm(r) if normr < 1: r = np.array([1, 0, 0]) normr = 1 if normr < EARTH_RADIUS: r = r * EARTH_RADIUS / normr normr = EARTH_RADIUS normsunsat = norm(r_sun - r) cosi = ((d_sun**2 + normr**2 - normsunsat**2) / (2 * d_sun * normr)) k = (1 + cosi) / 2 # Astronomical Algorithms, Chap 41, Jean Meeus. pressure = (459 * k + 230) / 299792458 * r * EARTH_RADIUS**2 / normr**3 accel = pressure * kw['CR'] * kw['area'] / kw['mass'] return accel def __hash__(self): return hash(( "AccelEarthRad", frozenset(self.defaultkw.items()) )) def __eq__(self, rhs): if not isinstance(rhs, AccelEarthRad): return False return self.defaultkw == rhs.defaultkw
[docs] class AccelDrag(Accel): """Acceleration due to atmospheric drag. This class uses the Harris-Priester density model, which includes diurnal variation in the atmospheric bulge, but omits longer period seasonal variations. The acceleration also depends on a drag coefficient, which is hard to determine a priori, but takes on typical values around ~2 to ~2.3 for most satellites. See Section 3.5 of Montenbruck and Gill for more details. Parameters ---------- recalc_threshold : float, optional Number of seconds past which the code will recompute the precession/nutation matrix. Default: 86400*30 (30 days) defaultkw : dict default parameters for kwargs passed to __call__, (area, mass, CR) """ def __init__(self, recalc_threshold=86400 * 30, **defaultkw): self.recalc_threshold = recalc_threshold self._t = None super().__init__() self.defaultkw = defaultkw ellip = Ellipsoid() self.atm = _ssapy.HarrisPriester(ellip, n=6.0) def __call__(self, r, v, t, _T=None, **kwargs): """Evaluate acceleration at particular place/moment. Parameters ---------- r : array_like, shape(3, ) Position in meters in GCRF frame. v : array_like, shape(3, ) Velocity in meters per second in GCRF frame. t : float Time as GPS seconds area : float Area in meters^2. mass : flat Mass in kg. CD : float Drag coefficient. Typical values are ~ 2 - 2.3 Returns ------- accel : array_like, shape(3,) Acceleration in meters per second^2 """ kw = dict() kw.update(self.defaultkw) kw.update(kwargs) mjd_tt = _gpsToTT(t) if _T is None: if self._t is None or np.abs(t - self._t) > self.recalc_threshold: self._t = t self._T = erfa.pnm80(2400000.5, mjd_tt) _T = self._T r_sun = sunPos(t) r_tod = _T @ r v_tod = _T @ v v_rel = v_tod - np.cross([0, 0, 7.2921159e-5], r_tod) # MG (3.98) ra_sun = np.arctan2(r_sun[1], r_sun[0]) dec_sun = np.arctan(r_sun[2] / np.hypot(r_sun[0], r_sun[1])) density = self.atm.density( *r_tod, ra_sun, dec_sun ) if not np.isfinite(density): print(f"r_tod = {r_tod}") print(f"ra_sun = {ra_sun}") print(f"dec_sun = {dec_sun}") raise ValueError("non finite density") a_tod = -0.5 * kw['CD'] * kw['area'] / kw['mass'] * density * v_rel * norm(v_rel) return _T.T @ a_tod def __hash__(self): return hash(( "AccelDrag", frozenset(self.defaultkw.items()) )) def __eq__(self, rhs): if not isinstance(rhs, AccelDrag): return False return self.defaultkw == rhs.defaultkw
[docs] class AccelConstNTW(Accel): """Constant acceleration in NTW coordinates. Intended to enable maneuvers. Semimajor axis changes are often done by accelerating in the in-track direction at perigee, while inclination change maneuvers are done by accelerating in the cross-track direction. So these maneuvers are both conveniently implemented in NTW space. This class supports a constant acceleration burn in a fixed direction in NTW space at a specified time and duration. Parameters ---------- accelntw : array_like, shape(3,) Direction and magnitude of acceleration in NTW frame, m/s^2. time_breakpoints : array_like Times in GPS seconds when acceleration should be turned on and off. These alternate; first time is on, second time is off, third time is back on. must be sorted. """ def __init__(self, accelntw, time_breakpoints=None): if time_breakpoints is None: time_breakpoints = [-np.inf, np.inf] if np.any(np.diff(time_breakpoints) < 0): raise ValueError('acceleration times must be sorted!') super().__init__(np.array(time_breakpoints)) self.accelntw = np.array(accelntw) def __call__(self, r, v, t, **kwargs): ind = np.searchsorted(self.time_breakpoints, t) off = (ind % 2) == 0 if off: return 0 else: return ntw_to_r(r, v, self.accelntw, relative=True) def __hash__(self): return hash(( "AccelConstantNTW", tuple(self.time_breakpoints), tuple(self.accelntw) )) def __eq__(self, rhs): if not isinstance(rhs, AccelDrag): return False return (np.all(self.accelntw == rhs.accelntw) and np.all(self.time_breakpoints == rhs.time_breakpoints))