
LLNL-PRES-853131
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory
under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

A Tutorial Introduction to RAJA and Umpire

Kristi Belcher, Arturo Vargas
on Behalf of the RAJA Team

LLNL-PRES-853131
2

 We will start by providing a brief high-level overview of RAJA and Umpire

 We will follow the README’s in the tutorial exercise directory

 The tutorial contains descriptions of RAJA and Umpire features and shows how to use them

— The RAJA code repository contains source files with exercises based on the tutorial docs that you can work
through. Complete solution files are also provided if you wish to compare with your work, or if you get stuck.

— Please don’t hesitate to ask questions at any time on Webex chat or unmute yourself during this presentation.

— We will primarily monitor Slack after the presentation.

 Our objective for today is for you to learn enough about RAJA and Umpire to start using it in your
own code development

 RAJA contains other more advanced features that will be covered in future versions of the tutorial

Welcome to the RAJA Umpire tutorial

LLNL-PRES-853131
3

 If you have comments, questions, or suggestions, please let us
know
— Send us a message to our project email list: raja-dev@llnl.gov

 We appreciate specific, concrete feedback that helps us
improve RAJA and the tutorial material

We value your feedback…

mailto:raja-dev@llnl.gov

LLNL-PRES-853131
4

RAJA is an open-source project with a growing
user and contributor base

https://github.com/LLNL/RAJA

Project
stats on

6/17/2022

LLNL-PRES-853131
5

RAJA is part of the RAJA Portability Suite, which
contains four complementary projects

RAJA: C++ kernel execution
abstractions

Enable single-source
application code insulated
from hardware and
programming model details

Umpire: Memory management API

High performance memory
operations, such as pool allocations,
with native C++, C, Fortran APIs

camp: C++
metaprogramming facilities

Focuses on HPC compiler
compatibility and portability

CHAI: C++ array
abstractions
Automates data copies, based on RAJA
execution contexts, giving apps the look
and feel of unified memory, but with
better performance

https://github.com/LLNL/RAJA
https://github.com/LLNL/CHAI
https://github.com/LLNL/Umpire
https://github.com/LLNL/camp

Single-source application

RAJA CHAI Umpire

Diverse hardware ecosystem

camp

LLNL-PRES-853131
6

RAJA capabilities and core concepts

LLNL-PRES-853131
7

 RAJA is a library of C++ abstractions that enable you to write portable,
single-source kernels that run on different hardware by re-compiling
— Multicore CPUs, Xeon Phi, GPUs (NVIDIA, AMD, Intel), …

 RAJA insulates application source code from hardware and programming
model-specific implementation details
— OpenMP, CUDA, HIP, SIMD vectorization, …

 RAJA is used by many diverse production applications and libraries at LLNL and
elsewhere, including ECP projects, university and vendor collaborators

RAJA and performance portability

LLNL-PRES-853131
8

Astra (SNL)
ARM architecture

The RAJA Portability Suite insulates applications from programming model and
hardware architecture details

RAJA / Umpire / CHAI

Aurora (ANL)
Intel Xeon CPUs + Xe GPUs

Frontier (ORNL) &
El Capitan (LLNL)

AMD CPUs + GPUs

Perlmutter (LBL)
AMD Milan CPUs +

NVIDIA Ampere GPUs

ECP ExaSGD
(power grid optimization)

ECP GEOSX
(geomechanics)

ECP SW4
(earthquake modeling)LLNL ECP/ATDM

(high-order ALE hydro)
plus,

others…

Sierra (LLNL)
IBM P9 CPUs + NVIDIA Volta GPUs

ECP apps

LLNL-PRES-853131
9

RAJA supports a variety of loop patterns and parallel constructs

Simple & complex loop patterns
• Non-perfectly nested loops
• Loop tiling
• Hierarchical parallelism
• Asychronous execution

Loop patterns and transformations (without changing app
code)
• Change loop iteration patterns, permute loop nest

ordering
• Multi-dimensional data views with offsets and index

permutations
• Hierarchical parallelism, asynchronous execution
• Direct GPU thread-block mapping control
• CPU/GPU shared and thread local memory

Multiple execution back-ends
• Sequential
• SIMD (via vector intrinsics, in progress)
• OpenMP (CPU & device offload)
• Intel Threading Building Blocks (partial)
• CUDA
• AMD HIP
• SYCL (in development)

Portable reductions, scans, atomic operations, sorts…

Also, GPU kernel fusing (to reduce impact of GPU launch overhead
for small kernels).

LLNL-PRES-853131
10

RAJA execution policy capsulates loop execution details
for (int i = 0; i < N; ++i)
{

y[i] = a * x[i] + y[i];
}

Simple Loops

RAJA::forall<EXEC_POL>(it_space, [=] (int i)
{

y[i] = a * x[i] + y[i];
});

#pragma omp parallel for
for (int i = 0; i < N; ++i)
{

y[i] = a * x[i] + y[i];
}

int i = threadIdx.x +
 blockIdx.x*blockDim.x;
(i < N)
{

y[i] = a * x[i] + y[i];
}

RAJA Execution Policy

LLNL-PRES-853131
11

Umpire capabilities and core concepts

LLNL-PRES-853131
12

Umpire provides a portable memory management API

Intuitive concepts

• Resources
• Allocators
• Operations

Features useful in HPC applications

• Various pool allocation strategies (fixed size, dynamic,
monotonic, etc.)

• NUMA support
• Memory allocation advice (preferred location, mostly

read, etc.)
• Thread safe allocators
• Memory introspection

Supported memory types

• Host (CPU)
• MPI shared memory
• GPU global, constant, (host) pinned
• Unified memory
• Mmapped file memory
• Support for NVIDIA, AMD, Intel GPU devices

• Native interfaces for C++, C, and Fortran
• Logging, backtrace, and “replay” capabilities. Useful

for investigating application performance,
experimenting with different allocation scenarios,
finding bugs, etc.

LLNL-PRES-853131
13

 Depending on underlying architecture being used, calls to memory can look very
different:

 Umpire simplifies this:

Why We Need Umpire - Closer Look

The same Umpire allocator can be used for several different backends.

cudaMalloc((void**)&dev_ptr, SIZE * sizeof(float));

hipMalloc((void**)&dev_ptr, SIZE * sizeof(float));

void* ptr = sycl::malloc_device(SIZE, queue_t);

void* ret = omp_target_alloc(SIZE, device);

umpire::Allocator alloc = rm.getAllocator(”DEVICE");
alloc.allocate(SIZE * sizeof(float))

CUDA
HIP

SYCL*
OpenMP Target*

CUDA, HIP, SYCL,
OpenMP Target

LLNL-PRES-853131
14

 RAJA User Guide: getting started info, details
about features and usage, etc.
(https://readthedocs.org/projects/raja)

 RAJA Project Template: shows how to use RAJA
and BLT in an application that uses CMake
(https://github.com/LLNL/RAJA-project-template)

 RAJA Proxy Apps: a collection of proxy apps
written using RAJA
(https://github.com/LLNL/RAJAProxies)

 RAJA Performance Suite: a large collection of
loop kernels used to assess compilers and RAJA
performance (RAJA team, HPC vendors, DOE
platform procurements, etc.)
(https://github.com/LLNL/RAJAPerf)

URLs with RAJA information and examples…

All of these are linked on the RAJA GitHub project page.

LLNL-PRES-853131
15

We maintain user documentation, tutorials, and other code
repos associated with the RAJA Portability Suite projects

• Umpire User Guide: getting started info, details
about features & usage, tutorial materials
(readthedocs.org/projects/umpire)

• Umpire Interactive Tutorial: interactive user
tutorial using Jupyter notebooks
(github.com/LLNL/umpire-interactive-tutorial)

• CARE: Collection of CHAI And RAJA
Externsions that are useful to application
developers to help write portable code
(github.com/LLNL/CARE)

These are linked on the RAJA and Umpire GitHub projects.

The RAJA Performance Suite and Proxy Apps
are good sources of examples for RAJA usage.

LLNL-PRES-853131
16

Getting started with the Tutorial…

LLNL-PRES-853131
17

Welcome to the
RADIUSS AWS
Tutorial Series!

Go to:
https://software.llnl.gov/radiuss
/event/2023/07/11/radiuss-on-
aws/
to learn more about our other
tutorials and documentation!

https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/
https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/
https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/

LLNL-PRES-853131
18

 Go to the link for your VSCode
environment in your email.

 VSCode is not Visual Studios, it is just an
interactive text editor.

 We will still build and run our exercises
from the terminal.

 VSCode has a built-in terminal.

Instructions for working with RAJA and Umpire on AWS

LLNL-PRES-853131
19

 To open a terminal
Go to: ㆔ → Terminal → New Terminal

Instructions for working with RAJA on AWS

LLNL-PRES-853131
20

 RAJA has been configure and pre-built for
you in the build dir.

 cd build

 Executables live in

 ~/raja-suite-tutorial/build/bin

 To run exercise one (from build)

 ./bin/one

Instructions for working with RAJA on AWS

LLNL-PRES-853131
21

 Editing one.cpp

 make one

 ./bin/one

Instructions for working with RAJA on AWS

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

LLNL-PRES-853131
23

 RAJA has been configure and pre-built for
you in the build dir.

 cd build

 Executables live in

 ~/raja-suite-tutorial/build/bin

 To run exercise one (from build)

 ./bin/one

Instructions for working with RAJA on AWS

LLNL-PRES-853131
24

 Editing one.cpp

 make one

 ./bin/one

Instructions for working with RAJA on AWS

	A Tutorial Introduction to RAJA and Umpire
	Welcome to the RAJA Umpire tutorial
	We value your feedback…
	RAJA is an open-source project with a growing user and contributor base
	RAJA is part of the RAJA Portability Suite, which contains four complementary projects
	RAJA capabilities and core concepts
	RAJA and performance portability
	The RAJA Portability Suite insulates applications from programming model and hardware architecture details
	RAJA supports a variety of loop patterns and parallel constructs
	Slide Number 10
	Umpire capabilities and core concepts
	Umpire provides a portable memory management API
	Why We Need Umpire - Closer Look
	URLs with RAJA information and examples…
	We maintain user documentation, tutorials, and other code repos associated with the RAJA Portability Suite projects
	Getting started with the Tutorial…
	Slide Number 17
	Instructions for working with RAJA and Umpire on AWS
	Instructions for working with RAJA on AWS
	Instructions for working with RAJA on AWS
	Instructions for working with RAJA on AWS
	Slide Number 22
	Instructions for working with RAJA on AWS
	Instructions for working with RAJA on AWS

