A Tutorial Introduction to RAJA and Umpire

Kristi Belcher, Arturo Vargas
on Behalf of the RAJA Team

S
S

e

LLNL-PRES-853131 M Lawrence Livermore
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory Natlonal Laboratory

under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Welcome to the RAJA Umpire tutorial

= We will start by providing a brief high-level overview of RAJA and Umpire
= We will follow the README's in the tutorial exercise directory

= The tutorial contains descriptions of RAJA and Umpire features and shows how to use them

— The RAJA code repository contains source files with exercises based on the tutorial docs that you can work
through. Complete solution files are also provided if you wish to compare with your work, or if you get stuck.

— Please don’t hesitate to ask questions at any time on Webex chat or unmute yourself during this presentation.

— We will primarily monitor Slack after the presentation.

= Qur objective for today is for you to learn enough about RAJA and Umpire to start using it in your
own code development

= RAJA contains other more advanced features that will be covered in future versions of the tutorial

E Lawrence Livermore National Laboratory N Sﬁfa‘é

LLNL-PRES-853131

We value your feedback...

= |f you have comments, questions, or suggestions, please let us
know

— Send us a message to our project email list: raja-dev@lInl.gov

= We appreciate specific, concrete feedback that helps us
improve RAJA and the tutorial material

Lawrence Livermore National Laboratory NUYSE 3

LLLLLLLLLLLLLLLL

mailto:raja-dev@llnl.gov

RAJA is an open-source project with a growing
user and contributor base

RAJA

O LLNL | </> C++ | &l BSD-3-Clause

© GitHub Page % Stargazers : 320 ¥ Forks: 80

Project
COEIZOI'S StatS On
v 6/17/2022

802 352

Pull Requests Issues

W 96% Merged [64% Closed
1 4% Open 17 36% Open

‘ Lawrence Livermore National Laboratory
LLNL-PRES-853131

80

60

40

20

350 =

300+

250 =

200+

Stars

Number of Stars Over Time

https://github.com/LLNL/RAJA

= - - © =3 o o| o o " =
- e < 0 < o S| = o ¥ g
2 S92 S 2 2 S S| o S g i
: | : 33 3 P
8 al & = o - o I
S S c S @ S o =5
2 5| 2 2 g 3 3 5
> > >
/,/-’
J,,/"
P"..."’-—f
2017 201 2019 2020 202 202,
Contributions to develop, excluding merge commits and bot accounts
2015 2016 2017 2018 2019 2020 2021 2022
75
NS

National Nucloar Security Administration

RAJA is part of the RAJA Portability Suite, which
contains four complementary projects

RAJV

RAJA: C++ kernel execution
abstractions

Single-source application

Umpire: Memory management API

Enable single-source . High performance memory
application code insulated CHAI Umpire operations, such as pool allocations,
from hardware and with native C++, C, Fortran APls
programming model details

camp

Diverse hardware ecosystem (313

CAMP o

CHAI: C++ array

camp: C++ _ o https://github.com/LLNL/RAJA abstractions
metaprogramming facilities o https://github.com/LLNL/CHAI Automates data copies, based on RAJA
Focuses on HPC compiler https://github.com/LLNL/Umpire execution contexts, giving apps the look

and feel of unified memory, but with

compatibility and portability https://github.com/LLNL/camp better performance

l Lawrence Livermore National Laboratory JAYIN ng‘é 5

LLNL-PRES-853131 tional Nucloar Socurity Adminis

RAJA capabilities and core concepts

‘ Lawrence Livermore National Laboratory N A‘ S&% 3

LLNL-PRES-853131

RAJA and performance portability

= RAJAs a library of C++ abstractions that enable you to write portable,
single-source kernels that run on different hardware by re-compiling
— Multicore CPUs, Xeon Phi, GPUs (NVIDIA, AMD, Intel), ...

= RAJA insulates application source code from hardware and programming
model-specific implementation details
— OpenMP, CUDA, HIP, SIMD vectorization, ...

= RAJA is used by many diverse production applications and libraries at LLNL and
elsewhere, including ECP projects, university and vendor collaborators

b Lawrence Livermore National Laboratory NVYSE 7

LLNL-PRES-853131

The RAJA Portability Suite insulates applications from programming model and
hardware architecture details

0310 Z

Peak Ground Veloci

ECP ExaSGD
(power grid optimization)

8 3 2 8 & 8 8 3 °

0.000

: ECP SW4
LLNL ECP/ATDM ECP GEOSX (earthquake modeling) plus,

high-order ALE hyd hani
(high-order ydro) (geomechanics) others...

RAJA / Umpire / CHAI ‘

Perlmiitter . *

Perlmutter (LBL)
AMD Milan CPUs +
NVIDIA Ampere GPUs

.{_i E
£

g M

dddaad
WANGUARD \ \ A
Astra

T Frontier (ORNL) &
Aurora (ANL) 0 — e El Capitan (LLNL)
Intel Xeon CPUs + Xe GPUs AMD CPUs + GPUs

Astra (SNL)
ARM architecture

Sierra (LLNL)
IBM P9 CPUs + NVIDIA Volta GPUs

l Lawrence Livermore National Laboratory N A‘ 2‘5@5‘

LLNL-PRES-853131 National Nucloar Socurity Administration

RAJA supports a variety of loop patterns and parallel constructs

Loop patterns and transformations (without changing app

Non-perfectly nested loops code)
Loop tiling Change loop iteration patterns, permute loop nest
Hierarchical parallelism ordering
Asychronous execution Multi-dimensional data views with offsets and index

permutations

Hierarchical parallelism, asynchronous execution

Multiple execution back-ends Direct GPU thread-block mapping control

Sequential CPU/GPU shared and thread local memory

SIMD (via vector intrinsics, in progress)
OpenMP (CPU & device offload)

Intel Threading Building Blocks (partial)
CUDA

AMD HIP

SYCL (in development)

‘ Lawrence Livermore National Laboratory
LLNL-PRES-853131

Simple Loops

RAJA execution policy capsulates loop execution details

for (int i = 0; i < N; ++i)
{

y[i] = a * x[1] + y[i]’
}

#pragma omp parallel for int i = threadIdx.x +
for (int i = 0; i < N; ++i) blockIdx.x*blockDim.x;
((i < N)
ylil = a * x[i] + y[il; {
} yl[i] = a * x[i] + y[i];
}

T~ | _—

RAJA Execution Policy

|

{
y[i]
})

RAJA: : forall<EXEC POL>(it space, [=] (int i)

= a * x[i] + y[i]:

L Lawrence Livermore National Laboratory
LLNL-PRES-853131

NISE 10

Umpire capabilities and core concepts

‘ Lawrence Livermore National Laboratory N A‘ S&% 11

LLNL-PRES-853131

Umpire provides a portable memory management API

Features useful in HPC applications

* Resources Various pool allocation strategies (fixed size, dynamic,
* Allocators monotonic, etc.)
* Operations NUMA support
Memory allocation advice (preferred location, mostly
read, etc.)
Supported memory types Thread safe allocators

Memory introspection
Host (CPU)

MPI shared memory

GPU global, constant, (host) pinned

Unified memory

Mmapped file memory

Support for NVIDIA, AMD, Intel GPU devices

‘ Lawrence Livermore National Laboratory
LLNL-PRES-853131

Why We Need Umpire - Closer Look

= Depending on underlying architecture being used, calls to memory can look very

different:
cudaMalloc((void**)&dev_ptr, SIZE * sizeof(float)); <+<— CUDA
hipMalloc((void**)&dev_ptr, SIZE * sizeof(float)); <+«— HI|P
void* ptr = sycl::malloc_device(SIZE, queue_t); <+—— SYCL*
void* ret = omp_target_alloc(SIZE, device); < OpenMP Target*
= Umpire simplifies this:
umpire::Allocator alloc = rm.getAllocator(”DEVICE"); CUDA, HIP, SYCL,
alloc.allocate(SIZE * sizeof(float)) OpenMP Target

The same Umpire allocator can be used for several different backends.

l Lawrence Livermore National Laboratory N A‘ ng‘é 13

LLNL-PRES-853131

URLs with RAJA information and examples...

= RAIJA User Guide: getting started info, details
about features and usage, etc.
(https://readthedocs.org/projects/raja)

Docs » RAJA User Guide » Getting Started With RAJA © Edit on GitHub

Getting Started With RAJA
u RAJA PrOject Template: ShOWS hOW tO Use RAJA This section will help get you up and running with RAJA quickly.
and BLT in an application that uses CMake

(https://github.com/LLNL/RAJA-project-template)

Requirements

The primary requirement for using RAJA is a C++14 compliant compiler. Accessing various
programming model back-ends requires that they be supported by the compiler you chose.

= RAIJA Proxy Apps: a collection of proxy apps B ——————
written using RAJA 2;"“;“ « Ct++ compiler with C++14 support
(https://github.com/LLNL/RAJAProxies) Bukd and et " Make version 3:14.5 or greater
s Get the Code
= RAIJA Performance Suite: a Iarge collection of z::,:c:i;t:r:,.sidemﬁm.s The RAJA project is hosted on GitHub. To get the code, clone the repasitary into a local working
loop kernels used to assess compilers and RAJA RUAToral wpace seng e command
performance (RAJA team, HPC vendors, DOE ——— e

platform procurements, etc.)
(https://github.com/LLNL/RAJAPerf)

All of these are linked on the RAJA GitHub project page.

l Lawrence Livermore National Laboratory NUYSE 14

LLNL-PRES-853131 National Nucloar Socurity Administra

We maintain user documentation, tutorials, and other code
repos associated with the RAJA Portability Suite projects

» Umpire User Guide: getting started info, details # Umpire N —
about features & usage, tutorial materials ’
(readthedocs.org/projects/umpire) [scocnaos]
Umpire
* Umpire Interactive Tutorial: interactive user
Getting Started Umpire is a resource management library that allows the discovery, provision, and management of

tutorial using Jupyter notebooks
(github.com/LLNL/umpire-interactive-tutorial)

memory on next-generation hardware architectures with NUMA memaory hierarchies.

Umpire Tutorial

» Take a look at our Getting Started guide for all you need to get up and running with Umpire.

CA e BT « |f you are looking for developer documentation on a particular function, check out the code

documentation.
Umpire Cookbook

» CARE: Collection of CHAI And RAJA Features
EXternSIonS that are USGfU| tO app“Catlon Doxygen Any questions? File an issue on GitHub, or email umpire-dev@lInl.gov
developers to help write portable code
(github.com/LLNL/CARE)

Developer Guide

* Want to contribute? Take a look at our developer and contribution guides.

Basics

* Getting Started
o Installation

The RAJA Performance Suite and Proxy Apps
are good sources of examples for RAJA usage.

These are linked on the RAJA and Umpire GitHub projects.

l Lawrence Livermore National Laboratory N A‘ ng‘é 15

LLNL-PRES-853131

Getting started with the Tutorial...

‘ Lawrence Livermore National Laboratory N A‘ S&% 16

LLNL-PRES-853131

Date Time (Pacific) Project

August 3, 2023 9:00a.m.—11:00a.m.

‘ i c) August 8-9 2023 8:00a.m.—11:30a.m. both days
“H‘

—— Learn to install your software quickly with Spack

L |
l a d I I l ! i ! ; August 10, 2023 9:00a.m.—11:00a.m.

bl Build, link, and test large-scale applications with BLT
"

Use MFEM for scalable finite element discretization application development

August 14, 2023 9:00a.m.—12:00p.m. K)A'per Integrate performance profiling capabilities into your applications with Caliper

Welcome to the 4

[]
i/

RADI U SS AWS / O\O Analyze hierarchical performance data with Hatchet
Tutorial Series!

e

Optimize application performance on supercomputers with Thicket

Go to: August 17,2023 9:00a.m.—11:00a.m.
https://software.linl.gov/radiuss

levent/2023/07/11/radiuss-on-

aLS/ August 22, 2023 9:00a.m.—11:00a.m.
tO |eam more abOUt our Other Visualize and analyze your simulations in situ with Ascent
tutorials and documentation!

V Use RAJA to run and port codes quickly across NVIDIA, AMD, and Intel GPUs

2

Discover, provision, and manage HPC memory with Umpire

O

August 24, 2023 9:00a.m.—11:00a.m. AXQM Leverage robust, flexible software components for scientific applications with Axom

August 29, 2023 9:00a.m.—11:00a.m.
N
@ Analyze runs of your code with WEAVE

Open Source

August 31, 2023 9:00a.m.~11:00a.m. ﬂm Learn to run thousands of jobs in a workflow with Flux

l Lawrence Livermore National Laboratory
LLNL-PRES-853131

https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/
https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/
https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/

Instructions for working with RAJA and Umpire on AWS

TE— N = Go to the link for your VSCode

C O @ 100.27.30.236

" i environment in your email.

v RAJA
> github < Get Started

> gitlab
> benchmark
> bit s

= § casioinve = VSCode is not Visual Studios, it is just an

> docs Code in the Web

> examples Discover the best customizations . - .

interactive text editor
yours.

> host-configs .

> include 1

> reproducers

g
Q
«
Q
3
Il

O

Choose the look you want

> scripts The right color palette helps you
> share focus on your code, is easy on your

S o eyes, and is simply more fun to
use.

- = We will still build and run our exercises

> travis-data Tip: Use keyboard shortcut (%K %T)

clang-format . .
oo from the terminal
© gitignore .
& gitlab-ciyml
© gitmodules Just the right amount of Ul

1 readthedocs.yml

! travisyml
Rich support for all your languages

.uberenv_config.json " - -
= VSCode has a built-in terminal
! azure-pipelines.yml Quickly navigate between your files .
M CMakelLists.txt
¥ CODE_OF CONDUCT.md
! codecovyml
CONTRIBUTING.md
& Dockerfile

LICENSE

NOTICE
(@ README.md

RELEASE
¥ RELEASE_NOTES.md

«/ Mark Done Next Section -

> OUTLINE
> TIMELINE

° task/tut-reorg-aws O ®0A0 Layout: US. &7
% c ®oA R Q

L Lawrence Livermore National Laboratory N A‘ S%‘gl
LLNL-PRES-853131 National Nucloar Socurity Administration

Instructions for working with

RAJA on AWS

File >
Edit >
Selection >
View >
Go >
Run >
Terminal >
Help >
> examples

> exercises

> host-configs

> include

> reproducers

> scripts

> share

> sre

> test

> tol

> travis-data
clang-format

& dockerignore

& gitignore

¥ gitlab-ciym!

© gitmodules

! readthedocs.yml

! travisyml
uberenv_config json

! appveyoryml

! azure-pipelines.yml

M CMakeLists.txt

¥ CODE_OF CONDUCT.md

!' codecovymi

f CONTRIBUTING.md

& Dockerfile
LICENSE
NOTICE

® README.md
RELEASE

¥ RELEASE_NOTES.md

> OUTLINE
> TIMELINE

§ taskftut-reorg-aws O @040

Get Started — raja— OpenVSC X +

C O A& 10027.30.236

1E Get Started x

< Get Started

s
New Terminal ~o"
Run Task.

Run Build Task. oxB

Run Active File

Run Selected Text

Configure Tasks..

Configure Default Build Task.

Get Started with VS
Code in the Web

Discover the best customizations
to make VS Code in the Web
yours.

Choose the look you want

The right color palette helps you
focus on your code, is easy on your
eyes, and is simply more fun to

use.

Browse Color Themes

Tip: Use keyboard shortcut (%K %T)

O One shortcut to access everything
Just the right amount of Ul
) Rich support for all your languages

Quickly navigate between your files

«/ Mark Done Next Section

Layout:US. & 0Q

= To open a terminal

Go to:

—> Terminal > New Terminal

l Lawrence Livermore National Laboratory

LLNL-PRES-853131

VS

National Nucloar Security Administration

19

Instructions for working with RAJA on AWS

= RAJA has been configure and pre-built for
you in the builda dir.

= cd build
= Executables live in
~/raja-suite-tutorial/build/bin

= To run exercise one (from builad)

./bin/one

l Lawrence Livermore National Laboratory N A‘ ng‘é 20

LLNL-PRES-853131

Instructions for working with RAJA on AWS

= Editing one.cpp
= make one

= . /bin/one

l Lawrence Livermore National Laboratory N A‘ Sg{‘% 21

LLNL-PRES-853131 tional Nucloar Socurity Administration

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes any
warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name,
trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence
Livermore National Security, LLC, and shall not be used for advertising or product endorsement purposes.

Instructions for working with RAJA on AWS

= _ = RAJA has been configure and pre-built for

Cc O @ 10027.30.236 % 8 4

EXPLORER = I Get Started X m - . . .

you in the build dir.
t

5 o

benchmark Start Walkthroughs

bit S
New Fie...
build B3 New File B et started with s Code in the

‘ .
cnte 0o e = cd build
Discover the best customizations to make

§ Clone Git Repository...
docker VS Code in the Web yours.

docs
examples
exercises B Learn the Fundamentals

host-configs Recent Jump right into VS Code and get an
overview of the must-have features.

. .
include You have no recent folders, open a folderto start.]
Xecutapies live In

scripts S Boost your Productivity
share

Fs) ot i ~/raja-suite-tutorial/build/bin

T PROBLEMS UTPUT DEGUG CONSOLE TERMINAL goasn-buid + 0 B A~ X

-gitlab-ciyml AWSUSER@9d5b2f58abda:~/rajas cd build
gitmodules Ja/builds .
readthedocs.yml

= To run exercise one (from build)

UEEETUEET Running C-version of dot product...
appveyoryml (a, b) = le+d6

~-~eoCcoR

b CRTREE) Running RAJA sequential dot product.

M CMakeLists.txt (3, b) = les0s
T CODE_OF_CONDUCT.md result — PSS .
codecovym! b
. s 0 e s .. ./bin/one
a, b) =0
& Dockerfile
LICENSE result — FAIL
Wenile= Running RAJA CUDA dot product...
® README.md (a, b) =0

RELEASE result — FAIL
¥ RELEASE_NOTES.md

Youtine AWSUSER@9dSb2f58abda:~/raja/builds []
> TIMELINE

¥ task/tut-reorg-aws . ®0 A0 Layout:US. & 0

L Lawrence Livermore National Laboratory gggl P
LLNL-PRES-853131 National Nucloar Security Administration

Instructions for working with RAJA on AWS

I8l dot-product.cpp — raja — Oper X

Editing one.cpp

O & 100.27.30.236 w
EXPLORER == € dot-product.cpp M X w O
v RAJA exercises > G dot-product.cpp
> github 115 -
116 " = m
g atb 17 /11 TODO... — a](e one
> benchmark 18
> bit s 119 /11 EXERCISE: Inplement the dot product kernel using a RAJA::omp_parallel for_exec =
> build 120 1" execution policy type and RAJA::omp_reduce reduction policy type.
S 121 " il
122
REocky 123 RAJA: :ReduceSum<RAJA: :omp_reduce, double> ompdot(0.0); = '
= = ./bin/one
> examples 125 RAJA: : foral 1<sRAJA: somp_parallel_for_exec>(RAJA: : TypedRangeSegment<int>(0, N), [=] (int i) { H
< oorcises 126 ompdot += alil * blil; -
127 »n:
> tutorial_halfday 15 =
€ atomic-histogram_solution.cpp 129| | dot = ompdot.get(); =
@ atomic-histogram.cpp 130
M CMakeLists.txt 131 std:icout << "\t (a, b) = " << dot << std::endl; = v
Dockerfile o5y -
" 133 checkResult(dot, dot_ref); s
€ dot-product_solution.cop 134 #endif
@ dot-product.cpp M 135 N 3
€ kernel-matrix-transpose_solution.cpp 136
kernel-matrix-transpose-local-array_sol.. popiems OUTPUT DEBUGCONSOLE TERMINAL goash-buid ++ 0 8 ~ X
@ kernel-matrix-transpose-local-array.cpp —
- ANSUSEMDGSbeSB:Dﬂa'~/ri)a/buxld$ make dot-product
€ kernel-matrix-transpose-tiled_solution.c.. puitt target
G kernel-matrix-transpose-tiled.cpp Built target RA
¢ Consolidate compiler generated dependencies of target dot-product
€ kernel-matrix-transpose.cpp Building CUDA object exercises/CMakeFiles/dot-product.dir/dot-product.cpp.o
@ kernelintro-execpols_solution.cpp Linking CXX executable ../bin/dot-product
i Built target dot-product
€ kernelintro-execpols.cpp . I "
@ kernelintro-nested-loop-reorder._solutio...
@ kernelintro-nested-loop-reorder.cpp EXSFCE6T VEELOR dot BrOdUCts e
€ launch-matrix-transpose_solution.cpp
€ launch-matrix-transpose-local-array_sol.. RUMiNg C-version of dot product...
@ launch-matrix-transpose-local-array.cpp '
@ launch-matrix-transpose-tiled_solution.c.. Running '(‘:J‘J““"“a‘ dot product...
€ launch-matrix-transpose-tiled.cpp !
@ launch-matrix-transpose.cpp FSBURE! ==(PASS
@ launchintro-execpols_solution.cpp Running FAOA Opert? dot prosuct..
€ launchintro-execpols.cpp (e, b)'=
@ memoryManager.hpp result — PASS
@ offset-layout-stencil_solution.cpp
Running RAJA CUDA dot product...
@ offset-layout-stencil.cpp (a, b) = 0
€ reductions_solution.cpp
€ raductinne ann result = FAIL
> OUTLINE s
> TIMELINE AWSUSER@9dSb2f58abda:~/raja/builds []
§° taskftut-reorg-aws* O @0 A0 Ln129,Col22 Spaces:2 UTF-8 LF C++ Layout:US. & 0O

l Lawrence Livermore National Laboratory VS&{%“ 24
LLNL-PRES-853131 a

National Nucloar Security Administration

	A Tutorial Introduction to RAJA and Umpire
	Welcome to the RAJA Umpire tutorial
	We value your feedback…
	RAJA is an open-source project with a growing user and contributor base
	RAJA is part of the RAJA Portability Suite, which contains four complementary projects
	RAJA capabilities and core concepts
	RAJA and performance portability
	The RAJA Portability Suite insulates applications from programming model and hardware architecture details
	RAJA supports a variety of loop patterns and parallel constructs
	Slide Number 10
	Umpire capabilities and core concepts
	Umpire provides a portable memory management API
	Why We Need Umpire - Closer Look
	URLs with RAJA information and examples…
	We maintain user documentation, tutorials, and other code repos associated with the RAJA Portability Suite projects
	Getting started with the Tutorial…
	Slide Number 17
	Instructions for working with RAJA and Umpire on AWS
	Instructions for working with RAJA on AWS
	Instructions for working with RAJA on AWS
	Instructions for working with RAJA on AWS
	Slide Number 22
	Instructions for working with RAJA on AWS
	Instructions for working with RAJA on AWS

