
Welcome to the RADIUSS
AWS Tutorial Series!

Go to:
https://software.llnl.gov/radiuss/e
vent/2023/07/11/radiuss-on-aws/
to learn more about our other
tutorials and documentation!

https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/
https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/

LLNL-PRES-853680
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

The Flux Framework Tutorial

RADIUSS AWS Tutorial Series
August 31, 2023

Al Chu, James Corbett, Ryan Day, Jim Garlick,
Giorgis Georgakoudis, Mark Grondona,
Dan Milroy, Zeke Morton, Chris Moussa,
Tapasya Patki, Barry Rountree, Abhik Sarkar,
Tom Scogland, Vanessa Sochat, Becky
Springmeyer, Jae-Seung Yeom

3LLNL-PRES-853680

Pre-exascale scientific workflows strain the capabilities of
traditional HPC resource managers and schedulers.

Co-scheduling:

CG, analysis bound to cores
nearest PCIe buses

Job comms/coordination:

36,000 concurrent tasks;
176,000 cores, 16,000 GPUs

Portability:

adapt tasks to different
schedulers/managers

MuMMI: SC’19 best paper, SC’21 paper

MPI-based simulation with in-situ analysis plus AI/ML

SC ’21, November 14–19, 2021, St. Louis, MO, USA H. Bhatia et al.

limitation resulted in a need to explicitly throttle the rate of certain
I/O operations, most prominently, during feedback. Furthermore,
scaling in job scheduling was obtained by bundling jobs of similar
kind to alleviate the load on the scheduler. Nevertheless, such
an approach is undesirable since it prevents explicit control over
individual jobs. Broadly, all components of M�MMI, including job
and data management, data and control communication, as well as
the exposed API, were tightly integrated with the speci�c problem,
preventing utilizing M�MMI for our new application.

4 GENERALIZABLE AND SCALABLE MUMMI
In this work, we present a new design that expands the
generalizability and scalability of M�MMI and demonstrates these
innovations by extending the M�MMI work�ow to support a third
scale of resolution. Hereafter, unless explicitly noted,M�MMI refers
to our new, improved, and generalizable framework.

Broadly, a multiscale model can be developed through pairwise
coupling of scales. For any two scales, some basic building blocks
are needed: (1) simulation and analysis at the two (coarse/�ne or
macro/micro) scales, (2) a method to couple the two representations,
(3) an automated approach to decide which coarse representations
to promote to the �ne scale, and (4) a method to perform feedback.

In this context, we design M�MMI as comprising two parts —
the application and the coordination (see Figure 2). The former
de�nes the application scope (in terms of the building blocks listed
above), e.g., what scales are relevant, what codes and/or simulation
tools to use, what ML techniques are suitable, and how is the
feedback performed? These components are typically designed
by computational scientists who are experts in the corresponding
domains; the actual details may vary across applications or even
across simulations. The role of the generalizedM�MMI work�ow
(the coordination part) is to tie together the di�erent application
components to facilitate the multiscale simulations.

We �rst discuss the speci�c details of our three-scale application,
followed by generic and tailored strategies for coordination.

Figure 2:We present a generalizable and scalable framework
to couple diverse models at di�erent resolution scales. The
“application” components (top) de�ne the three scales and
may be swapped to support other applications, whereas the
“coordination” components (bottom) provide an interface
to couple the associated tools, software components, and
technologies to facilitate scalable simulation campaigns.

4.1 The Three-Scale M�MMI
This work uses three scales of resolution: continuum, coarse grained
(CG), and all atomistic (AA), along with two types of ML-based
selection and two types of in situ feedback. Although every
application component used in this work has notable innovations
in itself, whether modeling, development, or performance, we
describe these components only brie�y, focusing largely on
their considerable computational versatility that challenges the
work�ow.

(1) The Continuum Simulation. The coarsest of the three scales
is a macro model that provides speed at the cost of accuracy.
Our macro model is a continuum description of lipids that uses
DDFT [50] for representing lipid dynamics in terms of their
density �elds. Proteins (positions and con�gurational states) are
represented as particles that interact with each other and with the
lipids This model comprises a 1 �m ⇥ 1 �m bilayer discretized
as a 2400⇥2400 grid, with 8 lipid types in the inner and 6 types
in the outer lea�et [34]. We use a custom simulation package,
GridSim2D — a parallel CPU code written in C++ that uses MPI for
communication. Using a total of 3600 MPI ranks (24 CPU cores per
node at 150 nodes), GridSim2D can simulate v0.96 ms per day of
walltime. With an I/O rate of 1 �s, a new snapshot is delivered every
90 seconds and, when stored in a custom binary format, consumes
v374 MB of disk space.

(2) Createsim: Mapping Continuum-to-CG. Compared to the
continuum scale, the CG and AA simulations are restricted in
the spatial extent due to high computational cost. To couple
continuum with these scales, 30 nm ⇥ 30 nm “patches” are cut out
of continuum snapshots in regions that may be of interest for CG
and AA simulations. The createsimmodule transforms a patch from
continuum representation into a particle-based one. The insane
tool [74] is used to create a CG representation of the membrane
and proteins. Once constructed, GROMACS [1] is used to relax the
membrane and proteins into a more natural, equilibrated, state in
preparation for simulation. Createsim is a custom Python-based
code that uses 24 CPU cores and, on average, takes v1.5 hours to
complete.

(3) CG Simulations and Analyses. Given the particle
representation of lipids and proteins, CG simulations with the
Martini force �eld [51] are performed using the CUDA®-enabled
version [78] of ddcMD [68]. Custom, Python-based analysis
is executed simultaneously on the same computational node
and accesses the local on-node RAM disk for analysis of the
MD trajectories generated by the corresponding simulation.
Each ddcMD simulation uses one GPU and one CPU core; the
corresponding analysis is allocated 3 CPU cores. With this setup
and an average of v140,000 particles, ddcMD delivers v1.04 �s
of MD trajectories per day per GPU [78], and produces about 4.6
MB new data every 41.5 seconds. The analysis module is tuned
to �nish inspecting each snapshot within this time period and
generates 17 KB additional data every 41.5 seconds.

(4) Backmapping: Mapping CG-to-AA. To overcome the
limitations of the CG model [4], it is further re�ned using a
backmapping scheme that translates a CG representation in time
into AA using the CHARMM36 force �eld [10]. This procedure

4LLNL-PRES-853680

Next-generation, cross-cluster scientific workflows are
demanding portability and cloud integration.

Complex workflows integrating
cloud technologies at LLNL and
beyond
§ Scalable message broker couples

MPI-based tasks (AHA MoleS)
§ HPC simulation with AI/ML

surrogates, orchestrated data (AMS)
§ Many other examples

2020 lab survey found that 73%
of LLNL workflows interested in
cloud integration

Docking n

…

Docking n

Docking 1

…

Docking n

…

Docking n

Docking 1

…

Docking n

…

Docking n

Docking 1

C
onveyorLC

(Flux Job 1)

…

…

Docking Flux Instance
(CPU Cluster)

Kubernetes

RabbitMQ

Vast
Filesystem

Docking
Adapter

Fusion Flux Instance
(GPU Cluster)

Docking n

…

Docking n

…
……

Docking n

…

Fusion Worker
(Flux Job 1)

Fu
sio

n
Ad

ap
te

r

Docked Ligand Data
Fusion Scoring Data

GMD Structural Core

M
aestro M

ae
st

ro

RabbitMQ Messages

MPI-based simulation with analysis, AI/ML, containerized components

AHA MoleS: eScience’22 best paper

5LLNL-PRES-853680

Trends towards complex workflows, extreme resource heterogeneity,
and converged computing render traditional workload managers
increasingly ineffective.

New pillar

Co-scheduling

Job throughput

Job communication/coordination

Portability

Extremely heterogenous resources

6LLNL-PRES-853680

Flux solves key technical problems that emerge from these
trends.

§ Open-source project in active development
at flux-framework GitHub organization
— Multiple projects: flux-core, -sched,
 -security, -accounting, -k8s etc.
— Over 15 contributors including some principal engineers

behind Slurm

§ Single-user and System instance modes
— Single-user mode in production for about 4 years
— Multi-user mode debuting on LLNL Linux clusters

§ Plan of record for LLNL El Capitan
exascale system

7LLNL-PRES-853680

Flux hierarchical management and graph-based scheduling
address exascale and converged computing challenges.

Modular, hierarchical design
§ Hierarchical resource management and scheduling

(separate modules)
§ Sub-manager with specialized scheduler
§ Schedules cloud resources

Manages resources nearly anywhere
§ Bare metal resources, virtual machines in the cloud,

HPC resources in another workload manager, pods in
Kubernetes

§ Workflows only need to program to Flux
§ Directed graph resource model expresses complex,

dynamic resources

Rich, well-defined interfaces
§ Facilitate communications and coordination among

tasks within a workflow
§ CLI, Python, C, C++, Rust, Go (in progress), etc.

Allocated Resources

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Node

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

Flux Instance

Flux Instance Flux Instance Flux Instance Flux Instance

Depth-1

Depth-2

Depth-3

“Fractal scheduling” mitigates centralized scheduler
bottleneck
§ handles high throughput
§ job steps needn’t hit central scheduler

8LLNL-PRES-853680

Flux pioneers and uses graph-based scheduling to manage
complex combinations of extremely heterogenous resources.

§ Traditional resource data models are
largely ineffective for resource
heterogeneity
— Designed with node-centric models when

systems were simpler

§ Elevate resource relationships (edges)
to an equal footing with resources
(vertices)

§ Complex scheduling can be expressed
without changing the scheduler code

§ Rich and well-defined C and C++ API
(Golang soon) for graph allocation

Containment subsystem

Network connectivity subsystem

9LLNL-PRES-853680

Flux’s graph-oriented jobspec allows for highly expressive
resource requests.

§ Graph-oriented resource requirements
— Express the resource requirements of a program to the scheduler
— Express program attributes such as arguments, run time, and task

layout, to be considered by the execution service

§ cluster->racks[2]->slot[3]->node[1]->sockets[2]->core[18]

§ slot is the only non-physical resource type
— Represent a schedulable place where program process or

processes will be spawned and contained

§ Referenced from the tasks section

10LLNL-PRES-853680

Flux is running on LLNL production clusters in preparation
for the deployment of El Capitan.

Rolling out on production
systems, addressing user groups
one at a time. El Capitan will be
a leap.

Smaller clusters for user feedback
(three are in the top 200 of the
Top500)
§Tioga, Corona (pictured here),

RZVernal, Tenaya
§Hetchy, Fluke, Elmerfudd

11LLNL-PRES-853680

§ Support multiple queues/partitions
§ Support limits and defaults, boosted access/priority
§ Propagate time limits through job hierarchy
§ Replacement for batch #directives
§ CORAL2: rabbit integration, common tools interface
§ Start/stop Flux without losing running jobs
§ Resolve “second order” resiliency issues

§ Solved issues that surfaced during crashes, others will manifest at scale
§ Node-hosted prolog/epilog

§ Still need to launch pro/epilog from rank 0 host
§ Partial release of resources

Updates on capabilities identified last year: Flux core team
has made excellent progress leading up to production.

12LLNL-PRES-853680

Flux is advancing rapidly. (Evidence: dark mode)

https://flux-framework.org/cheat-sheet/

https://flux-framework.org/cheat-sheet/

13LLNL-PRES-853680

§ Deprecate flux mini, now flux run, flux submit, etc.
§ Introduce #flux: batch directives (flux-batch(1) man page)
§ Groundwork for executing jobs under systemd

§ eventually support Flux restart without running job loss
§ flux filemap and job shell stage-in plugin for file

broadcast
§ Support -o cpu-affinity=map: option explicitly map cores

to tasks
§ RFC 34 Flux Task Map: a compact mapping between job task

ranks and nodeids
§ Only prepend the path to flux(1) if necessary (avoid prepending

/usr/bin to PATH)
§ Unbuffered I/O option for flux run and ability to direct stdin to

subset of tasks
§ Support rank, host constraints in --requires= submission

option

The Flux team is rapidly filling in user-identified gaps.

https://flux-framework.readthedocs.io/projects/flux-core/en/latest/man1/flux-batch.html
https://flux-framework.readthedocs.io/projects/flux-core/en/latest/man1/flux.html

14LLNL-PRES-853680

Side install Python bindings via flux-python
§ if Python not ABI compatible, pip install Flux

bindings
§ must match Flux version of bindings and core

Send signal to a job before it expires
§ used to checkpoint before walltime

--add-file- attach small files to job submission
§ can be signed and saved to compute nodes

Flux-accounting runs as a service
§ run anywhere on cluster rather than mgt node

Plugin query callback
§ with multi-factor priority plugin, query returns user

and bank’s job counts
§ explains limit enforcement

And providing new capabilities.

15LLNL-PRES-853680

§ new command flux-watch to watch
output for a single or multiple flux jobs

§ Python API for monitoring job output
§ allow memory limits on jobs to be set for

system instance jobs
§ easy configuration of batch job instances with

--conf option to flux-batch and flux-
alloc

And providing new capabilities (cont).

16LLNL-PRES-853680

New utilities
§ flux job last - list last submitted jobs

for the current user
§ takes slice option

§ flux job timeleft - get remaining time
§ flux pgrep and flux pkill -

query/cancel jobs by name, id range, etc.
§ flux job taskmap - query taskmap for

jobs
§ rank-to-host mapping

The Flux team has developed utilities to improve user
experience.

17LLNL-PRES-853680

The rabbits of El Cap present a fearsome scheduling problem.
§ Multi-tiered storage features “rabbit”

nodes
— 18 SSDs, direct PCIe to chassis compute

nodes

§ Dynamically configured as node-local
storage or job-global
— node-local via PCIe, global via network
— single rabbit can serve both at once
— scheduler must handle both

§ Can be allocated independent of jobs

§ Too difficult for traditional schedulers

18LLNL-PRES-853680

Fluxion’s directed-graph approach addresses the rabbit
challenge and facilitates cloud integration.

§ Fluxion schedules rack-local and
global storage with no code change
(caveats)
— inefficient for scheduling same resource

type multiple times
— affects jobs requesting multiple rabbit

allocations
— known issue to be fixed before El Cap

deployment

§ Directed-graph representation
enables scheduling, managing
dynamic, cloud resources

selects
SSDs

anywhere selects SSDs
in same rack

19LLNL-PRES-853680

The what and why of movement to the cloud; HPC doesn’t
want to be left behind.

The cloud is an environment
(public, private) that supports:
§ Portability, reproducibility (e.g.,

containerization)
§ Resiliency, efficiency (e.g., resource

dynamism, elasticity, declarative
management)

§ Reduced complexity via automation
(autoscaling, elasticity, declarative
management)

CACM: New economic cycle of
computing leads to greater hardware
specialization. Areas more distinct and
provide fewer benefits to others. Areas
that get left behind3:

§ See little performance benefit
§ Market too small to justify upfront

costs
§ Cannot coordinate demand (cloud)

Focuses on hardware, but
software development is
crucial, closely connected

Companies rent this environment;
hugely profitable
§ projected to $920B by 2025, 20%

CAGR (20-25)1 vs HPC: $40B by 2025,
20-25 CAGR 8%2

1Gartner 2022, 2Hyperion 2021, 3The Decline of Computers as a
General Purpose Technology, CACM March 2021

20LLNL-PRES-853680

Kubernetes (K8s):
§ cloud “OS” with

75K contributors
(one of the fastest
growing OSS
projects ever)

§ designed for
loosely coupled
apps

§ not focused on
performance
(scheduling
limitations,
throughput…)

A key to converged computing is combining HPC
scheduling and resource management with Kubernetes.

HPC:
§ performance is in the

name
§ very difficult to

manage modern
workflows

§ not designed for
dynamism/elasticity

Converged Computing LDRD:
how to create a converged environment
composed of the best of both worlds?

Automation, declarative mgmt

Loosely-coupled apps

Schedule software resources

Lifecycle, network orchestration

Tightly-coupled apps (MPI)

Schedule complex hardware

Sophisticated queueing

HPCKubernetes

21LLNL-PRES-853680

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

LLNL converged computing project advances convergence
with representative, Flux-based models.

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

Kubernetes

compute

compute

compute

compute

Flux

request1

resources?

job1 job1

Flux

request1

resources

compute

compute

compute

compute

Kubernetes

job1 job1

Flux

new resources

compute

computecompute

Kubernetes

job1

job1

compute
job1

L1: APIs, resource
representations, scheduling.
Fluence enables portable
converged workflows

L3: Cloud nesting
model reduces software
complexity, increases
automation,
performance

L4: Elastic cloud
nesting model enables
autoscaling and
dynamism

L2: Flux Operator
enables portable
converged workflows

Portability is a component of performance!

22LLNL-PRES-853680

Fig. 3: The placement diagram specifies nodes as columns and jobs as rows. The top half were scheduled by Kube-scheduler
and the bottom by HPKube. Each cell represents a job on one node and is colored by the number of pods the node ran during
that job. The value inside each cell denotes the number of unique applications that ran during the job. Red cell borders indicate
that the node ran an application that experienced a startup delay waiting for resources. Boxplots on the right show end-to-end
time distributions for AMG and QMCPACK per scheduler (orange is HPKube, blue is Kube-scheduler); outliers are not plotted.

free resources on the node where the pods were placed, thus
resource utilization was not maximized. In the large configu-
ration, we again achieved a lower execution time. The cluster
did not offer a low-latency interconnect (e.g., Infiniband) and
bandwidth was limited at 16Gbps. As LAMMPS scales better
with low-latency interconnect, it could not scale beyond a
certain number of ranks. We decided to use up to 250 ranks
for the multi-application scenario, so we could run more ranks
for LAMMPS but also leave more resources for AMG.

c) QMCPACK: When using the default scheduler, QMC-
PACK rarely ran to completion in the smallest configuration,
and it always failed for the medium and large setup due to
MPI ranks aborting. Setting the affinity to two zones out of
three (tor-1 and tor-2) allowed all the jobs scheduled by the
default scheduler to succeed. QMCPACK achieved shortest
execution time with the medium setup. With HPKube we
obtained an end-to-end execution time about 1.5⇥ lower in
all three scenarios. QMCPACK obtained the lowest execution
time with both schedulers with 250 MPI ranks, so we conclude
that using 250 MPI ranks will yield the best performance in
the multi-app scenario.

2) Three-App Workflow: We ran the three workloads si-
multaneously in the cluster, occupying the largest number of
resources as possible and pushing AMG to its limits. We ran
the apps with the three configurations reported in Table I (see
row AMG, LAMMPS, QMCPACK), for a total of 420, 675, and
1650 ranks per configuration. The large test case fully occu-
pied all 60 nodes in the cluster. The workflow creation order
was AMG, LAMMPS, and then QMCPACK. We tested the
workflow with and without zone affinity for QMCPACK and
LAMMPS. Because of the allocation order, QMCPACK was
less spread over three zones as fewer resources were available
after AMG and LAMMPS were allocated. This let QMCPACK
run to completion even without zone affinity. Furthermore,
zone affinity only reduced median execution times by about
one tenth of a second. Therefore, we concluded that forcing
affinity with the default scheduler would not produce a major
performance improvement. Figure 4 shows the execution times
for each experiment. Small, medium and large setup denoted
by S, M and L (see Table I). Default scheduler in blue, HP-
Kube in orange. Since we used a packing policy with HPKube,
AMG did not perform well in the smallest setup in comparison
to the default scheduler (Fig. 4a, 140-S), because the pods

Fig. 3: The placement diagram specifies nodes as columns and jobs as rows. The top half were scheduled by Kube-scheduler
and the bottom by HPKube. Each cell represents a job on one node and is colored by the number of pods the node ran during
that job. The value inside each cell denotes the number of unique applications that ran during the job. Red cell borders indicate
that the node ran an application that experienced a startup delay waiting for resources. Boxplots on the right show end-to-end
time distributions for AMG and QMCPACK per scheduler (orange is HPKube, blue is Kube-scheduler); outliers are not plotted.

free resources on the node where the pods were placed, thus
resource utilization was not maximized. In the large configu-
ration, we again achieved a lower execution time. The cluster
did not offer a low-latency interconnect (e.g., Infiniband) and
bandwidth was limited at 16Gbps. As LAMMPS scales better
with low-latency interconnect, it could not scale beyond a
certain number of ranks. We decided to use up to 250 ranks
for the multi-application scenario, so we could run more ranks
for LAMMPS but also leave more resources for AMG.

c) QMCPACK: When using the default scheduler, QMC-
PACK rarely ran to completion in the smallest configuration,
and it always failed for the medium and large setup due to
MPI ranks aborting. Setting the affinity to two zones out of
three (tor-1 and tor-2) allowed all the jobs scheduled by the
default scheduler to succeed. QMCPACK achieved shortest
execution time with the medium setup. With HPKube we
obtained an end-to-end execution time about 1.5⇥ lower in
all three scenarios. QMCPACK obtained the lowest execution
time with both schedulers with 250 MPI ranks, so we conclude
that using 250 MPI ranks will yield the best performance in
the multi-app scenario.

2) Three-App Workflow: We ran the three workloads si-
multaneously in the cluster, occupying the largest number of
resources as possible and pushing AMG to its limits. We ran
the apps with the three configurations reported in Table I (see
row AMG, LAMMPS, QMCPACK), for a total of 420, 675, and
1650 ranks per configuration. The large test case fully occu-
pied all 60 nodes in the cluster. The workflow creation order
was AMG, LAMMPS, and then QMCPACK. We tested the
workflow with and without zone affinity for QMCPACK and
LAMMPS. Because of the allocation order, QMCPACK was
less spread over three zones as fewer resources were available
after AMG and LAMMPS were allocated. This let QMCPACK
run to completion even without zone affinity. Furthermore,
zone affinity only reduced median execution times by about
one tenth of a second. Therefore, we concluded that forcing
affinity with the default scheduler would not produce a major
performance improvement. Figure 4 shows the execution times
for each experiment. Small, medium and large setup denoted
by S, M and L (see Table I). Default scheduler in blue, HP-
Kube in orange. Since we used a packing policy with HPKube,
AMG did not perform well in the smallest setup in comparison
to the default scheduler (Fig. 4a, 140-S), because the pods

The Fluence project improves performance and reduces
workload variability.

kube-scheduler

Fluence

Fig. 3: The placement diagram specifies nodes as columns and jobs as rows. The top half were scheduled by Kube-scheduler
and the bottom by HPKube. Each cell represents a job on one node and is colored by the number of pods the node ran during
that job. The value inside each cell denotes the number of unique applications that ran during the job. Red cell borders indicate
that the node ran an application that experienced a startup delay waiting for resources. Boxplots on the right show end-to-end
time distributions for AMG and QMCPACK per scheduler (orange is HPKube, blue is Kube-scheduler); outliers are not plotted.

free resources on the node where the pods were placed, thus
resource utilization was not maximized. In the large configu-
ration, we again achieved a lower execution time. The cluster
did not offer a low-latency interconnect (e.g., Infiniband) and
bandwidth was limited at 16Gbps. As LAMMPS scales better
with low-latency interconnect, it could not scale beyond a
certain number of ranks. We decided to use up to 250 ranks
for the multi-application scenario, so we could run more ranks
for LAMMPS but also leave more resources for AMG.

c) QMCPACK: When using the default scheduler, QMC-
PACK rarely ran to completion in the smallest configuration,
and it always failed for the medium and large setup due to
MPI ranks aborting. Setting the affinity to two zones out of
three (tor-1 and tor-2) allowed all the jobs scheduled by the
default scheduler to succeed. QMCPACK achieved shortest
execution time with the medium setup. With HPKube we
obtained an end-to-end execution time about 1.5⇥ lower in
all three scenarios. QMCPACK obtained the lowest execution
time with both schedulers with 250 MPI ranks, so we conclude
that using 250 MPI ranks will yield the best performance in
the multi-app scenario.

2) Three-App Workflow: We ran the three workloads si-
multaneously in the cluster, occupying the largest number of
resources as possible and pushing AMG to its limits. We ran
the apps with the three configurations reported in Table I (see
row AMG, LAMMPS, QMCPACK), for a total of 420, 675, and
1650 ranks per configuration. The large test case fully occu-
pied all 60 nodes in the cluster. The workflow creation order
was AMG, LAMMPS, and then QMCPACK. We tested the
workflow with and without zone affinity for QMCPACK and
LAMMPS. Because of the allocation order, QMCPACK was
less spread over three zones as fewer resources were available
after AMG and LAMMPS were allocated. This let QMCPACK
run to completion even without zone affinity. Furthermore,
zone affinity only reduced median execution times by about
one tenth of a second. Therefore, we concluded that forcing
affinity with the default scheduler would not produce a major
performance improvement. Figure 4 shows the execution times
for each experiment. Small, medium and large setup denoted
by S, M and L (see Table I). Default scheduler in blue, HP-
Kube in orange. Since we used a packing policy with HPKube,
AMG did not perform well in the smallest setup in comparison
to the default scheduler (Fig. 4a, 140-S), because the pods

Fluence-scheduled workflows run
up to 3x faster with low variability,
deterministic placement1
https://github.com/flux-framework/flux-k8s
1One Step Closer to Converged Computing: Achieving Scalability with Cloud-Native HPC, 2022

https://github.com/flux-framework/flux-k8s

23LLNL-PRES-853680

The project has enabled workflow portability via the Flux
Operator.

Flux Operator
§ Bootstrap Flux in K8s;

“fractal scheduling” of pods
§ Scalable MPI bootstrap
§ Ported 14 HPC

benchmarks, tools, and full
workflow

§ JobSet API
§ Autoscaling in progress
§ RESTful interface in

progress

https://github.com/flux-framework/flux-operator

https://github.com/flux-framework/flux-operator

24LLNL-PRES-853680

We formed industry and academic collaborations to tackle
converged computing, contribute to community, and
advocate for HPC.

IBM T.J. Watson Research Center:
Expertise in K8s Scheduling

Red Hat:
Developers of OpenShift K8s platform

AWS:
Largest cloud platform, deep HPC expertise

Formalizing collaboration with Google!

UTK:
Science workflows,
converged computing

LLNL:
 Dan Milroy
 Giorgis Georgakoudis
 Md Rajib Hossen
 Zeke Morton
 Tapasya Patki
 Abhik Sarkar
 Vanessa Sochat
 Jae-Seung Yeom

25LLNL-PRES-853680

Advanced Data Movement with DYAD: Taking the Best of Both Existing Approaches

Enabling High Throughput Data Movement with the
Dynamic and Asynchronous Data Streamliner (DYAD)

Existing Approaches for Data Movement

Sequential Approach

Strengths: easy-to-use, portable across storage solutions
Weaknesses: slow, dependent on parallel file system

In Situ/In Transit Approach

Strengths: fast, dependent on local data staging
Weaknesses: hard-to-use, not portable across storage solutions

Easy to configure and run

(1) Launch the DYAD Service
$ flux exec –r all \
 flux module load dyad.so \
 <producer directory>

(2) Configure DYAD for Apps
export DYAD_KVS_NAMESPACE=…
export DYAD_PATH_PRODUCER=…
export DYAD_PATH_CONSUMER=…

(3) Load the DYAD Wrapper
(when not using C++ API)

export \
LD_PRELOAD=“dyad_wrapper.so”

(4) Run application as usual

Transparent to applications

• Application sees read from/write to
local storage

• DYAD moves data as needed between
producer and consumer

Scientific Computing Workflows (e.g., MuMMI, AHA Moles), Data Parallel Deep Learning (e.g., DLIO Benchmark)
Interested in using DYAD? Reach out!

Targeted Use Cases

Contact Info
Jae-Seung Yeom: yeom2@llnl.gov
Ian Lumsden: ilumsden@vols.utk.edu

Producer
Step 1 … Producer

Step N

Consumer
Step 1 … Consumer

Step N

Simple to integrate

C (and soon Python) Code
No Change Required!

C++ Code
#include <dyad_stream_api.hpp>
using namespace std;

void write_file(char* fname,
 void* buf,
 size_t buflen)
{
 dyad::ofstream_dyad ofs;
 ofs.open(fname, ios::binary);
 ofstream& real_ofs =
 ofs.get_stream();
 real_ofs.write(buf, buflen);
 ofs.close();
}

Interested in other languages?
Reach out!

Project Team
LLNL: Jae-Seung Yeom, Hari Devarajan
University of Tennessee: Ian Lumsden, Jakob
Luettgau, Jack Marquez, Michela Taufer

Producer
Step 1 … Producer

Step N

Consumer
Step 1 …

Consumer
Step N

Producer
Step 1 W …

Consumer
Step 1R …

Local Storage

Local Storage

Flux KVS and RPC

/ssd/$USER/file.txt

/ssd/$USER/file.txt

UCX

Check out our eScience ’22 short paper:

https://doi.org/10.1109/eScience
55777.2022.00068

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

mailto:yeom2@llnl.gov
mailto:ilumsden@vols.utk.edu

26LLNL-PRES-853680

Accessing the hands-on tutorial

§ Using our EKS cluster at https://tutorial.flux-framework.org
—Choose a unique username (if not, you’ll be sharing a pod)
—Password: XXXX
—Navigate to flux-tutorial/notebook/ and double-click
flux.ipynb to start
• To execute a cell in JupyterLab: Shift+Enter

— It’s a shared instance- please don’t run computationally demanding tasks
in your pod

—The cluster will disappear shortly after the tutorial

§ Running locally with Docker:
— git clone https://github.com/flux-framework/Tutorials.git;

README in the 2023-RADIUSS-AWS JupyterNotebook directory

https://tutorial.flux-framework.org/
https://github.com/flux-framework/Tutorials.git

Thank you!
Questions?

https://github.com/flux-
framework/Tutorials.git

https://github.com/flux-framework/Tutorials.git
https://github.com/flux-framework/Tutorials.git

