s
radiuss

Welcome to the RADIUSS
AWS Tutorial Series!

Go to:
https://software.llnl.gov/radiuss/e

vent/2023/07/11/radiuss-on-aws/
to learn more about our other
tutorials and documentation!

Date

August 3, 2023

August 8-9 2023

August 10, 2023

August 14, 2023

August 17, 2023

August 22, 2023

August 24, 2023

August 29, 2023

August 31, 2023

Time (Pacific)

9:00a.m.—11:00a.m.

8:00a.m.—11:30a.m

. both days

9:00a.m.—11:00a.m.

9:00a.m.—12:00p.m.

9:00a.m.—11:00a.m.

9:00a.m.—11:00a.m.

9:00a.m.—11:00a.m.

9:00a.m.—11:00a.m.

9:00a.m.—11:00a.m.

Project

blr Build, link, and test large-scale applications with BLT
o

Learn to install your software quickly with Spack

Use MFEM for scalable finite element discretization application development

‘K}lqm Integrate performance profiling capabilities into your applications with Caliper

@
S
'/ /.\. Analyze hierarchical performance data with Hatchet
®

7

Optimize application performance on supercomputers with Thicket

RAJV Use RAJA to run and port codes quickly across NVIDIA, AMD, and Intel GPUs

Discover, provision, and manage HPC memory with Umpire

Visualize and analyze your simulations in situ with Ascent

AXIM Leverage robust, flexible software components for scientific applications with Axom

A
@ Analyze runs of your code with WEAVE

Open Source

ﬂux Learn to run thousands of jobs in a workflow with Flux

https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/
https://software.llnl.gov/radiuss/event/2023/07/11/radiuss-on-aws/

The Flux Framework Tutorial

Al Chu, James Corbett, Ryan Day, Jim Garlick,
Giorgis Georgakoudis, Mark Grondona,

. . Dan Milroy, Zeke Morton, Chris Moussa,
RADIUSS AWS Tutorial Series Tapasya Patki, Barry Rountree, Abhik Sarkar,
August 31, 2023 Tom Scogland, Vanessa Sochat, Becky

Springmeyer, Jae-Seung Yeom

)

o

LLNL-PRES-853680

This work rformed under th ices of the U.S. Department of Energy by L Li National Laboratory under contract B Lawrence Livermore
IS WOrk was performed unaer the auspices O e U.o. Department or Energy by Lawrence Livermore National Laboratory unaer contrac H
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC National Laboratory

Pre-exascale scientific workflows strain the capabilities of
traditional HPC resource managers and schedulers.

Co-scheduling:

CG, analysis bound to cores
nearest PCle buses

Application

Job comms/coordination:

36,000 concurrent tasks:
176,000 cores, 16,000 GPUs

Portability:

adapt tasks to different
schedulers/managers

———————————

Coordination

MuMMI: SC’'19 best paper, SC'21 paper
MPI-based simulation with in-situ analysis plus Al/ML

B Lawrence Livermore \/)
National Laboratory N A W$‘~‘3ﬂ
iministration 3

National Nuclear Securit
LLLLLLLLL -853680

Next-generation, cross-cluster scientific workflows are
demanding portability and cloud integration.

Complex workflows integrating
cloud technologies at LLNL and
beyond

= Scalable message broker couples
MPI-based tasks (AHA MoleS)

= HPC simulation with Al/ML
surrogates, orchestrated data (AMS)

= Many other examples

2020 lab survey found that 73%
of LLNL workflows interested in
cloud integration

Kubernetes

Docking 1 <

Docking 1

1

&

0JlSoe|N

91depy 3upjpoq

Maestro

Docking 1

— Fusion Worker

(Flux Job 1)
Docking Flux Instance Fusion Flux Instance
(CPU Cluster) (GPU Cluster)

Fusion Adapter

(1 qor xn|d)
D40A8AUOD

Docking n

KJ

Docked Ligand Data Vast

............... » i
RabbitMQ Messages W

AHA MoleS: eScience’22 best paper

Fusion Scoring Data

MPI-based simulation with analysis, Al/ML, containerized components

M Lawrence Livermore N VS’?‘
National Laboratory . A : “‘i\
LRSS National Nuclear Security Administration

Trends towards complex workflows, extreme resource heterogeneity,
and converged computing render traditional workload managers
increasingly ineffective.

@ Co-scheduling

\

@ Job throughput

\

@ Job communication/coordination

|

@ Portability

New pillar

Q Extremely heterogenous resources

V4

M Lawrence Livermore N \/ S.%ﬂ
b National Laboratory ,.,”.,Més m,m:‘g
ati ecur inistrat 5

LLLLLLLLL -853680

Flux solves key technical problems that emerge from these
trends.

B flux-framework / flux-accounting

= Open-source project in active development

at flux-framework GitHub organization
— Multiple projects: flux-core, -sched,

H flux-framework / flux-security

©2 . & flux-framework / flux-sched -Security, -accounting, -k8s etc.
. — Over 15 contributors including some principal engineers
behind Slurm
L T £ = Single-user and System instance modes
= flux-framework / flux-core — Single-user mode in production for about 4 years

— Multi-user mode debuting on LLNL Linux clusters

G ge- EKESERETILTEEl = Plan of record for LLNL El Capitan
WINNER

exascale system
Slux
e

. xyloid { # dongahn - .
B Lawrence Livermore © N \ /)
National Laboratory I\ As S > |

LLNL-PRES-853680

(, chu
¥» 1,678 commits 110,983 ++ 66,0 ruary May August N

Flux hierarchical management and graph-based scheduling
address exascale and converged computing challenges.

ﬂux Modular, hierarchical design
@ = Hierarchical resource management and scheduling
(separate modules)

= Sub-manager with specialized scheduler

= Schedules cloud resources

Manages resources nearly anywhere

= Bare metal resources, virtual machines in the cloud,
HPC resources in another workload manager, pods in
Kubernetes

= Workflows only need to program to Flux

= Directed graph resource model expresses complex,
dynamic resources

“Fractal scheduling” mitigates centralized scheduler Rich, well-defined interfaces

bottleneck = Facilitate communications and coordination among
tasks within a workflow

= handles high throughput
= CLI, Python, C, C++, Rust, Go (in progress), etc.

= job steps needn't hit central scheduler

M Lawrence Livermore N VS’?‘
National Laboratory . A : “‘i\
LRSS National Nuclear Security Administration

Flux pioneers and uses graph-based scheduling to manage
complex combinations of extremely heterogenous resources.

= Traditional resource data models are
largely ineffective for resource

heterogeneity
— Designed with node-centric models when

systems were simpler

= Elevate resource relationships (edges)
to an equal footing with resources
(vertices)

= Complex scheduling can be expressed
without changing the scheduler code

= Rich and well-defined C and C++ API
(Golang soon) for graph allocation

B Lawrence Livermore
National Laboratory
LLNL-PRES-853680

Core
Switch1

Switch3

Network connectivity subsystem

el
\A S
A =0
National Nuclear Security Administration

Flux’s graph-oriented jobspec allows for highly expressive
resource requests.

version: 1

= Graph-oriented resource requirements
— Express the resource requirements of a program to the scheduler count: 1
— Express program attributes such as arguments, run time, and task " types rack
layout, to be considered by the execution service T
= cluster->racks[2]->slot[3]->node[1]->sockets[2]->core[1 V e
= slot is the only non-physical resource type <«
— Represent a schedulable place where program process or at
processes will be spawned and contained count: 18
= Referenced from the tasks section "ot

duratign: 2%
tasks:
— command: app
slot: myslot

count:
per_slot: 1

M Lawrence Livermore N \/ S(.!e;
v %

National Laboratory "N (‘s - _»ﬂ

LLNL-PRES-853680 ational Nuclear Security Administration

Flux is running on LLNL production clusters in preparation
for the deployment of El Capitan.

Rolling out on production
systems, addressing user groups
one at a time. El Capitan will be

a leap.

Smaller clusters for user feedback

(three are in the top 200 of the

Top500)

= Tioga, Corona (pictured here),
RZVernal, Tenaya

= Hetchy, Fluke, EImerfudd

M Lawrence Livermore N \ / S/e;
v o
Natlonal La boratory National Nuc&suwily Admmis:;gv

LLNL-PRES-853680

Updates on capabilities identified last year: Flux core team
has made excellent progress leading up to production.

v Support multiple queues/partitions

v Support limits and defaults, boosted access/priority

* Propagate time limits through job hierarchy

* Replacement for batch #directives

\/ CORALZ: rabbit integration, common tools interface
« Start/stop Flux without losing running jobs

« Resolve “second order” resiliency issues
= Solved issues that surfaced during crashes, others will manifest at scale
* Node-hosted prolog/epilog

= Still need to launch pro/epilog from rank O host
= Partial release of resources

M Lawrence Livermore N VS’?‘
National Laboratory . A : “‘i\
LRSS National Nuclear Security Administration

Flux is advancing rapidly. (Evidence: dark mode)

B Lawrence Livermore
National Laboratory
LLNL-PRES-853680

o . Flux Framework
N Flux documentation : e ¥19

Contents Sub-Projects ~ Comparison Table

Welcome to Flux's documentation!

/
Y
¢

Flux is a flexible framework for resource management, built for your site. The framework consists of a suite of projects, tools, and libraries which may be used to build
site-custom resource managers for High Performance Computing centers. Unlike traditional resource managers, Flux can run as a parallel job under most launchers
that support MPI, including under Flux itself. This not only makes batch scripts and workflows for Flux portable to other resource managers (just launch Flux as a job),
but it also means that batch jobs have all the features of a full resource manager at their disposal, as if they have an entire cluster to themselves. If you are interested in

a high level comparison of Flux to other resource managers, see

Contents

https://flux-framework.org/cheat-sheet/

National Nuclear Security A

https://flux-framework.org/cheat-sheet/

The Flux team is rapidly filling in user-identified gaps.

Deprecate , NOW , , etc.
Introduce : batch directives (flux-batch(1) man page)

Groundwork for executing jobs under systemd
= eventually support Flux restart without running job loss

g and job shell plugin for file
broadcast

= Support option explicitly map cores
to tasks

= RFC 34 Flux Task Map: a compact mapping between job task
ranks and nodeids

= Only prepend the path to flux(1) if necessary (avoid prepending
to PATH)

= Unbuffered I/O option for flux run and ability to direct stdin to
subset of tasks

= Support rank, host constraints in submission
option

M Lawrence Livermore N VS’S“
National Laboratory bt mﬁs,m,, A,m,:JZ?‘M

LLNL-PRES-853680

https://flux-framework.readthedocs.io/projects/flux-core/en/latest/man1/flux-batch.html
https://flux-framework.readthedocs.io/projects/flux-core/en/latest/man1/flux.html

And providing new capabilities.

Side install Python bindings via flux-python

= if Python not ABI compatible, pip 1nstall Flux
bindings

= must match Flux version of bindings and core

Send signal to a job before it expires

= used to checkpoint before walltime e
--add-file- attach small files to job submission S

= can be signed and saved to compute nodes &
Flux-accounting runs as a service

= run anywhere on cluster rather than mgt node
Plugin query callback

= with multi-factor priority plugin, query returns user
and bank’s job counts

= explains limit enforcement

M Lawrence Livermore N \ / S/e;
v o

Natlonal Laboratory Natiol l/N‘lCASICIIﬁl Admlnls:;zl

LLNL-PRES-853680 (ation: ty.

And providing new capabilities (cont).

= new command f Lux-watch to watch
output for a single or multiple flux jobs

= Python API for monitoring job output

= allow memory limits on jobs to be set for
system instance jobs

= easy configuration of batch job instances with ™
~--conf optionto flux-batchand flLux-
alloc

H Lawrence Livermore N \ / S,’e;
i &9,
N atlonal La boratory National Nucésnlln‘ly Admlm’s:;gl

LLLLLLLLL -853680

The Flux team has developed utilities to improve user
experience.

New utilities

= flux jJjob last -listlast submitted jobs
for the current user
= takes sl1ce option

= flux job timeleft -getremainingtime
= flux pgrepand flux pkill -

query/cancel jobs by name, id range, etc.

= flux job taskmap - query taskmap for
jobs
= rank-to-host mapping

H Lawrence Livermore N \/ S?,e;
y %
b National Laboratory k ,.,».,M..,As e ,"3"
Jati ecur inistrat 1 6

LLLLLLLLL -853680

The rabbits of El Cap present a fearsome scheduling problem.

= Multi-tiered storage features “rabbit”

nodes
— 18 SSDs, direct PCle to chassis compute
nodes

= Dynamically configured as node-local

storage or job-global

— node-local via PCle, global via network
— single rabbit can serve both at once

— scheduler must handle both

= Can be allocated independent of jobs ! o
18 MYSH
= Too difficult for traditional schedulers i oot

ckard AMDF a
I

M Lawrence Livermore N \ / S(:/é;
&0
Natlonal Laboratory "N As -
LLLLLLLLLLLLLL jational Nuclear Security Administration

Fluxion’s directed-graph approach addresses the rabbit
challenge and facilitates cloud integration.

= Fluxion schedules rack-local and
global storage with no code change

(caveats)
— inefficient for scheduling same resource
type multiple times

Sse'segtss \ or N - - — affects jobs requesting multiple rabbit
anywhere ‘ allocations
— known issue to be fixed before El Cap
deployment

= Directed-graph representation
enables scheduling, managing
dynamic, cloud resources

M Lawrence Livermore N VS’S“
National Laboratory bt mﬁs,m,, A,m,:JZ?‘M

LLNL-PRES-853680

The what and why of movement to the cloud; HPC doesn’t

want to be left behind.

!

I

——

IIIIIIIIIIIIIIIII
lIlIIIIIIIIlIIIII
UM

IIL
|

M Lawrence Livermore
National Laboratory

LLNL-PRES-853680

rTTITT1111]

The cloud is an environment
(public, private) that supports:
= Portability, reproducibility (e.g.,

containerization)
= Resiliency, efficiency (e.g., resource
dynamism, elasticity, declarative

management)
= Reduced complexity via automation
(autoscaling, elasticity, declarative

management)
Companies rent this environment;

hugely profitable
= projected to $920B by 2025, 20%

CAGR (20-25)! vs HPC: $40B by 2025,

20-25 CAGR 8%?2

CACM: New economic cycle of
computing leads to greater hardware
specialization. Areas more distinct and

provide fewer benefits to others. Areas
that get left behind3:

= See little performance benefit

= Market too small to justify upfront

costs
= Cannot coordinate demand (cloud)

Focuses on hardware, but

software development is
crucial, closely connected

1Gartner 2022, 2Hyperion 2021, 3The Decline of Computers as a
General Purpose Technology, CACM March 2021

el
\A S
A =0
National Nuclear Security Administration

A key to converged computing is combining HPC
scheduling and resource management with Kubernetes.

. Converged Computlng LDRD)
Kubernetes (K8s): o E:Fé’ét’é"é"éBHi}é'rééa'é'rii}[r'&{fﬁéht i HPC:
- cloud “OS” with composed of the best of both worlds? + performance is in the
75K contributors . name
(one of the fastest . very difficult to
growing OSS Kubernetes . manage modern

projects ever) workflows

Loosely-coupled apps Tightly-coupled apps (MPI)

= designed for
loosely coupled

apps

= not focused on
performance
(scheduling
limitations,
throughput...)

.= not designed for
Schedule software resources Schedule complex hardware dynamism/elasticity

Lawrence Livermore ()
b Natlonal Laboratory A‘S"a

National Nuclear Security Administration
LLLLLLLLLLLLLLL

LLNL converged computing project advances convergence
with representative, Flux-based models.

new resources

\

i |
resources? resources?

\ \

jobl

L1: APIs, resource L2: Flux Operator L3: Cloud nesting L4: Elastic cloud

representations, scheduling. enables portable model reduces software nesting model enables

Fluence enables portable converged workflows complexity, increases autoscaling and

converged workflows automation, dynamism
performance

Portability is a component of performance!

M Lawrence Livermore VS_ 08
b National Laboratory dor més m:‘ o
LLNL-PRES-853680 ecurity

21

QMCPACK

Scheduler

220.01

<
o
—
~N

°

(s)

w

]

<
=)
o
N

Y

190.01

u2-03-puz

180.01

170.0-

AMG

Scheduler

1

The Fluence project improves performance and reduces

workload variability.

kube-scheduler§

180.01

160.01

140.0

120.01

80.01

Fluence-scheduled workflows run
up to 3x faster with low variability,

ic placement’
/[qithub.com/flux-framework/flux-k8s

'One Step Closer to Converged Computing

t

IS

N

determ

https

HPC, 2022

Ive

Scalability with Cloud-Nat

Achieving

1

22

'
<

<7

National Nuclear Security Administration

(7
.‘-.

Lawrence Livermore
National Laboratory

LLNL-PRES-853680

https://github.com/flux-framework/flux-k8s

The project has enabled workflow portability via the Flux

8

Operator.

MnClus‘tef‘
H iozia 3
Covaor
Flux Operator
resoLrces? = Bootstrap Flux in K8s;

¥ “fractal scheduling” of pods .
Flu = Scalable MPI bootstrap @
= Ported 14 HPC

benchmarks, tools, and full

workflow 6 —][Mmﬁa\] ,’
m m = JobSet API (o (o)| |
= Autoscaling in progress i T i | [R —
= RESTful interface in . g :I:§°§:E POAJ
progress EReEl
https://github.com/flux-framework/flux-operator Jols el e

MiniC [u&’te_t‘ G Pods)

B Lawrence Livermore N VS?&*
Nat|onal Laboratory T m‘s iy A :‘Z?n

LLLLLLLLLLLLLLL

https://github.com/flux-framework/flux-operator

We formed industry and academic collaborations to tackle
converged computing, contribute to community, and
advocate for HPC.

T === IBM T.J. Watson Research Center: £l @ UTK:
===°= Expertise in K8s Scheduling Dr. Michela Taufer Science workflows,
converged computing
& RedHat o0 MEn | LLNL:
Developers of OpenShift K8s platform Dan Milroy
Giorgis Georgakoudis
dWS aws: i
Md Raijib Hossen
N Largest cloud platform, deep HPC expertise Zeke Morton
Tapasya Patki
> Formalizing collaboration with Google! Abhik Sarkar
Vanessa Sochat

Jae-Seung Yeom

M Lawrence Livermore N 'S%ﬁ
National Laboratory T ,..‘s iy A :"?n
Jational Nuclear Secu Iministrati 24

LLLLLLLLL -853680

Enabling High Throughput Data Movement with the
Dynamic and Asynchronous Data Streamliner (DYAD)

Existing Approaches for Data Movement

>

Advanced Data Movement with DYAD: Taking the Best of Both Existing Approaches

Sequential Approach

Producer
Step N

Producer
Step 1

Consumer
Step N

Strengths: easy-to-use, portable across storage solutions
Weaknesses: slow, dependent on parallel file system

Easy to configure and run

Simple to integrate

(1) Launch the DYAD Service

$ flux exec -r all \
flux module load dyad.so \
<producer directory>

C (and soon Python) Code
No Change Required!

v

(2) Configure DYAD for Apps
export DYAD KVS_NAMESPACE=..
export DYAD PATH_PRODUCER=...
export DYAD PATH_CONSUMER=...

In Situ/In Transit Approach

Producer
Step N

Producer
Step 1

Consumer
Step N

Consumer
Step 1

Strengths: fast, dependent on local data staging
Weaknesses: hard-to-use, not portable across storage solutions

L

(3) Load the DYAD Wrapper
(when not using C++ API)
export \
LD_PRELOAD=“dyad_wrapper.so”

v

C++ Code

#include <dyad_stream_api.hpp>
using namespace std;

void write_file(char* fname,
void* buf,
size_t buflen)

dyad::ofstream_dyad ofs;
ofs.open(fname, ios::binary);
ofstream& real ofs =

ofs.get_stream();
real_ofs.write(buf, buflen);
ofs.close();

(4) Run application as usual

Interested in other languages?
Reach out!

Transparent to applications

Producer

/ssd/SUSER/file.txt
ucx * ﬂ Flux KVS and RPC

/ssd/SUSER/file.txt

Consumer
Step 1

Application sees read from/write to
local storage

DYAD moves data as needed between
producer and consumer

Targeted Use Cases

Scientific Computing Workflows (e.g., MuMMI, AHA Moles), Data Parallel Deep Learning (e.g., DLIO Benchmark)
Interested in using DYAD? Reach out!

Project Team
LLNL: Jae-Seung Yeom, Hari Devarajan

University of Tennessee: lan Lumsden, Jakob

Luettgau, Jack Marquez, Michela Taufer

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

M Lawrence Livermore
National Laboratory

LLNL-PRES-853680

This work was performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344

Contact Info

Jae-Seung Yeom: yeom2@IInl.gov

lan Lumsden: ilumsden@vols.utk.edu

Check out our eScience '22 short paper:

5[a]

https://doi.org/10.1109/eScience
55777.2022.00068

'S

25

mailto:yeom2@llnl.gov
mailto:ilumsden@vols.utk.edu

Accessing the hands-on tutorial

= Using our EKS cluster at https://tutorial. flux-framework.org
— Choose a unique username (if not, you'll be sharing a pod)
— Password: XXXX
—Navigate to flux-tutorial/notebook/ and double-click

flux.i1pynb to start
- To execute a cell in JupyterLab: Shift+Enter

— It's a shared instance- please don't run computationally demanding tasks
In your pod
— The cluster will disappear shortly after the tutorial

= Running locally with Docker:

— git clone https://github.com/flux-framework/Tutorials.git;
README in the 2023-RADIUSS-AWS JupyterNotebook directory

M Lawrence Livermore N VS(_"S“
&i National Laboratory ‘um“"‘

LLLLLLLLLLLLLLLL

https://tutorial.flux-framework.org/
https://github.com/flux-framework/Tutorials.git

Thank you!
Questions?

https://github.com/flux-
framework/Tutorials.git

B Lawrence Livermore
National Laboratory

https://github.com/flux-framework/Tutorials.git
https://github.com/flux-framework/Tutorials.git

