With DJINN (Deep Jointly-Informed Neural Networks), researchers can model complex multiphase equation of state data and respect physics. This code accompanies the *Physics of Plasmas* paper “Neural network surrogate models for equations of state.” The abstract follows:

Equation of state (EOS) data provide necessary information for accurate multiphysics modeling, which is necessary for fields such as inertial confinement fusion. Here, we suggest a neural network surrogate model of energy and entropy and use thermodynamic relationships to derive other necessary thermodynamic EOS quantities. We incorporate phase information into the model by training a phase classifier and using phase-specific regression models, which improves the modal prediction accuracy. Our model predicts energy values to 1% relative error and entropy to 3.5% relative error in a log-transformed space. Although sound speed predictions require further improvement, the derived pressure values are accurate within 10% relative error. Our results suggest that neural network models can effectively model EOS for inertial confinement fusion simulation applications.