Reproducible Benchmarking for
High-Performance Computing

Applications
DRambIe

RIKEN Tutorial
January 22,2026

Olga Pearce (LLNL), Doug Jacobsen (Google), Gregory Becker (LLNL),
Stephanie Brink (LLNL)

Lawrence Livermore 7]
kg National Laboratory LLNL-PRES-2010662 M‘%‘%

Tutorial Presenters

Olga Pearce Doug Jacobsen Greg Becker
LLNL Google LLNL

Lawrence Livermore 5
National Laboratory LLNL-PRES-2010662

Tutorial Agenda (approximate)

Welcome and Introduction

Benchpark Overview and Basics

All
Olga

Hands on: Running an experiment, analyzing performance of a scaling study

Ramble Overview and Basics

Benchpark System and Experiment Specifications
Hands on: Writing an experiment in Benchpark

Q&A and Wrap-up

Lawrence Livermore
National Laboratory

LLNL-PRES-2010662

Doug
Olga

All

3 Ramble

10 min

75 min

25 min

60 min

10 min

e

Tutorial Materials

Find these slides and associated scripts here:

software.llnl.gov/benchpark/tutorial-101.html

We also have a channel on Spack slack.
You can join here:
slack.spack.io
Join the #benchpark-support channel!

You can continue to ask questions here after the tutorial has ended.

Lawrence Livermore A
National Laboratory LLNL-PRES-2010662

http://slack.spack.io/

Tutorial Instances: http://bit.ly/4kGQDlc

* We have an AWS instance for the hands-on component of
this tutorial

* The instance provides:

* Pre-installed Benchpark and required dependencies
* Job scheduler

When logging in to the instance:

* Please use a unique username to avoid resource allocation conflicts

* Firstinitial followed by last name (e.g., John Doe would be jdoe)

* PW: hpctutorial26

Lawrence Livermore
National Laboratory LLNL-PRES-2010662

http://bit.ly/4kGQDlc

e

We benchmark HPC systems for many reasons

* Procurements
e Communicate datacenter workload to vendors
* Co-design systems, monitor progress

 System acceptance (contractual specification)

* Validation of software stack, tools
« Compilers

*?
HewleﬂPackard AMDQ\ MM Ell HM‘M“

* Debuggers furicfie

J ADUAN Egmmiwm‘m

e Correctness tools
e Performance tools

* Research
* Programming models
e Computational methods
* Performance across architectures

Lawrence Livermore 6
National Laboratory LLNL-PRES-2010662

)

Be NC h ma rk| N g |S C h a lle N g| N g Source: https://www.top500.0rg/statistics /perfdevel/

Projected Performance Development

10 EFlop/s ‘.“'::
. 1 EFlop/s "“' “MM
o What are we trying to 7
characterize? Fo
. 1 PFlop/s & A.u .""-‘
o Are we capturing the best the /-" | P
§ oy "
system can do? L
o |Is something else impacting N ZE
performance? v A
o Did we build and run the code orows 8
in the Optimal and e MF]ODIS1990 1995 2000 2005 2010 2015 2020 2025
reproducible way?

~&— Sum o #1 —e— #500

Lawrence Livermore -
National Laboratory LLNL-PRES-2010662

e

HPC benchmarks run on diverse HPC hardware

Benchmark source code

Lawrence Berkeley Nat'l Lab Fugaku Abstraction (OpenMP, RAJA, Kokkos)
ANDSEm NI RIKEN Fujitsu ARIM a64fx . Hardware-specific (CUDA, ROCm)
- Optimized code for the CPU and GPU
. Must make effective use of the hardware
EL CAPITAN - Can make 10-100x performance
Lawrence Livermore Nat’l Lab Lawrence Livermore Nat’l Lab difference
IBM Power9 + NVIDIA AMD Zen + Radeon . Rely heavily on system packages

Need to use optimized communication
and MPI libraries that come with

En.fi.x_l-rn:n AUFOrc
R ——— G (D e—

Oak Ridge National Lab Argonne National Lab machines
AMD Zen + Radeon Intel Xeon + Xe

Lawrence Livermore 8
National Laboratory LLNL-PRES-2010662

e

Writing benchmark source code is only the beginning

State-of-the-practice:
HPC system benchmarking is manual!

* Building on each system is different, porting the
builds to new systems is manual

* Running on each system is different, porting run
scripts to new systems is manual

e Systems keep changing, requiring updates to how we
build and run benchmarks

* Triggering builds and runs is manual: benchmark
results don’t stay up to date

* Performance analysis of results is manual

Lawrence Livermore 9
National Laboratory LLNL-PRES-2010662

)

HPC benchmarks
are HPC software

* Portability

* Maintenance
* Testing/ClI

* Verification

* Reproducibility

p
e C/C++, MPI

4

e Scale
e Analyze
L® Reproduce

e Containers?
e EasyBuild,
Spack

~

e Bash?

e Schedulers

e Reframe,
Ramble)

All components must work for your system, focus on explainable performance

Lawrence Livermore
National Laboratory LLNL-PRES-2010662

10

Benchpark enables complete specification /—f
of HPC benchmarks

Infrastructure-as-code benchmark specification codifies:

® Benchmark build and run instructions
e HPC Systems
e HPC Experiments github.com/llnl/benchpark

Leverage advances in HPC automation

Source code @/w 3 Ramble
Build specification
@ Spack

o
o
e Run specification
o CI

Every part of the specification is codified: used to communicate, automate

Lawrence Livermore =
National Laboratory LLNL-PRES-2010662

e

Benchpark enables reproducible specifications of
benchmarks

Specify | Run \ Reproduce Replicate Maintain Record

How to build e Runan \ * Re-runan e Runan \ * Cl: Run * Perf.measu-
and run experiment ' experiment experiment experiment rements +

benchmarks ona ona on a new on HPC full spec of
on a system system system system systems experiment

Full specification enables reproducibility, replicability, and automation

Lawrence Livermore
National Laboratory LLNL-PRES-2010662 12

e

HPC System definition for Performance

Resources (CPU cores, GPUs)

Scheduler (Slurm, flux)

Process mapping (cores, sockets, GPUs,

NICs)

* On-node parallelism il Niss b
(CUDA, ROCM, OpenMP) “ !

* Software stack ggg;}gg';ackard AMDD 3, EI-I H

t I\DVAN EISIMULMION &CUI leuG

 Compilers (which is best?)
* MPlimplementations (best?)
* Math libraries

Lawrence Livermore 13
National Laboratory LLNL-PRES-2010662

e

HPC System in Benchpark: Specify Once

class LInlElcapitan(System):

v systems variant(
"rocm",
> all_hardware_descriptions default="5.5.1",
values=("5.4.3","5.5.1", 76.2.4"),
> aws-pcluster description="ROCm version",
)
> generic-x86 variant(
"compiler"”,
> lanl-venado default="cce",
values=("gcc", "cce", "rocmcc"),
> lInl-cluster description="Which compiler to use",
)
> linl-elcapitan def initialize(self):
super().initialize()
> linl-sierra self.scheduler = "flux”
self.sys_cores_per_node ="128"
> riken-fugaku self.sys_gpus_per_node ="4"

benchpark system init --dest=elcap linl-elcapitan rocm=6.4.2 compiler=cce

Lawrence Livermore o
National Laboratory LLNL-PRES-2010662

/-H Banchpark # | System Specifications View pape source
soowc N System Specifications

BASICS The table below provides a directory of Information for systems that have been specified In Benchpark. The column headers in the table below are avallable
Far the Impatient for use as the systen parameterin benchpark setup
[-:ir':-llir'l,g, Started
wearchs

Benchpark Comrmands
Benchpark Workflow
Frequently Asked Cuestions mame “ integratorvendor integrator.name processorvendor processor.name processor. S8 Processor.u
CATAI BCLE Abcs-rend-A100-Infiniband Abas HH2000 A EPYC-Ten kG 64 TENZ
System Specifications AWSE PCluster-zen-EFA, AAS ParallalCluster AMD EFYC-Zen xBs B4 Zen
Benchmarks and Experiments DELL-cascadelake-InfiniBand DELL Irbef XeondZ4ER xBd 64 cascadelake

DELL-sapphirerapids-0OmniPath DELLEMC PowserEdge rited AeonPlatinumBaEn Wil _fd sapphirerap
TUTORIALS

Fujitsu-AbAFx-Tofuld Fujitsu Fa 1000 Fujitsu AGAFXE ArmvE 2-A-5VE aarchéd
Helle Benchpark Example

. HPECray-haswell-P100-Infiniband HPECray Intel Heon-ES5-2465003 #BaG o4 haswell
Running an an LLML System
Comparing two Experiments Within HPECray-neoverse-H100-5lingshot HPECray EX254n MWVICA Grace Armv? NEOVErSE
- hipark
Senchpar HPECray-zen2-Slingshot HPECray AMD EPYC-7742 wlid_64 zend
LISING BEMCHPARK HPECray-pen3-MI250X-Slingshat HPECray EX235a ARAD EPYC-Zend wBa 6 zend
Setting Up a Benchpark Workspace HPECray-zend-MIZ00A-Slingshot HPECray EX2553 AMD EPYC-Fend ®B& b4 zend
Building an Experiment in Benchpark IBM-power?-V100-Infiniband IEM ACY22 1B POWERS ppcédle powerd
R R R Penguin-icelake-OmniPath PenguintCamputing RelianChuster rited HeonPlatinum@ 242480 KEG_64 icelake
Experiment pass/fail and FOMs
e i Swpermicro-icelake-OmniPath SupsErmicro Intel HeonPlatinum8 27 5L whh G4 icelake

Canned Analyses for Staling Studies

xib b xB&_ b4

Benchpark Modifwers

i, &

H PC Systems all_naraware_descriptions
In Benchpark: July 2025

* 4in Europe csetumi

e 6in US labs cscs-daint

aws-pcluster

common

cscs-eiger

* 1inJapan
generic-x86

* 1 at a university

jsc-juwels

e 2 cloud systems

lanl-venado
[Inl-cluster
lInl-elcapitan

lInl-sierra

Lawrence Livermore riken-fugaku

National Laboratory =~ LLNL-PRES-2010662 16

e

HPC Experiment definition for Performance

* On-node parallelism
(CUDA, ROCM, OpenMP)

e Problem sizes

* Overall problem size, or
* Pernode or per GPU

* Scaling studies
* How to scale
* How to decompose

* Resources (cores, GPUs)

N, AWrep
Mol LLix:m::,

ME \ERGY
\ ABZ: NISH

]

Hewlett Packard AMDZ\
Enterprijie

o R Bﬁ@m@um
s Ell AP

. ADUAN mnuunomommﬁ

Goal: Specify reproducible sets of experiments that map onto specific systems

Lawrence Livermore
National Laboratory LLNL-PRES-2010662

17

e

HPC Experiment in Benchpark: Specify Once

class Amg2023{Experiment, OpenMPExperiment, CudaExperiment, ROCmExperiment,
Scaling(ScalingMode.Strong, ScalingMode.Weak, ScalingMode.Throughput,
Caliper):
variant|(
"workload",
default="probleml",
values=("probleml", "problem2"),
description="probleml or problem2",

)

def compute_applications_section(self):
self.register_scaling_config({
ScalingMode.Strong: {
“n_resources”: lambda var, itr, dim, scaling_factor: var.vall(dim) % scale,
N “problem_size": lambda var, itr, dim, scaling_factor: var.val(dim) // scale,
ScalingMode.Weak: {
“n_resources”: lambda var, itr, dim, scaling_factor: var.val(dim) #* scale,
“problem_size": lambda var, itr, dim, scaling_factor: var.val(dim),
H
ScalingMode. Throughput: {
“n_resources”: lambda var, itr, dim, scaling_factor: var.val(dim),

benchpark experiment init --dest=amg linl-elcapitan amg2023 +rocm +strong workload=problem2 caliper=mpi,time

Lawrence Livermore 18
National Laboratory LLNL-PRES-2010662

/~ Benchpark
[searcndocs

GETTING STARTED
1. Getting Started with Benchpark

2. Searching Benchpark

3. Editing the experiment (optional)

4. Setting up Benchpark
5. Building the experiment
6. Running an Experiment in Benchpark

7. Analyzing Experiments in Benchpark

FAQ
What to rerun after edits
Spack/Ramble versions in Benchpark

Benchmark not yet in Spack/Ramble

CATALOGUE

System Specifications
Benchmarks and Experiments

Benchpark Help Menu

CONTRIBUTING

/ Benchmarks and Experiments

Benchmarks and Experiments

application-domain

benchmark-scale

communication
communication-performance-characteristics
compute-performance-characteristics
math-libraries
memory-access-characteristics
mesh-representation

method-type

programming-language

programming-model

Q@ Previous

© Copyright 2023, LLNS LLC.

hpl

[‘'synthetic’]

[‘large-scale’]

['mpi’]

[‘network-collectives’, ‘network-point-to-point’]
(l

['blas’]

(l

I

[‘dense-linear-algebra’, ‘solver’]
[c]

(l

View page source

hpcg qws
['synthetic’] [‘gec
['large-scale] ['we
['mpi’] ['mp
['network-point-to-point’] I
I I
I I
I I
0 f
[‘conjugate-gradient’, ‘solver’, ‘'sparse-linear-algebra’] [l
['c++] [‘c+
[‘'openmp’] {1
Next ©

e

Experiments in Benchpark: July 2025

v experiments
> ad > hpcg > osu-micro-benchmarks > saxpy
> amg2023 5 hpl > phloem > smb
> babelstream > or > quicksilver > stream
- > WS
> genesis , kripke q
> gpcne‘[> raja_perf = HPL, HPCG
> laghos .
N remhos - 4 microbenchmarks
> gromacs
> lammps - 3 MPlbenchmarks
> BB salmon-tdaft . 8US, 1 Europe, 2 Japan
> md-test

Lawrence Livermore 0
National Laboratory LLNL-PRES-2010662

“benchpark analyze for generating

pre-defined analysis charts

kripke+mpi@develop on jupyter-lam (strong scaling)
131,072 Total Problem Size

200 -

Avg time/rank (exc)
b — -t —
w ~ o N w ~J
o w o wv o w

N
w

o

N A O\ N
o o % o

Node(s), MPI Ranks

Region (Calls/rank (max))

SweepSubdomain (1280)
SweepSolver (10)
Source (10)
Scattering (10)
Population (10)
LTimes (10)
LPlusTimes (10)
solve (11)

Solve (1)
Generate (1)
main (0)

See https://software.llnl.gov/benchpark/benchpark-analyze.html

Lawrence Livermore

National Laboratory LLNL-PRES-2010662

main

[

R L L

Generate
= MPI_Allreduce
}= MPI_Comm_split
L. MPI_Scan
MPI_Allreduce
MPI_Bcast
MPI_Comm_dup
MPI_Comm_free
MPI_Comm_split
MPI_Finalize
MPI_Finalized
MPI_Gather
MPI_Get_library_version
MPI_Initialized
Solve
L. solve

|- LPlusTimes

= LTimes

|~ Population

| L MPI_Allreduce

- Scattering

- Source

- SweepSolver
MPI_Irecv
MPI_Isend
MPI_Testany
MPI_Waitall
SweepSubdomain

B L

21

https://software.llnl.gov/benchpark/benchpark-analyze.html
https://software.llnl.gov/benchpark/benchpark-analyze.html
https://software.llnl.gov/benchpark/benchpark-analyze.html

e

Contributions from 11 organizations (60% non-LLNL)

= O LLML / benchpark Q Type[/]to search 8 -
¢» Code (=) Issues B0 % Pullrequests 31 L) Discussions () Actions [Projects 3 @ Security 2 |+ Insights £ Settings

Pulse Contributors Period: Last 24 months - Contributions: Commits -

. Contributions per week to develop, excluding merge commits
Contributors

Community
Commits over time

Contributors 29 Weekly from Jun 17, 2023 to Jun 14, 2025

O -DO®

- 5
0 | I ||- I l.l - I 1] -IIII"I-I"---I I-IIIII-Il I I |IIIII I I II 1] I I i,
e u Jul"23 Oct 23 Jan '24 Apr *24 Jul ‘24 Oct '24 Jan "25 Apr ‘25

: RERAN J\.JI[\-.. N’qfiﬁ-:f\/“'\/\/_f/_h.-nwf\ AN AV N /\/;_/'\-/_/\/\/n

SUCIINGUIIUDT

+ 15 contributors

letrics

Lawrence Livermore -
National Laboratory LLNL-PRES-2010662

Mightly [benchpark-develop] 0 twids

iy

16

g8

=y

i1id1

.].\. Benchpark

Update

Build Hame Revision

{\ danekripke calipersmpl scaling=weak scaling-iterations=2 compilersoneapl) T4bbi4
1\ dane/kripke caliper=mpi scaling=strong scaling-ferations=2 compiler=oneapi = TabbO4
M daneflaghos caliper=mpd scaling=strong scaling-iterations=2 3 Tdbbld
0 dana/stream 5 T4bb04
y dana/smb 5 Tabbld
0\ danefremhos 3 Tdbb0d
{y dane/phioem 3 T4bb04
y danefosu-micro-benchmarks 5 Tabbld
{\ danafaghos =) 74bb04
{\ dane/kripke 3 T4bbi4

€ PREV LATEST

Dashboard

Mot Run

L= = = R = I = = R = = I = =]

Calendar

Project Settings

[viaw tirmealing)

Start Time %
4 hours ago
4 hours ago
4 hours ago
4 hOUrs B0
5 hours ago
3 hours ago
5 hours ago
5 hours ago
5 hours ago
5 hours ago

T

Tuolumne HPECray-zen4-MI300A-Slingshot [benchpark system init --dest=tuolumne-system linl-elcapitan cluster=tuolumne] 30 buiids

Build Name

tuolumne2150
tuolumne2149
tuolumne2149
tuolumne2149
tuolumne2149
tuolumne2150
tuolumne2149
tuolumne1001
tuolumne2149
tuolumne2149

{\ tuolumne/kripke +rocm scaling=strong scaling-iterations=2 gpumode=CPX & 3
A tuolumne/raja-perf +rocm

A tuolumne/kripke +rocm scaling=strong scaling-iterations=2 gpumode=TPX)

{ tuolumne/amg2023 +rocm 3

{\ tuolumne/laghos +rocm scaling=strong scaling-iterations=2 gpumode=TPX [

A tuolumne/iaghos +rocm scaling=strong scaling-iterations=2 gpumode=CPX 3
{\ tuolumne/laghos +rocm ()

A tuolumne/amg2023 +rocm scaling=strong scaling-iterations=2 gpumode=TPX)
{\ tuolumne/kripke +rocm scaling=strong scaling-iterations=2 gpumode=CPX [

A tuolumne/kripke +rocm 3

First Pravious - 2 3 Next Last

Update

Revision

9edf8b
elaics
elalcs
elaics
elalcs
elalcs
elaich
elaics
elalch
elalcs

Not Run

Q0 O 00 Q O QO O 0

OOOOOOOOOH

Test

Fail ¥

Start Time Vv
10 hours ago
12 minutes ago
19 minutes ago
20 minutes ago
26 minutes ago
27 minutes ago
28 minutes ago
38 minutes ago
39 minutes ago
40 minutes ago

Public CDash
dashboard for
Cl tests

[view timeline]

23

e

Benchpark codifies benchmarking steps

Benchpark does not replace benchmark
source, build system, or Spack package

Benchpark manages benchmark
experiments and how they map onto
systems with specified (or default)

« Compilers
e MPI/comm libraries
« Math libraries

Start running benchmark experiments on
your system with just a few commands

Lawrence Livermore
National Laboratory LLNL-PRES-2010662

24

e

Who does Benchpark target

People who want to use or distribute benchmarks for HPC!

1. End Users of HPC Benchmarks

* Install, run, analyze performance of HPC benchmarks

2. Benchmark Developers

* People who want to share their benchmarks

3. Procurement teams at HPC Centers

 Curate workload representation, evaluate and monitor system progress

4. HPC Vendors

* Understand the curated workload of HPC centers, propose systems

Lawrence Livermore 25
National Laboratory LLNL-PRES-2010662

Catalogued library of working benchmarks

* Architectural
configuration is best for my benchmark? Researc

Enables exploration of large configuration , Colla-
* Software stack

* Temporal

On my system, is OpenMPIl good enough? h
What purpose will Benchpark help you

space / borate
What architecture and system
address?

Building a community to contribute/benefit

Lawrence Livermore o6
National Laboratory LLNL-PRES-2010662

e

Benchpark: Open collaborative repository for
reproducible specifications of HPC benchmarks

Infrastructure-as-code benchmark specification * HPC Systems
enables reproducibility, replicability, and automation ° HPC Experiments

Specify '\ Run Reproduce '\ Replicate Maintain Record

. Huw to hu i Id - Hu" an ¢ Re-run an . Ru" an . CI: Ru" . Perf_measu-
and run { experiment / experiment / experiment / experiment / rements +
benchmarks / ona / ona f/ onanew J onHPC { full spec of

on a system system system system systems experiment
* Tagging, keywords for publications * Cl pipelines on PRs from GitHub at data centers across
* Performance metrics, metrics of usefulness the world and in the cloud
 Dashboards: Archive specs+results *Olga Pearce et al, Continuous Benchmarking, HPCTests SC|23

*Qlga Pearce et al, Repeat, Replicate, Reproduce, ACM REP 2025

Full specification enables reproducibility, replicability, and automation

Lawrence Livermore
National Laboratory LLNL-PRES-2010662 27

e

Benchpark roadmap and community engagement

Future directions:

e Suite curation: Reproducible specification of an entire suite

* Tagging: Keywords for publications, finding benchmarks

 Metrics: Performance, usefulness

 Dashboards: Archive+share specs+results, Slices in configuration space
* Cl pipelines at data centers across the world and in the cloud

Community Engagement:

* Co-design/vendors on board, but incentive for app teams? (carrot or stick?)
* Who owns which parts of the specification and approves changes?

 Who finances R&D and maintenance?

* ROl forthe people working on it? - think about post docs, researchers, etc.

Collaboration, reproducibility, fully-specified public results

Lawrence Livermore o8
National Laboratory LLNL-PRES-2010662

e

Hands On Session 1
Running an existing benchmark on an existing system

Follow script at http://software.llnl.gov/benchpark/tutorial-101.html

Tutorial Instances: http://bit.ly/4kGQDlc

* We have an AWS instance for the hands-on component of
this tutorial

* The instance provides:
* Pre-installed Benchpark and required dependencies
* Job scheduler

When logging in to the instance:

* Please use a unigue username to avoid resource allocation conflicts
* Firstinitial followed by last name (e.g., John Doe would be jdoe)

* PW: hpctutorial25 29

http://software.llnl.gov/benchpark/tutorial-101.html
http://software.llnl.gov/benchpark/tutorial-101.html
http://software.llnl.gov/benchpark/tutorial-101.html

e

Tutorial Materials

Find these slides and associated scripts here:

software.llnl.gov/benchpark/tutorial-101.html

We also have a channelroom on Spack slack.
You can join here:

slack.spack.io

Join the #benchpark-support channel!

You can continue to ask questions here after the tutorial has ended.

Lawrence Livermore 30
National Laboratory LLNL-PRES-2010662

http://slack.spack.io/

What is Ramble?

Lawrence Livermore 3 131
National Laboratory =~ LLNL-PRES-2010662

What is Ramble?

Ramble is an open-source experimentation framework written in python.

Ramble’s primary goals are to:
o Accelerate productivity
o Improve experiment portability

o Encoding domain knowledge

Ramble is particularly good at generating parameterized “experiments”, but can be
used for more than performance focused experiments.

Lawrence Livermore 39
National Laboratory LLNL-PRES-2010662

https://github.com/GoogleCloudPlatform/ramble

What is Ramble?

Rambleis:

e Written in python
e Multi-
e Heavily based on Spack (Written on top of Spack’s infrastructure)

e An experimentation framework (Related to running experiments like Spack is to building

platform

software)

e Open Source: https://github.com/GoogleCloudPlatform/ramble

Ramble provides:

e Aflexible templating engine
e A domain specific language for describing an application and its workloads
e Standardized definitions of how workloads are configured and executed

Lawrence Livermore
National Laboratory

LLNL-PRES-2010662

33

https://github.com/GoogleCloudPlatform/ramble

Ramble Architecture === 0 e

] ' Ramble generates experiments based on
Software Stack Configuration: the configuration

o Automatically or manuallyinstalled binaries | L
® Ramble can create experiments across
software (e.g. cuda) versions \ 4

App Definitions: \ ﬂrameterized Experiments: \

® Managed by Ramble
max-text
nccl-tests
gromacs
hpcg
hpl
intel-mpi-benchmarks
lammps

lulesh > Ramble

openfoam Software
py -nemo

rEva Installations
Experiment

Input Files

»
»

Directories

Experiment Config: \\ workspace /
e Userprovides YAML file

e High level experiment description
® Primaryentrypointforusers [T e
e Inside workspace Ramble analyzes the experiments and extracts figures of
merit (e.g. Nanosec per Day) from them

. /

Law_rrence Livermore 34
National Laboratory LLNL-PRES-2010662

Ramble Components

Object Definitions

Portable definitions written in python, that
represent:

Applications:
® Executables (commandstorun)
® Inputfiles (things to download)
@ Software (things to install)
® Workloads (executables + input files)
@ Figures of merit (things to analyze)

Package Managers (spack, eessi)
Workflow Managers (slurm, batch, gke)
Modifiers (lscpu, intel-aps, etc..)

Ramble supports public and private object
definitions through configurable repos.

Does notinclude experiment or system
details.

Self contained directory describing a set of
parameterized experiments to execute.

Contains:
® YAML File, describes:
O Experiments
O Software stack
O Execution workflow
® Template files

After setup, contains:
® Inputfiles
® Experiment execution directories
@ Software environments

Each experiment has their own execution
directory.

These contain:
® Rendered versions of the template
files (which canthen be executed)

After executing the might contain:
® Linksto the inputfiles
@ Outputfiles from the experiment to be
analyzed

Ll Lawrence Livermore

National Laboratory LLNL-PRES-2010662

35

__
Ramble Components S A ...

. When Ramble manages the software stack, it can parameterize portions of the
. stack to generate various studies. This includes:
' . Changing compilers

o Changing dependencies (e.g. MPI impl., CUDA vs. ROCM)

. Package versions (e.g. CUDA versions)

. Optimization Targets (e.g. Icelake vs. Zen 3)

Ramble supports using a predefined software stack, or

. . ° etc...
generating a new software stack to produce experiments.
Supported software stack workflows in Ramble include:
® Pre-installed software (Considered “Existing”) ™)
@) e.g. ISV applications installed in a static OO :
location > Allows very flexible descriptions of the software environment
@) Software installed manually through another
mechanism (yum, apt, pip, etc..) D
® Driving the creation of a software stack: N
O Usinga3Ppackage manager (Currently | |
supports , pip, , : _ .y
PP . Spack is used to distribute
) z
O Can param?terlze various aspects of the stack > Various organizations provide public spack caches, which can make it faster to deploy a
o Canuse abinary cache to accelerate . complex software stack. :
deployments, and provide binary objects to
customers

Law_rrence Livermore 36
National Laboratory LLNL-PRES-2010662

https://github.com/spack/spack
https://pypi.org/project/pip/
https://www.eessi.io/
https://modules.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/
https://modules.readthedocs.io/en/latest/
https://e4s-project.github.io/

How does Ramble work?

Lawrence Livermore 37
National Laboratory LLNL-PRES-2010662 37

What is Ramble’s Workflow?

Ramble Controlled Step

User Input Step

Output Step
Create Ramble Analyze Workspace
tup Work :
Workspace Setup Workspace Experiments
Workflow Steps \/\/
Configure Workspace:
Tegm late Filez Execute Workspace
: rambple yaml Experiments
Ramble ramble workspace create ... ramble workspace edit ... ramble workspace setup ... ramble on ramble workspace analyze ...
Command

Lawrence Livermore
National Laboratory

This is the only command that requires user
input.
Might need to be run multiple times.

LLNL-PRES-2010662

38

Configure Workspace:
Template Files Setup Workspace
ramble.yaml

Ramble Workspace:

Create Ramble
Workspace

Execute Workspace Analyze Workspace
Experiments Experiments

A workspace is a self contained directory, that contains:
e software environments
e inputfiles
e experiments

Workspaces are independent, and should represent a set of

independent experiments you want to execute.
Workspace: my_experiments

configs:
—— ramble.yaml
execute_experiment.tpl

inputs software experiments

Law_rrence Livermore 39
National Laboratory LLNL-PRES-2010662

Configure Workspace:
Template Files
ramble.yaml

Create Ramble
Workspace

Execute Workspace

Setup Workspace Spetimens

Analyze Workspace
Experiments

Workspace Config:

Ramble’s workspace config YAML can generate many experiments with only a little syntax.

applications:
wrfv3: <
n_repeats: 5
variables:
rocesses_per_node: [30, 56 .
Eartition:p['CZ', :Céd'] ! } Define two vectors, of length 2.
n_ranks: ‘{processes_per_node}*{n_nodes}’
workloads:
CONUS_2pSkm: < Workload Name (from Application Definition)
experiments:
scaling_study_{partition}_{nodes}nodes:
variables:
n_nodes: [1, 2, 4, 8, 16, 32]} Define one vector, of length 6

matr s | Define one matrix, using the n_nodes vector. Shape is 1x6.

Application Definition Name

Vectors that are not used by a matrix are zipped together (must be the same length)
Zip of vectors are crossed with any matrices
Result is: 1x6 (matrix) x 2 (vectors) x 5 (repeats) = 60, where each index is

Lav a 4-element tuple: (processes_per_node, n_ranks, n_nodes,)
Nat

40

Create Ramble Configure Worksr?ace. Execute Workspace Analyze Workspace
- Template Files Setup Workspace . .
Workspace Experiments Experiments
- ramble.yaml

Workspace Config:

In addition to the YAML config, Ramble has a template engine to render scripts:

#!/bin/bash #!/bin/bash

{command}) source <path/to/spack>
spack env activate <path/to/env>

Cp <inputs>/* <experiment_dir>/.
mpirun -n <n_ranks> wrf.exe

Lawrence Livermore 21

National Laboratory LLNL-PRES-2010662

Configure Workspace:
- Template Files
- ramble.yaml

Workspace Setup:

Create Ramble
Workspace

Execute Workspace
Experiments

Analyze Workspace

Setup Workspace Experiments

Workspace: wrf-demo

Execute input phases:
configs: - Determine which inputs are necessary

—— ramble.yaml inputs
execute_experiment.tpl

- Download them
- Define variables for referringto these inputs

Execute software phases (Only used on SpackApplications currently):
- Install necessary compilers
- Create spack environments for the experiments
- Using spack, install the required software
- Define variables for referring to the spack environments

software

Execute experiment creation phases:
experiments - Create experiment execution directories
- Define variables specific to the experiment
- Render any *.tpl files into the execution directories
- Append the experiment to $workspace/all_experiments

Lawrence Livermore 42
National Laboratory LLNL-PRES-2010662

Configure Workspace:
Template Files
ramble.yaml

Create Ramble
Workspace

Setup Workspace

Analyze Workspace
Experiments

Execute Workspace
Experiments

Execute Experiments:

Workspace: wrf-demo

configs: experiments/
L—— ramble.yaml —— wrfv3
execute_experiment.tpl —— CONUS_2p5km

—— scaling_study_c2_16nodes
| —— execute_experiment
—— scaling_study_c2_1nodes
\ —— execute_experiment
—— scaling_study_c2_2nodes

software/ | —— execute_experiment
—— wrfv3.CONUS_2p5km —— scaling_study_c2_32nodes
L—— spack.yaml | —— execute_experiment

—— scaling_study_c2_4nodes

\ L—— execute_experiment

—— scaling_study_c2_8nodes

\ —— execute_experiment
—— scaling_study_c2d_16nodes

s | —— execute_experiment
’ —— scaling_study_c2d_1nodes

T \ L—— execute_experiment
—— scaling_study_c2d_2nodes

\ —— execute_experiment
—— scaling_study_c2d_32nodes

\ —— execute_experiment
—— scaling_study_c2d_4nodes

all_experiments | —— execute_experiment
L—— scaling_study_c2d_8nodes

L—— execute_experiment

Law_rrence Livermore
National Laboratory LLNL-PRES-2010662

After setting up a workspace, the experiments can be executed using:
® $workspace/all_experiments
® ramble on (with an activated workspace)

Depending on the ramble.yaml and execute_experiment.tpl this:

® Executes experiments sequentially
® Submits experiments to a workload manager

43

Create Ramble Configure WorksPace: Execute Workspace Analyze Workspace
- Template Files Setup Workspace . .
Experiments Experiments

Workspace ; ramble.yaml

Analyze Workspace:

After experiments are executed, Ramble can extract their figures of merit.

This is done through:
ramble workspace analyze

Ramble will process the output files described in an experiment’s
application.py, and extract success criteria and figures of merit.

These are then written to a file (e.g. results.txt) in the provided format (can be
text, yaml, orjson).

Lawrence Livermore a4

National Laboratory LLNL-PRES-2010662

What other things can you do with Ramble?

Lawrence Livermore 4545
National Laboratory =~ LLNL-PRES-2010662

Parameterizing Software Definitions

A common workflow in optimizing software is exploring how modifications to a
software stack impact performance. Ramble’s support of these workflows can be seen

below:
ramble:
applications:
wrfv3:
workloads:
CONUS_2p5km:
experiments:
“{mpi}_{partition}_{n_nodes}nodes’:
variables:
n_nodes: [1, 2, 4, 8, 16, 32]
mpi: [“impi’, ‘ompi’]
env_name: ‘wrf-{mpi}’
matrix:
- n_nodes
- mpi

Lawrence Livermore
National Laboratory LLNL-PRES-2010662

[ramble:]

software:
packages:
wrf:
pkg_spec:
impi:
pkg_spec:
ompi:
pkg_spec:
environments:
wrf-{mpi}:
packages:
- wrf
- "{mpi}’

wrf@3.9.1.1
intel-oneapi-mpi@2021.9

openmpi@4.1.4

46

Parameterizing Software Definitions

A common workflow in optimizing software is exploring how modifications to a
software stack impact performance. Ramble’s support of these workflows can be seen

below:
ramble:
applications: [ramble:]
wrfv3: -
workloads: software:
CONUS_2p5km: packages:
experiments: wrf:
“{mpi}_{partition}_{n_nodes}nodes’: pkg_spec: wrf@3.9.1.1
variables: :
n_nodes: [1, 2, 4, 8, 16, 32] pkg_spec: intel-oneapi-mpi®2021.9
mpi: [‘impi’, ‘ompi’] : ,
env_name: 'wrf—{mpi}"\\\\\\\\\\ pkg_spec: openmpi@4.1.4
matrix: environments:
- n_nodes Defines spack environments —wrf-{mpi}:
- mpi packages:
- wrf
Variable e imed)
. expansion
Lawrence Livermore
National Laboratory ~ LLNL-PRES-2010662 47

Performance Analysis Tools

Modifiers all composable definitions to edit the experiment behavior

ramble:
modifiers: [ramble:]
- name: intel-aps -
applications: software:
wrfv3: packages:
workloads: wrf:
CONUS_2p5km: . pkg_spec: wrf@3.9.1.1
experiments: impl:
“{mpi}_{partition}_{n_nodes}nodes’ : pkg_spec: intel-oneapi-mpi@2021.9
variables: ompi:
n_nodes: [1, 2, 4, 8, 16, 32] ‘pkg_spec: openmpi@4.1.4
mpi: [“impi’, ‘ompi’] environments:
env_name: ‘wrf-{mpi}’ wrf-{mpi}:
matrix: packages:
- n_nodes - wrf
- mpi - "{mpi}’
Lawrence Livermore 48

National Laboratory LLNL-PRES-2010662

Performance Analysis Tools

Modifiers all composable definitions to edit the experiment behavior

ramble:
modifiers: [ramble :]
- name: intel-aps < -
applications: software:
wrfv3: packages:
workloads: wrf:
CONUS_2p5km: . pkg_spec: wrf@3.9.1.1
experiments: imp1l:
“{mpi}_{partition}_{n_nodes}nodes’ : pkg_spec: intel-oneapi-mpi@2021.9
variables: ompi:
n_nodes: [1, 2, 4, 8, 16, 32] ‘pkg_spec: openmpi@4.1.4
mpi: [“impi’, ‘ompi’] environments:
env_name: ‘wrf-{mpi}’ wrf-{mpi}:
matrix: packages:
- n_nodes - wrf
- mpi - ‘{mpi}’
Performance Analysis
Tool
Lawrence Livermore 49

National Laboratory LLNL-PRES-2010662

e

Three Rs in HPC Benchmarking

1. Repeat
2. Replicate

3. Reproduce

Lawrence Livermore 50
National Laboratory LLNL-PRES-2010662

e

Three Rs in HPC Benchmarking

1. Repeat:run on same system ¢ Verifying benchmark still builds
and runs

* Handing over benchmarking
tasks from one user to another

* Evaluating benchmark

Component | Repeat performance changes as
(1) System H/W v
) System SW 7 system ages
(3) Application v

* Running multiple trials of a
| benchmark for noise variability

National Laboratory LLNL-PRES-2010662 51

e

Three Rs in HPC Benchmarking

* Verifying benchmark still builds
and runs with update system

2. Replicate: run with a different
software

software stack
* Validating performance of
updated system software

Component Repeat Replicate e Evaluatin g performance
1) System H v v . .
8 Sﬁtgﬁsﬂw v . differences of different
(3) Application 4 v software substitutes (e.g., gcc

or icc compilers)

Lawrence Livermore 52
National Laboratory LLNL-PRES-2010662

ﬁ
Three Rs in HPC Benchmarking

* Verifying benchmark builds and
runs on diverse hardware

* Evaluating benchmark

3. Reproduce: run on a different ,
performance across different

Syste m
hardware
Component Repeat Replicate Reproduce 4 E Xp lorin gp otential benefits of
(1) System H/W Vv v X
@) System S/W 7 ~ X hardware upgrades
(3) Application v v x

Lawrence Livermore

National Laboratory LLNL-PRES-2010662 53

Benchpark Specification for Three Rs

Component Repeat Replicate = Reproduce
(1) System H/W v v X
(2) System S/W v ~ X
(3) Application v v ~

Lawrence Livermore
National Laboratory LLNL-PRES-2010662

Application
Build
(package.py)

Application
Run
(application.py)

system.py

experiment.py

Benchpark specification

54

- ———————
Component | Repeat Replicate Reproduce

Benchpark Specification () SystemHW | / X

(2) System S/W v X

for the Three Rs () Application /

AN
Q

Repeat as 1 sysa:~ userl}y benchpark system init --dest=sysa intel-cluster 1 sysa:~ userZ$ benchpark system init --dest=sysa intel-
cluster=sysa cluster cluster=sysa

a d|fferent 2 sysa:~ userl} benchpark experiment init --dest=gs 2 sysa:~ userZ$ benchpark experiment init --dest=gs
quicksilver +openmp +weak quicksilver +openmp +weak

user 3 sysa:~ userl$ benchpark setup ./qs ./sysa workspace/ 3 sysa:~ userZ$% benchpark setup ./qs ./sysa workspacel/

Repllcate 1 sysa:~ userl} benchpark system init --dest=sysal intel- 1 sysa:~ user2$ benchpark system init --dest=sysal intel-
W|th cluster cluster=sysa compiler=gccl cluster cluster=sysa compiler=gcc2

2 sysa:~ userl$ benchpark experiment init --dest=gs 2 sysa:~ userZ$ benchpark experiment init --dest=qgs
dlfferent quicksilver +openmp +weak guicksilver +openmp +weak

3 sysa:~ userl$ benchpark setup ./qs ./svysal workspace/ 3 sysa:~ userZ$ benchpark setup ./qs ./sysa? workspace2/

SW stack

ReprOduce 1 sysa:~ userl$ benchpark system init --dest=sysa intel-
on a cluster cluster=sysa
2 sysa:~ userl} benchpark experiment init --dest=gs-openmp

=

sysh:~ user2$ benchpark system init --dest=sysb ibm-cluster
2 sysbh:~ user2$ benchpark experiment init --dest=gs-cuda
quicksilver +cuda +weak

I gquicksilver +openmp +weak . _
d|fferent 3 sysa:~ userl$ benchpark setup ./qs-opensp ./sysa worksp/ 3 sysb:~ user2$ benchpark setup ./gs-cuda ./sysh work2/
system

Lawrence Livermore 55
National Laboratory LLNL-PRES-2010662

Component Repeat Replicate Reproduce

Repeat runs of Quicksilver 0 SystemBEW || v 7

Q| X| X

. . (2) System S/W v ~
on Ruby using same compiler &) Application || 7
’ self-installed compiler 1.0
¥ 280000 ° P
o . 0.8
= : E
n_ -
S 260000 ‘ . 0.6 %
= [
S o 0.4 £
= . e
— =
s 240000 0.2
o
L
0.0
4 8 12 16 20 24 28 32
N LI I’T'I M PI Ra n ks Ben‘chmark Quicl:csilver

Lawrence Livermore icahl:igt‘ Zve];k e ey B
National Laboratory LLNL-PRES-2010662 epetitions (Increase as appropriate for analysis) 3

o . . Component | Repeat Replicate | Reproduce
Replicate runs of Quicksilver D SyemBW | < ; X
. . . (2) System S/W v R X
on Ruby with different compilers & aptcion 7 -
’ self-installed compiler 1.0
£ 280000 ’ compurier
= . system-provided compiler |5 g
oc
— : o
o i
S 260000 : o 0.6 %
e ’
5 0 0.4 £
Z . o)
— =
s 240000 0.2
@]
L
-0.0
4 8 12 16 20 24 28 32
Num MPI Ranks
Compiler Version How Installed
gcc 12.1.1 system-provided
Lawrence Livermore gcc 12.1.0 self-installed

National Laboratory LLNL-PRES-2010662

Reproduce runs of Quicksilver
across different systems

[] . .
9 280000 . self-lnstalled. compiler .
= . system-provided compiler
o«
o s .
= 260000 o
£ 8
3 []
= .
—
s 240000
2 Ruby '
[]
4 8 12 16 20 24 28 32
Num MPI Ranks
w 420000 « self-installed compiler
Y
= system-provided compiler
o
o
< 4000007 ,
£]
=
< 380000 ' ' . \
= '
[®)]
e Dane
360000 - : . : : . . .
4 8 12 16 20 24 28 32

Lawrence Livermore
National Laboratory

Num MPI Ranks

LLNL-PRES-2010662

*Gap on Dane is statistically significant

Component | Repeat Replicate |Reproduce
(1) System H/W v Vv X
(2) System S/W v R X
(3) Application v v ~
1.0 " ‘ + self-installed compiler 1.0
s . .
0.8 5 116000 o system-provided compiler |5 g
o L e
Q a 114000 Q
0.6 N S . oexn
© o) ©
0.4 E £ 112000 ' 0.4 £
o = o
p=d .y H =2
0.2 = 110000 : 0.2
2 Sierra .
L0.0 108000 L0.0
4 8 12 16 20 24 28 32
Num MPI Ranks
1.0 System P-value Statistically Significant?
0.8 R'U.by 0.490 NU
T Sierra 0.349 No
00X Dane 0.00000105 Yes
04§
= System Name CPU Hardware Number of Cores
0.2 Ruby Intel Cascade Lake 56
Sierra IBM Power 9 44
0.0 Dane Intel Sapphire Rapids

112

58

B

Analysis of calltrees to understand performance
difference

0.000 main 0.000 main
L- 9.134 gs.mainloop L~ 9.135 gs.mainloop
— 0.019 MPI_Allreduce — 0.025 MPI_Allreduce
— 0.228 cycleFinalize — 0.226 cycleFinalize
— 0.003 MPI_Allreduce — 0.003 MPI_Allreduce
— 0.000 MPI_Wait — 0.000 MPI_Wait
— 0.558 cyclelnit — ©0.559 cyclelnit
— 0.011 MPI_Allreduce — 0.014 MPI_Allreduce
— 0.022 MPI_Barrier — 0.024 MPI_Barrier
— 0.022 cycleTracking — 0.022 cycleTracking
— 0.000 MPI_Cancel — 0.000 MPI_Cancel
— 0.001 MPI_Irecv — 0.001 MPI_Irecv
— 0.000 MPT Wait 2 200—MPIWait
— 230.542 cycleTracking_Kernel L 219.612 cycleTracking_Kernel
1158 \.yL‘ILCTIGL:\..LIIH_r‘IPI — 1.105_CV'C1'€TFa'CKIn'g:MPL
0.018 MPI_Irecv 0.019 MPI_Irecv
0.023 MPI_Isend 0.023 MPI_Isend Legend (Metric: Avg time/rank (exc)
0.108 MPI_Test 0.106 MPI_Test J 207.49 - 230.54
0.046 MPI_Wait 0.046 MPI_Wait J 161.38 - 207.49
0.001 cycleTracking_Test_Done 0.001 cycleTracking_Test_Done 115.27 - 161.38
L 20.566 MPI_Allreduce L 19.478 MPI_Allreduce B 69.16 - 115.27
— 0.000 cycleTracking_Test_Done — 0.000 cycleTracking_Test_Done B 23.05 - 69.16
L~ 0.000 MPI_Allreduce L 9.000 MPI_Allreduce g 0.00 - 23.05
Self-Installed Compiler System-Provided Compiler
Lawrence Livermore

A 59
National Laboratory LLNL-PRES-2010662

e

Takeaways

* Formalize how to repeat, replicate, and reproduce HPC
benchmarking experiments

* Showcase how Benchpark enables reproducibility through
specification of experiments and HPC systems

* Full record of the specification is preserved for introspection and
reproducibility

Lawrence Livermore
National Laboratory LLNL-PRES-2010662 60

e

Hands On Session 2
Adding an experiment for a benchmark

Follow script at http://software.llnl.gov/benchpark/add-an-experiment.html

Tutorial Instances: http://bit.ly/4kGQDlc

* We have an AWS instance for the hands-on component of
this tutorial

* The instance provides:

* Pre-installed Benchpark and required dependencies
* Job scheduler

When logging in to the instance:

* Please use a unigue username to avoid resource allocation conflicts
* Firstinitial followed by last name (e.g., John Doe would be jdoe)

* PW: hpctutorial25

61

http://software.llnl.gov/benchpark/add-an-experiment.html
http://software.llnl.gov/benchpark/add-an-experiment.html
http://software.llnl.gov/benchpark/add-an-experiment.html
http://software.llnl.gov/benchpark/add-an-experiment.html
http://software.llnl.gov/benchpark/add-an-experiment.html

Performance Tools: Caliper

e Caliperis an performance profiling library

* Integrates a performance profiler into your program

* Profiling is always available
* Simplifies performance profiling for application end users

« Common instrumentation interface
* Provides program context information for other tools

* Designed for HPC
* Supports MPI, OpenMP, CUDA, HIP, Kokkos, RAJA

* software.llnl.gov/Caliper

Lawrence Livermore
National Laboratory LLNL-PRES-2010662

62

Performance Tools: Thicket

e Thicket is a toolkit for Exploratory * Perform analysis on the thicket
Data Analysis of runs
* Enables exploratory data analysis of * Manipulate the set of data

multi-run data

Visualize the dataset

« Compose data from diff. sources and Perform analysis on the data

types * Model data
* Different scaling (e.g., strong, weak) * Leverage third-party tools in the
* Different application parameters Python ecosystem

* Different compilers and optimization levels

- Different hardware types (e.g., CPUs, GPUs) thicket.readthedocs.io
* Different performance tools

Lawrence Livermore 63
National Laboratory LLNL-PRES-2010662

e

Ramble modifiers in Benchpark encapsulate
reusable patterns to perform a specific configuration

of an experiment

* Affinity modifier for pinning threads

* Allocation modifier to request resources

* Hwloc modifier to capture hardware topology

* Caliper modifier to profile an application

benchpark experiment init --dest=amg amg2023 --system=elcap -rocm workload=problem2 +strong caliper=mpi.time

Lawrence Livermore 64
National Laboratory LLNL-PRES-2010662

e

QIII Join us after the tutorial!
R-CCS

Tutorial material: http://software.llnl.gov/benchpark/tutorial-101.html

Connect with us on Spack slack

#benchpark-support We wantyour
feedback!

Contribute systems, benchmarks, experiments,
and features on GitHub

;_:_fil- slack.spack.io % Star us on GitHub!
#benchpark-support github.com/lInl/benchpark

Lawrence Livermore 65
National Laboratory LLNL-PRES-2010662

http://software.llnl.gov/benchpark/tutorial-101.html
http://software.llnl.gov/benchpark/tutorial-101.html
http://software.llnl.gov/benchpark/tutorial-101.html
http://slack.spack.io

Lawrence Livermore
National Laboratory

LLNL-PRES-2010662

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States government. Neitherthe
United States government nor Lawrence Livermore National Security, LLC, norany of theiremployees makes any warranty,
expressed orimplied, or assumes any legal liability orresponsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents thatits use would notinfringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute orimply its endorsement, recommendation, or favoring by the United States
governmentor Lawrence Livermore National Security, LLC. Theviews and opinions of authors expressed herein do not
necessarily state or reflect those of the United States government or Lawrence Livermore National Security, LLC, and shall
not be used for advertising or product endorsement purposes.

66

	Slide 1: Reproducible Benchmarking for High-Performance Computing Applications
	Slide 2: Tutorial Presenters
	Slide 3: Tutorial Agenda (approximate)
	Slide 4: Tutorial Materials
	Slide 5: Tutorial Instances: http://bit.ly/4kGQDlc
	Slide 6: We benchmark HPC systems for many reasons
	Slide 7: Benchmarking is challenging
	Slide 8: HPC benchmarks run on diverse HPC hardware
	Slide 9: Writing benchmark source code is only the beginning
	Slide 10: HPC benchmarks are HPC software
	Slide 11: Benchpark enables complete specification of HPC benchmarks
	Slide 12: Benchpark enables reproducible specifications of benchmarks
	Slide 13: HPC System definition for Performance
	Slide 14: HPC System in Benchpark: Specify Once
	Slide 15
	Slide 16: HPC systems in Benchpark: July 2025
	Slide 17: HPC Experiment definition for Performance
	Slide 18: HPC Experiment in Benchpark: Specify Once
	Slide 19
	Slide 20: Experiments in Benchpark: July 2025
	Slide 21: `benchpark analyze` for generating pre-defined analysis charts
	Slide 22: Contributions from 11 organizations (60% non-LLNL)
	Slide 23
	Slide 24: Benchpark codifies benchmarking steps
	Slide 25: Who does Benchpark target
	Slide 26: Catalogued library of working benchmarks
	Slide 27: Benchpark: Open collaborative repository for reproducible specifications of HPC benchmarks
	Slide 28: Benchpark roadmap and community engagement
	Slide 29: Hands On Session 1 Running an existing benchmark on an existing system
	Slide 30: Tutorial Materials
	Slide 31: What is Ramble?
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: How does Ramble work?
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45: What other things can you do with Ramble?
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50: Three Rs in HPC Benchmarking
	Slide 51: Three Rs in HPC Benchmarking
	Slide 52: Three Rs in HPC Benchmarking
	Slide 53: Three Rs in HPC Benchmarking
	Slide 54: Benchpark Specification for Three Rs
	Slide 55: Benchpark Specification for the Three Rs
	Slide 56: Repeat runs of Quicksilver on Ruby using same compiler
	Slide 57: Replicate runs of Quicksilver on Ruby with different compilers
	Slide 58: Reproduce runs of Quicksilver across different systems
	Slide 59: Analysis of calltrees to understand performance difference
	Slide 60: Takeaways
	Slide 61: Hands On Session 2 Adding an experiment for a benchmark
	Slide 62: Performance Tools: Caliper
	Slide 63: Performance Tools: Thicket
	Slide 64: Ramble modifiers in Benchpark encapsulate reusable patterns to perform a specific configuration of an experiment
	Slide 65: Join us after the tutorial!
	Slide 66

