
Law
ren

ce

Live
rm

or
e

Nati
on

al

Lab
or

ato
ry

Silo User’s Guide

Revision: November 2009
Version: 4.7.1 of the Silo Library

Document Release Number LLNL-SM-421083

This document was prepared as an account of work sponsored by an agency of the United States government. Neither
the United States government nor Lawrence Livermore National Security, LLC, nor any of their employees makes
any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe
privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trade-
mark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or
favoring by the United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or Lawrence Liver-
more National Security, LLC, and shall not be used for advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National
Laboratory in part under Contract W-7405-Eng-48 and in part under Contract DE-AC52-07NA27344.
ii

Chapter 1 Introduction to Silo
1.1. Overview

Silo is a library which implements an application programing interface
(API) designed for reading and writing a wide variety of scientific data to
binary, disk files. The files Silo produces and the data within them can be
easily shared and exchanged between wholly independently developed
applications running on disparate computing platforms.

Consequently, the Silo API facilitates the development of general purpose
tools for processing scientific data. One of the more popular tools that pro-
cess Silo data files is the VisIt1 visualization tool.

Silo supports gridless (point) meshes, structured meshes, unstructured-zoo
and unstructured-arbitrary-polyhedral meshes, block structured AMR
meshes, constructive solid geometry (CSG) meshes as well as piecewise-
constant (e.g. zone-centered) and piecewise-linear (e.g. node-centered) vari-
ables defined on these meshes. In addition, Silo supports a wide array of
other useful objects to address various scientific computing applications’
needs.

Although the Silo library is a serial library, it has key features which enable
it to be applied quite effectively and scalably in parallel.

Architecturally, the library is divided into two main pieces; an upper-level
application programming interface (API) and a lower-level I/O implementa-
tion called a driver. Silo supports multiple I/O drivers, the two most com-
mon of which are the HDF5 (Hierarchical Data Format 5)2 and PDB
(Portable Data Base, a binary database file format developed at LLNL by
Stewart Brown) drivers. However, the reader should take care not to infer

1. VisIt can be obtained from http://www.llnl.gov/visit
Silo User’s Guide 1-1

from this that Silo can read any HDF5 file. It cannot. For the most part, Silo
is able to read only files that it has also written.

1.2. Brief History and Background

Development of the Silo library began in the early 1990’s at Lawrence Liv-
ermore National Laboratory to address a range of issues related to the stor-
age and exchange of data among a wide variety of scientific computing
applications and platforms.

In the early days of scientific computing, roughly 1950 - 1980, simulation
software development at many labs, like Livermore, invariably took the
form of a number of software “stovepipes”. Each big code effort included
sub-efforts to develop supporting tools for visualization, data differencing,
browsing and management.

Developers working in a particular stovepipe designed every piece of soft-
ware they wrote, simulation code and tools alike, to conform to a common
representation for the data. In a sense, all software in a particular stovepipe
was really just one big, monolithic application, typically held together by a
common, binary or ASCII file format.

Data exchanges across stovepipes were laborious and often achieved only
by employing one or more computer scientists whose sole task in life was to
write a conversion tool called a linker. Worse, each linker needed to be kept
it up to date as changes were made to one or the other codes that it linked. In
short, there was nothing but brute force data sharing and exchange. Further-
more, there was duplication of effort in the development of support tools for
each code.

Between 1980 and 2000, an important innovation emerged, the general pur-
pose I\O library. In fact, two variants emerged each working at a different
level of abstraction. One focused on the “objects” of computer science. That
is arrays, structs and linked lists (e.g. data structures). The other focused on
the “objects” of computational modeling. That is structured and unstruc-
tured meshes with piecewise-constant and piecewise-linear fields. Examples
of the former are CDF, HDF (HDF4 and HDF5) and PDBLib. Silo is an
example of the latter type of I/O library. At the same time, Silo makes use of
the former.

2. The National Center for Supercomputing Applications (NCSA) at the University
of Illinois at Urbana-Champaign (UIUC). The HDF5 software can be obtained
from http://hdf5.ncsa.uiuc.edu/HDF5/release/obtain5.html.
1-2 Silo User’s Guide

Architecture
1.3. Silo Architecture

Silo has several drivers. Some are read-only and some are read-write. These
are illustrated in Figure 1-1:

Figure 1-1: Model of Silo Architecture.

Silo supports both read and write on the PDB (Portable Database) formatted
files and HDF5 drivers. However, Silo cannot read just any PDB or HDF5
file. It can read only PDB or HDF5 files that were also written with Silo.
Silo supports only read on the taurus and netcdf drivers. The particular
driver used to write data is chosen by an application when a Silo file is cre-
ated. It can be automatically determined by the Silo library when a Silo file
is opened.

1.3.1. Reading Silo Files

The Silo library has application-level routines to be used for reading mesh
and mesh-related data. These functions return compound C data structures
which represent data in a general way.

1.3.2. Writing Silo files

The Silo library contains application-level routines to be used for writing
mesh and mesh-related data into Silo files.

In the C interface, the application provides a compound C data structure
representing the data. In the Fortran interface, the data is passed via individ-
ual arguments.

1.4. Terminology

Here is a short summary of some of the terms used throughout the Silo
interface and documentation. These terms are common to most computer
simulation environments.

Read/Write

Application

PDB netcdf Taurus

Read only

HDF5

Silo-API

Drivers
Silo User’s Guide 1-3

Computational Meshes Supported by Silo
Block This is the fundamental building block of a computational mesh. It
defines the nodal coordinates of one contiguous section of a mesh (also
known as a mesh-block).

Mesh A computational mesh, composed of one or more mesh-blocks. A mesh
can be composed of mesh-blocks of different types (quad, UCD) as
well as of different shapes.

Variable Data which are associated in some way with a computational mesh.
Variables usually represent values of some physics quantity (e.g., pres-
sure). Values are usually located either at the mesh nodes or at zone
centers.

Material A physical material being modeled in a computer simulation.

Node A mathematical point. The fundamental building-block of a mesh or
zone.

Zone An area or volume of which meshes are comprised. Zones are polygons
or polyhedra with nodes as vertices (see “UCD 2-D and 3-D Cell
Shapes” on page 1-6.)

1.5. Computational Meshes Supported by Silo

Silo supports several classes, or types, of meshes. These are quadrilateral,
unstructured-zoo, unstructured-arbitrary, point, constructive solid geometry
(CSG), and adaptive refinement meshes.

1.5.3. Quadrilateral-Based Meshes and Related Data

A quadrilateral mesh is one which contains four nodes per zone in 2-D and
eight nodes per zone (four nodes per zone face) in 3-D. Quad meshes can be
either regular, rectilinear, or curvilinear, but they must be logically rectan-
gular (Fig. 1-2).
1-4 Silo User’s Guide

UCD Meshes
Figure 1-2: Examples of quadrilateral meshes.

1.5.4. UCD-Based Meshes and Related Data

An unstructured (UCD) mesh is a very general mesh representation; it is
composed of an arbitrary list of zones of arbitrary sizes and shapes. Most
meshes, including quadrilateral ones, can be represented as an unstructured
mesh (Fig. 1-4). Because of their generality, however, unstructured meshes
require more storage space and more complex algorithms.

In UCD meshes, the basic concept of zones (cells) still applies, but there is
no longer an implied connectivity between a zone and its neighbor, as with
the quadrilateral mesh. In other words, given a 2-D quadrilateral mesh zone
accessed by (i, j), one knows that this zone’s neighbors are (i-1,j), (i+1,j), (i,
j-1), and so on. This is not the case with a UCD mesh.

In a UCD mesh, a structure called a zonelist is used to define the nodes
which make up each zone. A UCD mesh need not be composed of zones of
just one shape (Fig. 1-5). Part of the zonelist structure describes the shapes
of the zones in the mesh and a count of how many of each zone shape
occurs in the mesh. The facelist structure is analogous to the zonelist struc-
ture, but defines the nodes which make up each zone face.

Rectilinear Curvilinear

X

Y

X = {0.0,1.0,2.0,3.0,

Y = {0.0,1.0,2.0,3.0}

X = {0.0,1.0,2.0,
0.0,0.8,1.6,
0.0,0.4,0.8,
0.0,0.0,0.0}

Y = {0.0,0.0,0.0,
0.0,0.4,0.8,
0.0,0.8,1.6,
0.0,1.0,2.0}

X

Y

 4.0,5.0}
Silo User’s Guide 1-5

Silo Objects
Figure 1-3: Sample 2-D UCD Meshes

Figure 1-4: UCD 2-D and 3-D Cell Shapes

1.5.5. Point Meshes and Related Data

A point mesh consists of a set of locations, or points, in space. This type of
mesh is well suited for representing random scalar data, such as tracer parti-
cles.

1.5.6. Constructive Solid Geometry (CSG) Meshes and Related Data

A constructive Solid Geometry mesh is constructed by boolean combina-
tions of solid model primitives such as spheres, cones, planes and quadric
surfaces. In a CSG mesh, a “zone” is a region defined by such a boolean
combination. CSG meshes support only zone-centered variables.

1.5.7. Block Structured, Adaptive Refinement Meshes (AMR) and Related
Data

Block structured AMR meshes are composed of a large number of Quad
meshes representing refinements of other quad meshes. The hierarchy of
refinement is characterized using a Mesh Region Grouping (MRG) tree.

1.6. Summary of Silo’s Computational Modeling
Objects

Objects are a grouping mechanism for maintaining related variables, dimen-
sions, and other data. The Silo library understands and operates on specific
types of objects including the previously described computational meshes

Tetrahedron Pyramid Prism Hexahedron

QuadrilateralTriangleLinePoint
1-6 Silo User’s Guide

Silo Objects
and related data. The user is also able to define arbitrary objects for storage
of data if the standard Silo objects are not sufficient.

The objects are generalized representations for data commonly found in
physics simulations. These objects include:

Quadmesh A quadrilateral mesh. At a minimum, this must include the dimension
and coordinate data, but typically also includes the mesh’s coordinate
system, labelling and unit information, minimum and maximum
extents, and valid index ranges.

Quadvar A variable associated with a quadrilateral mesh. At a minimum, this
must include the variable’s data, centering information (node-centered
vs. zone centered), and the name of the quad mesh with which this vari-
able is associated. Additional information, such as time, cycle, units,
label, and index ranges can also be included.

Ucdmesh An unstructured mesh1. At a minimum, this must include the dimen-
sion, connectivity, and coordinate data, but typically also includes the
mesh’s coordinate system, labelling and unit information, minimum and
maximum extents, and a list of face indices.

Ucdvar A variable associated with a UCD mesh. This at a minimum must
include the variable’s data, centering information (node-centered vs.
zone-centered), and the name of the UCD mesh with which this vari-
able is associated. Additional information, such as time, cycle, units,
and label can also be included.

Pointmesh A point mesh. At a minimum, this must include dimension and coordi-
nate data.

Csgmesh A constructive solid geometry (CSG) mesh.

Csgvar A variable defined on a CSG mesh (always zone centered).

Defvar Defined variable representing an arithmetic expression involving other
variables.

Groupel Map Used in concert with an MRG tree to define subsetted regions of
meshes.

Multimat A set of materials. This object contains the names of the materials in the
set.

Multimatspecies A set of material species. This object contains the names of the material
species in the set.

Multimesh A set of meshes. This object contains the names of and types of the
meshes in the set.

Multivar Mesh variable data associated with a multimesh.

1. Unstructured cell data (UCD) is a term commonly used to denote an arbitrarily
connected mesh. Such a mesh is composed of vectors of coordinate values along
with an index array which identifies the nodes associated with each zone and/or
face. Zones may contain any number of nodes for 2-D meshes, and either four,
five, six, or eight nodes for 3-D meshes.
Silo User’s Guide 1-7

Silo Objects
Material Material information. This includes the number of materials present, a
list of valid material identifiers, and a zonal-length array which contains
the material identifiers for each zone.

Material species Extra material information. A material species is a type of a material.
They are used when a given material (i.e. air) may be made up of other
materials (i.e. oxygen, nitrogen) in differing amounts.

MRG Tree Mesh Region Grouping tree used to define various subset regions of any
of Silo’s mesh types.

Zonelist Zone-oriented connectivity information for a UCD mesh. This object
contains a sequential list of nodes which identifies the zones in the
mesh, and arrays which describe the shape(s) of the zones in the mesh.

PHZonelist Arbitrary, polyhedral extension of a zonelist.

Facelist Face-oriented connectivity information for a UCD mesh. This object
contains a sequential list of nodes which identifies the faces in the
mesh, and arrays which describe the shape(s) of the faces in the mesh. It
may optionally include arrays which provide type information for each
face.

Curve X versus Y data. This object must contain at least the domain and range
values, along with the number of points in the curve. In addition, a title,
variable names, labels, and units may be provided.

Variable Array data. This object contains, in addition to the data, the dimensions
and data type of the array. This object is not required to be associated
with a mesh.

1.6.8. Other Silo Objects

In addition to the objects listed in the previous section which are tailored to
the job of representing computational data from scientific computing appli-
cations. Silo supports a number of other objects useful to scientific comput-
ing applications. Some of the more useful ones are briefly summarized here.

Compound Array A compound array is an abstraction of a Fortran common block. It is
also somewhat like a C struct. It is a list of similarly typed by differently
named and sized (usually small in size) items that one often treats as a
group (particularly for I/O purposes).

Directory A silo file can be organized into directories in much the same way as a
UNIX filesystem.

Optlist An “options list” object used to pass additional options to various Silo
API functions.

Simple Variable A simple variable is just a named, multi-dimensional array of arbitrary
data.

User Defined Object A generic, user-defined object or arbitrary nature.
1-8 Silo User’s Guide

Silo Objects
1.7. Silo’s Fortran Interface

The Silo library is implemented in C. Nonetheless, a set of Fortran callable
wrappers have been written to make a majority of Silo’s functionality avail-
able to Fortran applications. These wrappers simply take the data that is
passed through a Fortran function interface, re-package it and call the
equivalent C function. However, there are a few limitations of the Fortran
interface.

1.7.9. Limitations of Fortran Interface

First, it is primarily a write-only interface. This means Fortran applications
can use the interface to write Silo files so that other tools, like VisIt, can
read them. However, for all but a few of Silo’s objects, only the functions
necessary to write the objects to a Silo file have been implemented in the
Fortran interface. This means Fortran applications cannot really use Silo for
restart file purposes.

Conceptually, the Fortran interface is identical to the C interface. To avoid
duplication of documentation, the Fortran interface is documented right
along with the C interface. However, because of differences in C and For-
tran argument passing conventions, there are key differences in the inter-
faces. Here, we use an example to outline the key differences in the
interfaces as well as the rules to be used to construct the Fortran interface
from the C.

1.7.10. Conventions used to construct the Fortran interface from C

In this section, we show an example of a C function in Silo and its equiva-
lent Fortran. We use this example to demonstrate many of the conventions
used to construct the Fortran interface from the C.

We describe these rules so that Fortran user’s can be assured of having up to
date documentation (which tends to always first come for the C interface)
but still be aware of key differences between the two.

A C function specification...

int DBAddRegionArray(DBmrgtree *tree, int nregn, const char **regn_names,
int info_bits, const char *maps_name, int nsegs, int *seg_ids, int *seg_lens,
int *seg_types, DBoptlist *opts)

The equivalent Fortran function...

integer function dbaddregiona(tree_id, nregn, regn_names, lregn_names,
type_info_bits, maps_name, lmaps_name, nsegs, seg_ids, seg_lens, seg_types,
optlist_id, status)

integer tree_id, nregn, lregn_names, type_info_bits, lmaps_name
integer nsegs, optlist_id, status
integer lregn_names(), seg_ids(), seg_lens(), seg_types()
character* maps_name
character*N regn_names
Silo User’s Guide 1-9

Silo Objects
l<strname> Wherever the C interface accepts a char*, the fortran interface accepts
two arguments; the character* argument followed by an integer argu-
ment indicating the string’s length. In the function specifications, it will
always be identified with an ell (‘l’) in front of the name of the charac-
ter* argument that comes before it. In the example above, this rule is
evident in the maps_name and lmaps_name arguments.

l<strname>s Wherever the C interface accepts an array of char* (e.g. char**), the
Fortran interface accepts a character*N followed by an array of lengths
of the strings. In the above example, this rule is evident by the
regn_names and lregn_names arguments. By default, N=32, but
the value for N can be changed, as needed by the dbset2dstrlen()
method.

<object>_id Wherever the C interface accepts a pointer to an abstract Silo object,
like the Silo database file handle (DBfile *) or, as in the example above,
a DBmrgtree*, the Fortran interface accepts an equivalent pointer_id. A
pointer_id is really an integer index into an internally maintained table
of pointers to Silo’s objects. In the above example, this rule is evident in
the tree_id aand optlist_id arguments.

data_ids Wherever the C interface accepts an array of void* (e.g. a void** argu-
ment), the Fortran interface accepts an array of integer pointer_ids. The
Fortran application may use the dbmkptr() function to a create the
pointer ids to populate this array. The above example does not demon-
strate this rule.

status Wherever the C interface returns integer error information in the return
value of the function, the Fortran interface accepts an extra integer argu-
ment named status as the last argument in the list. The above example
demonstrates this rule.

Finally, there are a few function in Silo’s API that are unique to the Fortran
interface. Those functions are described in the section of the API manual
having to do with Fortran.

1.8. Using Silo in Parallel

Silo is a serial library. Nevertheless, it (as well as the tools that use it like
VisIt) has several features that enable its effective use in parallel with excel-
lent scaling behavior. However, using Silo effectively in parallel does
require an application to store its data to multiple Silo files; typically
between 8 and 64 depending on the number of concurrent I/O channels the
application has available.

The two features that enable Silo to be used effectively in parallel are its
ability to create separate namespaces (directories) within a single file and
the fact that a multi-block object can span multiple Silo files. With these fea-
tures, aparallel application can easily divide its processors into N groups
and write a separate Silo file for each group.
1-10 Silo User’s Guide

Silo Objects
Within a group, each processor in the group writes to its own directory
within the Silo file. One and only one processor has write access to the
group’s Silo file at any one time. So, I/O is serial within a group. However,
because each group has a separate Silo file to write to, each group has one
processor writing concurrently with other processors from other groups. So,
I/O is parallel across groups.

After all processors have created all their individual objects in various direc-
tories within the each group’s Silo file, one processor is designated to write
multi-block objects. The multi-block objects serve as an assembly of the
names of all the individual objects written from various processors.

When N, the number of processor groups, is equal to one, I/O is effectively
serial. All the processors write their data to a single Silo file. When N is
equal to the number of processors, each processor writes its data to its own,
unique Silo file. Both of these extremes are bad for effective and scalable
parallel I/O. A good choice for N is the number of concurrent I/O channels
available to the application when it is actually running. For many parallel,
HPC platforms, this number is typically between 8 and 64.

This technique for using a serial I/O library effectively in parallel while
being able to tune the number of files concurrently being written to is affec-
tionately called Poor Man’s Parallel I/O (PMPIO).

There is a separate header file, pmpio.h, with a set of convenience methods
to support PMPIO-based parallel I/O with Silo. See “Multi-Block Objects,
Parallelism and Poor-Man’s Parallel I/O” on page 128 and See
“PMPIO_Init” on page 149 for more information.
Silo User’s Guide 1-11

Silo Objects
1-12 Silo User’s Guide

Chapter 2 C and Fortran Functions
2.1. C Interface Overview

This chapter documents the C and Fortran interface to the Silo library. The
C header file is “silo.h” and the Fortran header file is “silo.inc”

2.1.1. Optional Arguments

Many Silo functions have optional arguments. By optional, it is meant that a
dummy value can be supplied instead of an actual value. An argument to a
C function which the user does not want to provide, and which is docu-
mented as being optional, should be replaced with a NULL (as defined in
the file silo.h).

2.1.2. Using the Silo Option Parameter

Many of the functions take as one of their arguments a list of option-name/
option-value pairs. In this way additional information can be passed to a
function without having to change the function's interface. The following
sequence of function declarations outlines the procedure for creating and
populating such a list:

DBoptlist *DBMakeOptlist (int maxopts) /* Create a list with
 maximum list length */

int DBAddOption (/* Add an option to the list: */

DBoptlist *optlist, /* the list, */
int option_id, /* the option, */
void *option_value /* the option's value */
)

Silo User’s Guide 2-1

C Interface Overview
2.1.3. C Calling Sequence

The functions in the Silo output package should be called in a particular
order.

2.1.3.1. Write Sequence
Start by creating a Silo file, with DBCreate(), create any necessary directo-
ries, then call the remaining routines as needed for writing out the mesh,
material data, and any physics variables associated with the mesh.

Schematically, your program should look something like this:

DBCreate

DBMkdir
DBSetDir

DBPutQuadmesh
DBPutQuadvar1
DBPutQuadvar1
. . .

DBSetDir

DBMkdir
DBSetDir

DBPutZonelist
DBPutFacelist
DBPutUcdmesh
DBPutMaterial
DBPutUcdvar1
. . .

DBSetDir
DBClose

2.1.3.2. Example of C Calling Sequence for writing
The following C code is an example of the creation of a Silo file with just
one directory (the root):

#include <silo.h>
#include <string.h>

int main()
{
 DBfile *file = NULL; /* The Silo file pointer */
 char *coordnames[2]; /* Names of the coordinates */
 float nodex[4]; /* The coordinate arrays */
 float nodey[4];
 float *coordinates[2]; /* The array of coordinate
 arrays */
 int dimensions[2]; /* The number of nodes in
 each dimension */

 /* Create the Silo file */
2-2 Silo User’s Guide

C Interface Overview
 file = DBCreate(“sample.silo”, DB_CLOBBER, DB_LOCAL, NULL,
 DB_PDB);

 /* Name the coordinate axes ‘X’ and ‘Y’ */
 coordnames[0] = strdup(“X”);
 coordnames[1] = strdup(“Y”);

 /* Give the x coordinates of the mesh */
 nodex[0] = -1.1;
 nodex[1] = -0.1;
 nodex[2] = 1.3;
 nodex[3] = 1.7;

 /* Give the y coordinates of the mesh */
 nodey[0] = -2.4;
 nodey[1] = -1.2;
 nodey[2] = 0.4;
 nodey[3] = 0.8;

 /* How many nodes in each direction? */
 dimensions[0] = 4;
 dimensions[1] = 4;

 /* Assign coordinates to coordinates array */
 coordinates[0] = nodex;
 coordinates[1] = nodey;

 /* Write out the mesh to the file */
 DBPutQuadmesh(file, “mesh1”, coordnames, coordinates,
 dimensions, 2, DB_FLOAT, DB_COLLINEAR, NULL);

 /* Close the Silo file */
 DBClose(file);

 return (0);
}

2.1.3.3. Read Sequence
Start by opening the Silo file with DBOpen(), then change to the required
directory, and then read the mesh, material, and variables. Schematically,
your program should look something like this:

DBOpen

DBSetDir

DBGetQuadmesh
DBGetQuadvar1
DBGetQuadvar1
. . .

Silo User’s Guide 2-3

C Interface Overview
DBSetDir
DBGetUcdmesh
DBGetUcdvar1
DBGetMaterial
. . .

DBClose

2.2. Fortran Interface

Currently, C-callable functions exist for all routines, but Fortran-callable
functions exist for only a portion of the routines. The Fortran header file is
“silo.inc”.

2.2.4. Optional Arguments

The functions described below have optional arguments. By optional, it is
meant that a dummy value can be supplied instead of an actual value. An
argument to a Fortran function, which the user does not want to provide,
and which is documented as optional, should be replaced with the parame-
ter DB_F77NULL, which is defined in the file silo.inc.

2.2.5. Using the Silo Option Parameter

Many of the functions take as one of their arguments a list of option-name/
option-value pairs. In this way, additional information can be passed to a
function without having to change the function’s interface. The following
sequence of function declarations outlines the procedure for creating and
populating such a list:

integer function dbmkoptlist(! Create a list:
maxopts, ! maximum list length
optlist_id ! list identifier
)

integer function dbaddiopt (! Add an integer option

! to the list:
optlist_id, ! the list
option_id, ! the option
int_value ! the option’s integer

! value
)

There also are functions for adding real and character option values to a list.

2.2.6. Fortran Calling Sequence

The functions in the Silo output package should be called in a particular
order. Start by creating a Silo file, with dbcreate(), create any necessary
directories, then call the remaining routines as needed for writing out the
mesh, material data, and any physics variables associated with the mesh.

Schematically, your program should look something like this:
2-4 Silo User’s Guide

C Interface Overview
dbcreate

dbmkdir
dbsetdir

dbputqm
dbputqv1
dbputqv1
dbputqv1
. . .

dbsetdir

dbmkdir
dbsetdir

dbputzl
dbputfl
dbputum
dbputmat
dbputuv1

. . .
dbsetdir

dbclose

2.3. Reading Silo Files

Silo functions that return Silo objects from an open file return a C struct
data structure defining the object. The most reliable source of information
on the C structure returned from each call is the silo header file, silo.h. For
reference, the header file for this version of Silo is attached as an appendix
to this manual.
Silo User’s Guide 2-5

C Interface Overview
2-6 Silo User’s Guide

Error Handling and Other Global Library Behavior..7
DBErrFunc . 8
DBErrno . 9
DBErrString . 10
DBShowErrors . 11
DBVariableNameValid. 12
DBVersion . 13
DBVersionGE. 14
DBFileVersion . 15
DBFileVersionGE. 16
DBSetAllowOverwrites . 17
DBGetAllowOverwrites . 18
DBForceSingle . 19
DBSetDataReadMask . 20
DBGetDataReadMask. 22
DBSetEnableChecksums . 23
DBGetEnableChecksums . 24
DBSetCompression. 25
DBGetCompression . 28
DBSetFriendlyHDF5Names . 29
DBGetFriendlyHDF5Names. 30
DBSetDeprecateWarnings . 31
DBGetDeprecateWarnings . 32
DB_VERSION_GE . 33

Files and File Structure...34
DBCreate. 35
DBOpen . 37
DBClose . 38
DBGetToc . 39
DBMkDir . 40
DBSetDir. 41
DBGetDir . 42
DBCpDir . 43
DBGrabDriver. 44
DBUngrabDriver. 45
DBGetDriverType. 46
DBGetDriverTypeFromPath. 47
DBInqFile . 48
_silolibinfo . 49
_hdf5libinfo. 50
_was_grabbed . 51
1

Meshes, Variables and Materials ...52
DBPutCurve . 54
DBGetCurve . 56
DBPutPointmesh. 57
DBGetPointmesh . 59
DBPutPointvar . 60
DBPutPointvar1 . 62
DBGetPointvar . 64
DBPutQuadmesh. 65
DBGetQuadmesh . 68
DBPutQuadvar . 69
DBPutQuadvar1 . 72
DBGetQuadvar . 74
DBPutUcdmesh. 75
DBPutUcdsubmesh . 83
DBGetUcdmesh . 84
DBPutZonelist . 85
DBPutZonelist2 . 86
DBPutPHZonelist . 88
DBGetPHZonelist . 91
DBPutFacelist . 92
DBPutUcdvar . 94
DBPutUcdvar1 . 97
DBGetUcdvar . 99
DBPutCsgmesh. 100
DBGetCsgmesh. 105
DBPutCSGZonelist. 106
DBGetCSGZonelist . 111
DBPutCsgvar . 112
DBGetCsgvar . 114
DBPutMaterial . 115
DBGetMaterial . 119
DBPutMatspecies . 120
DBGetMatspecies . 122
DBPutDefvars . 123
DBGetDefvars. 125
DBInqMeshname . 126
DBInqMeshtype . 127

Multi-Block Objects, Parallelism and
Poor-Man’s Parallel I/O ...128
DBPutMultimesh . 129
DBGetMultimesh . 133
DBPutMultimeshadj . 134
2

DBGetMultimeshadj . 137
DBPutMultivar . 138
DBGetMultivar . 141
DBPutMultimat. 142
DBGetMultimat . 145
DBPutMultimatspecies . 146
DBGetMultimatspecies. 148
PMPIO_Init. 149
PMPIO_CreateFileCallBack. 152
PMPIO_OpenFileCallBack. 153
PMPIO_CloseFileCallBack . 154
PMPIO_WaitForBaton . 155
PMPIO_HandOffBaton. 156
PMPIO_Finish . 157
PMPIO_GroupRank . 158
PMPIO_RankInGroup . 159

Part Assemblies, AMR, Slide Surfaces,
Nodesets and Other Arbitrary Mesh Subsets ...160
DBMakeMrgtree . 161
DBAddRegion. 165
DBAddRegionArray . 167
DBSetCwr . 169
DBGetCwr . 170
DBPutMrgtree. 171
DBGetMrgtree . 172
DBFreeMrgtree . 173
DBMakeNamescheme . 174
DBGetName . 176
DBPutMrgvar . 177
DBGetMrgvar . 179
DBPutGroupelmap . 180
DBGetGroupelmap . 182
DBFreeGroupelmap . 183
DBOPT_REGION_PNAMES . 184

Object Allocation and Free...186
DBAlloc… . 187
DBFree… . 188

Calculational ..189
3

DBCalcExternalFacelist . 190
DBCalcExternalFacelist2 . 192

Optlists..194
DBMakeOptlist . 195
DBAddOption . 196
DBClearOption . 197
DBGetOption . 198
DBFreeOptlist . 199
DBClearOptlist . 200

User Defined (Generic) Data and Objects...201
DBWrite . 202
DBWriteSlice . 203
DBReadVar. 205
DBReadVar1. 206
DBReadVarSlice. 207
DBGetVar . 208
DBInqVarExists . 209
DBInqVarType . 210
DBGetVarByteLength . 212
DBGetVarDims. 213
DBGetVarLength . 214
DBGetVarType . 215
DBPutCompoundarray . 216
DBInqCompoundarray . 217
DBGetCompoundarray . 218
DBMakeObject . 219
DBFreeObject . 220
DBChangeObject . 221
DBClearObject . 222
DBAddDblComponent . 223
DBAddFltComponent . 224
DBAddIntComponent . 225
DBAddStrComponent. 226
DBAddVarComponent . 227
DBWriteComponent . 228
DBWriteObject . 229
DBGetObject. 230
DBGetComponent. 231
DBGetComponentType . 232
4

Previously Undocumented Use Conventions ..233
_visit_defvars . 234
_visit_searchpath. 235
_visit_domain_groups. 236
AlphabetizeVariables . 237
ConnectivityIsTimeVarying . 238
MultivarToMultimeshMap_vars. 239
MultivarToMultimeshMap_meshes . 240

Silo’s Fortran Interface ..241
dbmkptr . 242
dbrmptr . 243
dbset2dstrlen . 244
dbget2dstrlen. 245
DBFortranAllocPointer. 246
DBFortranAccessPointer . 247
DBFortranRemovePointer . 248

Deprecated Functions ...249
5

6

1 API Section Error Handling and Other Global Library
Behavior

The functions described in this section of the Silo Application Programming Interface (API) man-
ual, are those that effect behavior of the library, globally, for any file(s) that are or will be open.
These include such things as error handling, requiring Silo to do extra work to warn of and avoid
overwrites, to compute and warn of checksum errors and to compress data before writing it to disk.

The functions described here are...

Error Handling and Other Global Library Behavior..7
DBErrFunc . 8
DBErrno . 9
DBErrString . 10
DBShowErrors . 11
DBVariableNameValid. 12
DBVersion . 13
DBVersionGE. 14
DBFileVersion . 15
DBFileVersionGE. 16
DBSetAllowOverwrites . 17
DBGetAllowOverwrites . 18
DBForceSingle . 19
DBSetDataReadMask . 20
DBGetDataReadMask. 22
DBSetEnableChecksums . 23
DBGetEnableChecksums . 24
DBSetCompression. 25
DBGetCompression . 28
DBSetFriendlyHDF5Names . 29
DBGetFriendlyHDF5Names. 30
DBSetDeprecateWarnings . 31
DBGetDeprecateWarnings . 32
DB_VERSION_GE . 33
Silo User’s Guide 2-7

DBErrFunc
DBErrFunc—Get name of error-generating function

Synopsis:

char *DBErrFunc (void)

Fortran Equivalent:

None

Returns:

DBErrFunc returns a char* containing the name of the function that generated the last error. It
cannot fail.

Description:

The DBErrFunc function is used to find the name of the function that generated the last Silo error.
It is implemented as a macro. The returned pointer points into Silo private space and must not be
modified or freed.
2-8 Silo User’s Guide

DBErrno
DBErrno—Get internal error number.

Synopsis:

int DBErrno (void)

Fortran Equivalent:

integer function dberrno()

Returns:

DBErrno returns the internal error number of the last error. It cannot fail.

Description:

The DBErrno function is used to find the number of the last Silo error message. It is implemented
as a macro. The error numbers are not guaranteed to remain the same between different release
versions of Silo.
Silo User’s Guide 2-9

DBErrString
DBErrString—Get error message.

Synopsis:

char *DBErrString (void)

Fortran Equivalent:

None

Returns:

DBErrString returns a char* containing the last error message. It cannot fail.

Description:

The DBErrString function is used to find the last Silo error message. It is implemented as a macro.
The returned pointer points into Silo private space and must not be modified or freed.
2-10 Silo User’s Guide

DBShowErrors
DBShowErrors—Set the error reporting mode.

Synopsis:

void DBShowErrors (int level, void (*func)(char*))

Fortran Equivalent:

integer function dbshowerrors(level)

Arguments:

level Error reporting level. One of DB_ALL, DB_ABORT, DB_TOP, or DB_NONE.

func Function pointer to an error-handling function.

Returns:

DBShowErrors returns nothing (void). It cannot fail.

Description:

The DBShowErrors function sets the level of error reporting done by Silo when it encounters an
error. The following table describes the action taken upon error for different values of level

Error level value Error action

DB_ALL Show all errors, beginning with the (possibly internal) routine
that first detected the error and continuing up the call stack
to the application.

DB_ABORT Same as DB_ALL except abort is called after the error mes-
sage is printed.

DB_TOP (Default) Only the top-level Silo functions issue error mes-
sages.

DB_NONE The library does not handle error messages. The application
is responsible for checking the return values of the Silo func-
tions and handling the error.
Silo User’s Guide 2-11

DBVariableNameValid
DBVariableNameValid—check if character string represents a valid Silo variable name

Synopsis:

int DBValidVariableName(const char *s)

Fortran Equivalent:

None

Arguments:

s The character string to check

Returns:

non-zero if the given character string represents a valid Silo variable name; zero otherwise

Description:

This is a convenience function for Silo applications to check whether a given variable name they
wish to use will be considered valid by Silo.

The only valid characters that can appear in a Silo variable name are all alphanumerics (e.g. [a-zA-
Z0-9]) and the underscore (e.g. ‘_’). If a candidate variable name contains any characters other
than these, that variable name is considered invalid. If that variable name is ever used in a call to
create an object in a Silo file, the call will fail with error E_INVALIDNAME.
2-12 Silo User’s Guide

DBVersion
DBVersion—Get the version of the Silo library.

Synopsis:

char *DBVersion (void)

Fortran Equivalent:

None

Returns:

DBVersion returns the version as a character string.

Description:

The DBVersion function determines what version of the Silo library is being used and returns that
version in string form.
Silo User’s Guide 2-13

DBVersion
DBVersionGE—Greater than or equal comparison for version of the Silo library

Synopsis:

int DBVersionGE(int Maj, int Min, int Pat)

Fortran Equivalent:

None

Arguments:

Maj Integer, major version number

Min Integer, minor version number

Pat Integer, patch version number

Returns:

One (1) if the library’s version number is greater than or equal to the version number specified by
Maj, Min, Pat arguments, zero (0) otherwise.

Description:

This function is the run-time equivalent of the DB_VERSION_GE macro.
2-14 Silo User’s Guide

DBVersion
DBFileVersion—Version of the Silo library used to create the specified file

Synopsis:

char *DBFileVersion(DBfile *dbfile)

Fortran Equivalent:

None

Arguments:

dbfile Database file handle

Returns:

A character string representation of the version number of the Silo library that was used to create
the Silo file.

Description:

Note, that this is distinct from (e.g. can be the same or different from) the version of the Silo
library returned by the DBVersion() function. The former returns the version of the Silo library
that was used when DBCreate() was called on the specified file. The latter returns the version of
the Silo library the executable is currently linked with. Most often, these two will be the same. But,
not always. Also not that although is possible that a single Silo file may have contents created
within it from multiple versions of the Silo library, a call to this function will return ONLY the ver-
sion that was in use when DBCreate() was called; that is when the file was first created.
Silo User’s Guide 2-15

DBVersion
DBFileVersionGE—Greater than or equal comparison for version of the Silo library a
given file was created with

Synopsis:

int DBFileVersionGE(DBfile *dbfile, int Maj, int Min, int Pat)

Fortran Equivalent:

None

Arguments:

dbfile Database file handle

Maj Integer major version number

Min Integer minor version number

Pat Integer patch version number

Returns:

One (1) if the version number of the library used to create the specified file is greater than or equal
to the version number specified by Maj, Min, Pat arguments, zero (0) otherwise.
2-16 Silo User’s Guide

DBSetAllowOverwrites
DBSetAllowOverwrites—Set flag permitting or denying overwrites of Silo objects

Synopsis:

int DBSetAllowOverwrites(int allow)

Fortran Equivalent:

integer function dbsetovrwrt(allow)

Arguments:

allow Integer value indicating if Silo library should allow overwrites to Silo objects. A
value of 0 indicates that overwrites should NOT be allowed, a value of non-zero
indicates that overwrites SHOULD be allowed.

Returns:

Returns the previous value set for allowing overwrites.

Description:

By default, the Silo library does not do any work to determine if the caller is somehow using the
library in such a way that Silo objects are being overwritten. In fact, if a given file is open by mul-
tiple processes, it is impossible for Silo to detect this condition and either prevent it or even issue a
message indicating it is happening.

When DBSetAllowOverwrites is passed a non-zero value, all succeeding calls that modify a Silo
file first check to make sure the object(s) being written do not already exist in the file. If they do,
the operation will abort and an error message will be generated.

Some Silo calls such as DBWriteSlice permit repeated calls to write different portions of the same
object. Overwrites are always allowed for these types of objects regardless of the setting passed
here.

The default setting is to allow overwrites and not do any costly work to detect when they are occur-
ing.
Silo User’s Guide 2-17

DBGetAllowOverwrites
DBGetAllowOverwrites—Get current setting for the allow overwrites flag

Synopsis:

int DBGetAllowOverwrites(void)

Fortran Equivalent:

integer function dbgetovrwrt()

Returns:

Returns the current setting for the allow overwrites flag

Description:

See DBSetAllowOverwrites for a description of the meaning of this flag
2-18 Silo User’s Guide

DBForceSingle
DBForceSingle—Force all floating point data read in read methods to be single precision

Synopsis:

int DBForceSingle(int force)

Fortran Equivalent:

None

Arguments:

force Flag to indicate if forcing should be set or not. Pass non-zero to force single
precision. Pass zero to NOT force single precision.

Returns:

Zero on success. -1 on failure

Description:

This setting is global to the whole library. After a call to DBForceSingle() with a non-zero force
value, all functions that read floating point data from a Silo database will convert any double-preci-
sion data they encounter to single precision (and set the associated datatype members of the
DBxxx objects to DB_FLOAT). Calling DBForceSingle() with a force value of zero, will return
the library to ‘normal’ behavior. That is, double-precision data will be read and returned in double-
precision.

This method is typically used by downstream, post-processing tools to reduce memory require-
ments. By default, Silo DOES NOT have single precision forcing enabled. When it is enabled,
only the methods that result in reading of floating point data from a Silo file are effected. Write
methods are NOT effected.
Silo User’s Guide 2-19

DBSetDataReadMask
DBSetDataReadMask—Set the data read mask

Synopsis:

long DBSetDataReadMask (long mask)

Fortran Equivalent:

None

Arguments:

mask The mask to use to read data. This is a bit vector of values that define whether
each data portion of the various Silo objects should be read.

Returns:

DBSetDataReadMask returns the previous data read mask.

Description:

The DBSetDataReadMask allows the user to set the mask that’s used to read various large data
components within Silo objects.

Most Silo objects have a metadata portion and a data portion. The data portion is that part of the
object that consists of pointers to long arrays of data. These arrays are “problem sized”.

Setting the data read mask allows for a DBGet* call to only return part of the data. With the data
read mask set to DBAll, the DBGet* functions return all of the information. With the data read
mask set to DBNone, they return only the metadata. The mask is a bit vector specifying which part
of the data model should be read.

A special case is found in the DBCalc flag. Sometimes data is not stored in the file, but is instead
calculated from other information. The DBCalc flag controls this behavior. If it is turned off, the
data is not calculated. If it is turned on, the data is calculated.

The values that DBSetDataReadMask takes as the mask parameter are binary-or’ed combinations
of the values shown in the following table:

Mask bit Meaning

DBAll All data values are read. This value is identical to specifying all of the
other mask bits or’ed together, setting all of the bit values to 1.

DBNone No data values are read. This value sets all of the bit values to 0.

DBCalc If data is calculable, calculate it. Otherwise, return NULL for that infor-
mation.

DBMatMatnos The lists of material numbers in material objects are read by the DBGet-
Material call.

DBMatMatnames The arrays of material names in material objects are read by the DBGet-
Material call.
2-20 Silo User’s Guide

DBSetDataReadMask
Use the DBGetDataReadMask call to retrieve the current data read mask without setting one.

By default, the data read mask is set to DBAll. The data read mask effects only the read portion of
the Silo API.

DBMatMatlist The lists of the correspondence between zones and material numbers in
material objects are read by the DBGetMaterial call.

DBMatMixList The lists of mixed material information in material objects are read by
the DBGetMaterial call.

DBCurveArrays The data values of curves are read by the DBGetCurve call.

DBPMCoords The coordinate values of pointmeshes are read by the DBGetPointmesh
call.

DBPVData The data values of pointvars are read by the DBGetPointvar call.

DBQMCoords The coordinate values of quadmeshes are read by the DBGetQuad-
mesh call.

DBQVData The data values of quadvars are read by the DBGetQuadvar call.

DBUMCoords The coordinate values of UCD meshes are read by the DBGetUcdmesh
call.

DBUMFacelist The facelists of UCD meshes are read by the DBGetUcdmesh call.

DBUMZonelist The zonelists of UCD meshes are read by the DBGetUcdmesh call.

DBUVData The data values of UCD variables are read by the DBGetUcdvar call.

DBFacelistInfo The nodelists and shape information in facelists are read by the DBGet-
Facelist call.

DBZonelistInfo The nodelist and shape information in zonelists are read by the DBGet-
Zonelist call.

DBUMGlobNodeNo The global node numbers of UCD meshes are read by the DBGetUcd-
mesh call

DBZonelistGlobZoneNo The global zone numbers of UCD meshes are read by the DBGetUcd-
mesh call

DBMatMatcolors The material colors of material objects are read by the DBGetMaterial
and DBGetMultimat calls

DBMMADJNodelists The multimesh adjacency nodelist is read in DBGetMultimeshadj()

DBMMADJZonelists The multimesh adjacency zonelists is read in DBGetMultimeshadj()

DBCSGMBoundaryInfo The boundary list is read by the DBGetCsgmesh call

DBCSGMZonelist The zonelist is read by the DBGetCsgmesh call

DBCSGMBoundaryNames The boundary names are read by the DBGetCsgmesh call

DBCSGVData The data values of CSG variables are read by the DBGetCsgvar call

DBCSGZonelistZoneNames The zone names are read by the DBGetCSGZonelist call

DBCSGZonelistRegNames The region names are read by the DBGetCSGZonelist call

Mask bit Meaning
Silo User’s Guide 2-21

DBGetDataReadMask
DBGetDataReadMask—Get the current data read mask

Synopsis:

long DBGetDataReadMask (void)

Fortran Equivalent:

None

Returns:

DBGetDataReadMask returns the current data read mask.

Description:

The DBGetDataReadMask allows the user to find out what mask is currently being used to read
the data within Silo objects.

See the documentation on DBSetDataReadMask for a complete description.
2-22 Silo User’s Guide

DBSetEnableChecksums
DBSetEnableChecksums—Set flag controlling checksum checks

Synopsis:

int DBSetEnableChecksums(int enable)

Fortran Equivalent:

integer function dbsetcksums(enable)

Arguments:

enable Integer value controlling checksum behavior of the Silo library. See description
for a complete explanation.

Returns:

Returns the previous setting for checksum behavior.

Description:

If checksums are enabled, whenever Silo writes data, it will compute checksums on the data in
memory and store these checksums with the data in the file. Note that during a write call, in no cir-
cumstance will Silo re-read data written to confirm it was written correctly (e.g. it gets back what it
wrote). In other words, Silo will not detect checksum errors on writes. It will detect them only on
reads and only if checksums were actually computed and stored with the data when it was written.

If checksums are enabled, whenever Silo reads data AND the data it is reading has checksums
stored in the file, it will compute and compare checksums. If the checksums computed on read do
not agree with the checksums stored in the file, the Silo call resulting in the data read will fail. The
error, E_CHECKSUM, will be set (See “DBShowErrors” on page 2-11). Note that because check-
sums are not checked on write, there is no foolproof way to detect whether a read has failed
because the data was corrupted when it was originally written or because the read itself has failed.

Checksum checks are supported ONLY on the HDF5 driver. The PDB driver DOES NOT support
checksum checks. Calling DBCreate() with checksumming enabled will fail if DB_PDB is
specified as the driver. If checksumming is enabled while any PDB file is opened, the request for
checksumming will be silently ignored by all attempts to write or read data from a PDB file.

In the HDF5 driver, only the data that winds up in HDF5 datasets in the file is checksumed. In
most applications, this represents more than 99% of all the data the client writes. However, it is
important to note that when checksuming is enabled, NOT ALL data written by Silo is check-
sumed. Various bits of metadata is not checksumed.

Finally, empirical results show that the resulting files are 1-5% larger and take about 1-5% longer
to write when checksumming is enabled. This is due primarily to the fact that a different class of
HDF5 dataset, called a chunked dataset, is required in order to enable checksumming.
Silo User’s Guide 2-23

DBGetEnableChecksums
DBGetEnableChecksums—Get current state of flag controlling checksumming

Synopsis:

int DBGetEnableChecksums(void)

Fortran Equivalent:

integer function dbgetcksums()

Returns:

Zero if checksumming is not currently enabled. Non-zero if checksumming is currently enabled.

Description:

This function returns the current setting for the library-global flag controlling checksumming
behavior.
2-24 Silo User’s Guide

DBSetCompression
DBSetCompression—Set compression options for succeeding writes of Silo data

Synopsis:n

int DBSetCompression(char *options)

Fortran Equivalent:

integer function dbsetcompress(options, loptions)

Arguments:

options Character string containing the name of the compression method and various
parameters. The method set using the keyword, “METHOD=”. Any remaining
parameters are dependent on the compression method and are described below.

Returns:

Returns the previous value set for compression behavior.

Description:

Compression is currently supported only on the HDF5 driver.

Note that the responsibility for enabling compression falls only on the data producer. Any Silo cli-
ents attempting to read compressed data may do so without concern for whether the data in the file
is compressed or not. If the data is compressed, decompression will occur automatically during
read. This is true as long as the Silo library to which the client reading the data was compiled and
linked has the necessary decompression code. Because writer and reader need not be compiled and
linked to the same exact Silo library installation, each could be compiled with differing compres-
sion capabilities making it impossible to read data in some situations.

To the extent possible, the public installations of Silo on LLNL systems have all been enabled with
compatible compression features. However, because many application developers have taken to
creating their own installations of Silo, it is important to consider the effect of disabling (or
enabling) various compression features.

Compression features are controlled by an arbitrary string, whose contents are described in more
detail below. By default, the Silo library does not have compression enabled. A number of differ-
ent compression techniques are available. Some operate without regard to the type of data and
mesh being written. Others depend on the type of data and sometimes even the type of mesh.

Compression parameters global to all compression methods: There are two global parameters that
control behavior of compression algorithms. These must appear in the compression options string
before any compression-specific parameters.

The first is the error mode (“ERRMODE=<word>” which controls how the Silo library responds
when it encounters an error during compression and/or is unable to compress the data. The two
options are “FALLBACK” or “FAIL”. Including “ERRMODE=FALLBACK” in the compression
options string tells Silo that whenever compression fails, it should simply fallback to writing
uncompressed data. Including “ERRMODE=FAIL” in the compression options string tells Silo to
fail the write and return E_COMPRESSION error for the operation.
Silo User’s Guide 2-25

DBSetCompression
The second is the minimum compression ratio to be achieved by compressing the data. It is speci-
fied as “MINRATIO=<float>”. For example, including “MINRATIO=2.5” in the compression
options string tells Silo that all data must be compressed by at least a factor of 2.5:1. If it is unable
the compress by at least this amount, Silo will either fallback or fail the write depending on the
ERRMODE setting.

The remaining paragraphs describe compression algorithm specific options.

GZIP compression: is enabled using “METHOD=GZIP” in the options string. GZIP recognizes
the LEVEL=<int>, compression parameter. The compression level is an integer from 0 to 9, where
0 results in the fastest compression performance but at the expense of lower compression ratios.
Likewise, a level of 9 results in the slowest compression performance but with possibly better
compression ratios. If the “LEVEL=<int>” keyword does not appear in the options string or speci-
fies invalid values, the default is level one (1). The GZIP method of compression is applied inde-
pendently to float and integer data for all types of meshes and variables. It is also guaranteed to be
available to all Silo clients.

SZIP compression: is enabled using “METHOD=SZIP” in the options string. The SZIP compres-
sion algorithm is designed specifically for scientific data. SZIP recognizes the BLOCK=<int>, and
MASK={EC|NN} parameters. The BLOCK=<int>, takes an integer value from 0 to 32, which is a
blocking size and must be even and not greater than 32, with typical values being 8, 10, 16, or 32.
This parameter affects the compression ratio; the more values vary, the smaller this number should
be to achieve better performance. The MASK=EC, selects entropy coding method, this is best
suited for data that has been processed, working best for small numbers.MASK=NN, selects the
nearest neighbor coding method, preprocesses the data then applies the EC method as above. The
default parameters for SZIP compression are “METHOD=SZIP BLOCK=4 MASK=NN”. If in a
subsequent write operation (DBPutXXX, DBWrite, etc.) the value for BLOCK is bigger than the
total number of elements in a dataset, the write will fail. This means that you should take care not
to have compression turned on when doing small writes. To achieve optimal performance for SZIP
compression, it is recommended that one select a value for BLOCK that is an integral divisor of
the dataset’s fastest-changing dimension. Note that the SZIP compression encoder is licensed for
non-commercial use only while the decoder (e.g. decompression) is unlimited. Read more about
SZIP licensing at http://www.hdfgroup.org/doc_resource/SZIP/index.html. Note that SZIP decom-
pression is NOT guaranteed to be available to all Silo clients; only those for which the Silo library
was configured with SZIP compression capability enabled. Like GZIP, SZIP compression is
applied to float and integer data independently of the types of meshes and variables.

FPZIP compression: is enabled using “METHOD=FPZIP” in the options string. The FPZIP com-
pression algorithm was developed by Peter Lindstrom at LLNL and is also designed for high speed
compression of regular arrays of data. FPZIP recognizes the “LOSS=0|1|2|3” parameter which
specifies the amount of loss that is tolerable in the result in terms of quarters of full precision. For
example, “LOSS=3” indicates that a loss of 3/4 of full precision is tolerable (resulting in 8 bit
floats or 16 bit doubles). Note that for data being written from a double precision writer for down
stream visualization purposes, visualization tools such as VisIt often enforce single precision data.
Therefore, specifying a loss of 32 bits here for double precision data could have a dramatic impact
on compression and I/O performance with negligible effect in down stream visualization. If the
LOSS parameter is not specified, the default is “LOSS=0”. It is possible to build the Silo library
without FPZIP compression support. So, it is not always guaranteed to exist.

HZIP compression: is enabled using “METHOD=HZIP” in the options string. The HZIP compres-
sion algorithm was developed by Peter Lindstrom at LLNL and is designed for high-speed com-
2-26 Silo User’s Guide

DBSetCompression
pression of unstructured meshes of quad or hex elements and node-centered variables (it does not
yet support zone-centered variables) defined on a mesh. Before applying this compression method
to any given Silo mesh or variable object, the Silo library checks for compatibility with the con-
straints of the compression algorithm. If the mesh or variable object is compatible, the object will
be written with compression enabled. Otherwise, compression will be silently ignored. It is possi-
ble to build the Silo library without HZIP compression support. So, it is not always guaranteed to
exist.
Silo User’s Guide 2-27

DBGetCompression
DBGetCompression—Get current compression parameters

Synopsis:

char *DBGetCompression()

Fortran Equivalent:

integer function dbgetcompress(options, loptions)

Arguments:

None

Returns:

NULL if no compress parameters have been set. A string of compression parameters if compres-
sion has been set

Description:

Obtain the current compression parameters.
2-28 Silo User’s Guide

DBSetFriendlyHDF5Names
DBSetFriendlyHDF5Names—Set flag to indicate Silo should create friendly names for
HDF5 datasets

Synopsis:

int DBSetFriendlyHDF5Names(int enable)

Fortran Equivalent:

integer function dbsethdfnms(enable)

Arguments:

enable Flag to indicate if friendly names should be turned on (non-zero value) or off
(zero).

Returns:

Old setting for this flag

Description:

The HDF5 driver uses HDF5 in a way that makes the data somewhat UNnatural to the user when
viewed with HDF5 tools such as h5ls, h5dump and hdfview as well as other tools that interact with
the data via the HDF5 API. This is not a problem for Silo but is a problem for these and other
HDF5 tools.

DBSetFriendlyHDF5Names() is a way to address this issue so that the data in an HDF5 file written
by Silo looks more “natural.”. Calling DBSetFriendlyHDF5Names() with a non-zero value will
result in additional HDF5 metadata being added to the file (in the form of links) with better names
(and locations) for Silo objects’ datasets.

Passing a value of 2 for enable here causes the HDF5 driver to create hard links. All other non-
zero values cause the HDF5 driver to create soft links.

Finally note that creation of links does increase the file size somewhat. This affect is less signifi-
cant for larger files. It is also likely to have some negative but as yet to be investigated effect on
I/O performance.

Notes:

If it was not obvious from the name, this method effects only the HDF5 driver.
Silo User’s Guide 2-29

DBGetFriendlyHDF5Names
DBGetFriendlyHDF5Names—Get setting for friendly HDF5 names flag

Synopsis:

int DBGetFriendlyHDF5Names()

Fortran Equivalent:

integer function dbgethdfnms()

Arguments:

None

Returns:

The current setting for the HDF5 friendly names flag.

Description:

See DBSetFriendlyHDF5Names().
2-30 Silo User’s Guide

DBSetDeprecateWarnings
DBSetDeprecateWarnings—Set maximum number of deprecate warnings Silo will
issue for any one function, option or convention

Synopsis:

int DBSetDeprecateWarnings(int max_count)

Fortran Equivalent:

integer function dbsetdepwarn(max_count)

Arguments:

max_count Maximum number of warnings Silo will issue for any single API function.

Returns:

The old maximum number of deprecate warnings

Description:

Some of Silo’s API functions have been deprecated. Some options on Silo objects have also been
deprecated. Finally, some conventional arrays, such as _visit_defvars, have been depre-
cated.

When an attempt to use a deprecated function, option or convention is detected, Silo will issue an
error message on stderr and proceed normally. The default number of error messages any given
deprecated function will report on stderr is 3. Note, this is on a per-deprecated function, option or
convention basis. If this number is decreased to zero by calling DBSetDeprecateWarn-
ings(0), no warnings will be generated on stderr. If it is increased, more warnings will be
issued.

Note that deprecated functions, options and conventions are guaranteed to operate correctly only
in the first release in which they became deprecated. In subsequent releases, they may be removed
entirely. So, it is wise to run your application for a while without turning off deprecation warnings
to get some inventory of functions that require attention.
Silo User’s Guide 2-31

DBGetDeprecateWarnings
DBGetDeprecateWarnings—Get maximum number of deprecated function warnings
Silo will issue

Synopsis:

int DBGetDeprecateWarnings()

Fortran Equivalent:

integer function dbgetdepwarn()

Arguments:

None

Returns:

The current maximum number of deprecate warnings

Description:
2-32 Silo User’s Guide

SILO_VERSION_GE
DB_VERSION_GE—Compile time macro to test silo version number

Synopsis:

DB_VERSION_GE(Maj,Min,Pat)

Arguments:

Maj Major version number digit

Min Minor version number digit. A zero is equivalent to no minor digit.

Pat Patch version number digit. A zero is equivalent to no patch digit.

Returns:

True (non-zero) if the combination of major, minor and patch digits results in a version number of
the Silo library that is greater (e.g. newer) than or equal to the version of the Silo library being
compiled against. False (zero), otherwise.

Description:

This macro is useful for writing version-specific code that interacts with the Silo library. Note,
however, that this macro appeared in version 4.5.1 of the Silo library and is not available in earlier
versions of the library.

As an example of use, the function DBSetDeprecateWarnings() was introduced in Silo version 4.6
and not available in earlier versions. You could use this macro like so...

#if DB_VERSION_GE(4,6,0)
 DBSetDeprecateWarnings(0);
#endif
Silo User’s Guide 2-33

SILO_VERSION_GE
2 API Section Files and File Structure

If you are looking for information regarding how to use Silo from a parallel application, please See
“Multi-Block Objects, Parallelism and Poor-Man’s Parallel I/O” on page 131.

The Silo API is implemented on a number of different low-level drivers. These drivers control the
low-level file format Silo generates. For example, Silo can generate PDB (Portable DataBase) and
HDF5 formatted files. The specific choice of low-level file format is made at file creation time.

In addition, Silo files can themselves have directories. That is, within a single Silo file, one can
create directory hierarchies for storage of various objects. These directory hierarchies are analo-
gous to the Unix filesystem. Directories serve to divide the name space of a Silo file so the user can
organize content within a Silo file in a way that is natural to the application.

Note that the organization of objects into directories within a Silo file may have direct implications
for how these collections of objects are presented to users by post-processing tools. For example,
except for directories used to store multi-block objects (See “Multi-Block Objects, Parallelism and
Poor-Man’s Parallel I/O” on page 131.), VisIt will use directories in a Silo file to create submenus
within its Graphical User Interface (GUI). For example, if VisIt opens a Silo file with two directo-
ries called “foo” and “bar” and there are various meshes and variables in each of these directories,
then many of VisIt’s GUI menus will contain submenus named “foo” and “bar” where the objects
found in those directories will be placed in the GUI.

Silo also supports the concept of grabbing the low-level driver. For example, if Silo is using the
HDF5 driver, an application can obtain the actual HDF5 file id and then use the native HDF5 API
with that file id.

The functions described in this section of the interface are...

Files and File Structure...34
DBCreate. 35
DBOpen . 37
DBClose . 38
DBGetToc . 39
DBMkDir . 40
DBSetDir. 41
DBGetDir . 42
DBCpDir . 43
DBGrabDriver. 44
DBUngrabDriver. 45
DBGetDriverType. 46
DBGetDriverTypeFromPath. 47
DBInqFile . 48
_silolibinfo . 49
_hdf5libinfo. 50
_was_grabbed . 51
2-34 Silo User’s Guide

DBCreate
DBCreate—Create a Silo output file.

Synopsis:

DBfile *DBCreate (char *pathname, int mode, int target,
char *fileinfo, int filetype)

Fortran Equivalent:

integer function dbcreate(pathname, lpathname, mode, target,
fileinfo, lfileinfo, filetype)

Arguments:

pathname Path name of file to create. This can be either an absolute or relative path.

mode Creation mode. One of the predefined Silo modes: DB_CLOBBER or
DB_NOCLOBBER.

target Destination file format. One of the predefined types: DB_LOCAL, DB_SUN3,
DB_SUN4, DB_SGI, DB_RS6000, or DB_CRAY.

fileinfo Character string containing descriptive information about the file’s contents.
This information is usually printed by applications when this file is opened. If
no such information is needed, send NULL for this argument.

filetype Destination file type. Specify one of ether DB_PDB, DB_HDF5,
DB_HDF5_SEC2, DB_HDF5_STDIO, DB_HDF5_CORE, DB_HDF5_MPIO,
or DB_HDF5_MPIPOSIX.

Returns:

DBCreate returns a DBfile pointer on success and NULL on failure.

Description:

The DBCreate function creates a Silo file and initializes it for writing data.

Notes:

Silo supports two underlying “drivers” for storing named arrays of machine independent data. One
is called the Portable DataBase Library (PDBLib or just PDB) and the other is Hierarchical Data
Format, Version 5 (HDF5). In turn, the HDF5 library also supports a number of system interfaces
for doing the actual disk I/O; section 2 routines (e.g create/open/read/write/close), stdio routines
(e.g. fcreate/fopen/fread/fwrite/fclose) are the most common. In HDF5 parlance, these are called
Virtual File Drivers (VFDs).

Because section 2 routines are unbuffered, that VFD typically performs better when there are
fewer, larger I/O requests while the stdio VFD performs better when there are more, smaller
requests. Unfortunately, the metric for what constitutes a “small” or “large” request is system
dependent. So, it helps to experiment with the different VFDs for the HDF5 driver by running
some typically sized use cases. Some results on the Luster file system for tiny I/O requests (100’s
of bytes) showed that the stdio VFD can perform 100x or more better than the section 2. So, it pays
to spend some time experimenting with this.
Silo User’s Guide 2-35

DBCreate
The HDF5 driver for Silo also supports several of HDF5’s more exotic VFDs. These are the “core”
VFD which creates the entire file in memory and then writes it to disk (with minimal I/O requests)
upon close as well as a couple of interfaces specialized for parallel file systems. Although Silo
itself DOES NOT support true parallel I/O (e.g. multiple processors writing to the same file, con-
currently), Silo can take advantage of any performance capabilities available in the underlying I/O
systems calls in HDF5’s parallel VFDs. These are the MPI-IO VFD which uses MPI-IO’s I/O rou-
tines and the MPI-POSIX.

For the DB_HDF5_CORE filetype, it is necessary for the caller to specify the allocation increment
to use each time HDF5 needs to grow the “file” in memory. This is specified in terms of kilobytes
(1024 bytes) as the high-order 21 bits of the filetype argument. So, for example, to specify that
HDF5 allocate space for the “file” in memory in 1 Megabyte increments, the caller would con-
struct the filetype argument as ((1024<<11)|DB_HDF5_CORE). The 1024 is because we want
1024 Kilobytes (e.g. 1 Megabyte) increments. The 11 bit shift is to put the value in the high order
21 bit portion of the filetype argument.

Both PDB and HDF5 support the concept of targeting output files. That is, a Sun IEEE file can be
created on the Cray, and vice versa. If creating files on a mainframe or other powerful computer, it
is best to target the file for the machine where the file will be processed. Because of the extra time
required to do the floating point conversions, however, one may wish to bypass the targeting func-
tion by providing DB_LOCAL as the target.

In Fortran, an integer represent the file’s id is returned. That integer is then used as the database file
id in all functions to read and write data from the file.

Note that regardless of what type of file is created, it can still be read on any machine.
2-36 Silo User’s Guide

DBOpen
DBOpen—Open an existing Silo file.

Synopsis:

DBfile *DBOpen (char *name, int type, int mode)

Fortran Equivalent:

integer function dbopen(name, lname, type, mode)

Arguments:

name Name of the file to open. Can be either an absolute or relative path.

type The type of file to open. One of the predefined types: DB_PDB, DB_HDF5,
DB_HDF5_SEC2, DB_HDF5_STDIO, DB_HDF5_MPIO,
DB_HDF5_MPIPOSIX, DB_TAURUS, or DB_UNKNOWN.

mode The mode of the file to open. One of the values DB_READ or DB_APPEND.

Returns:

DBOpen returns a DBfile pointer on success and a NULL on failure.

Description:

The DBOpen function opens an existing Silo file. If the file type is DB_UNKNOWN, Silo will
guess at the file type by iterating through the known types attempting to open the file. This itera-
tion does incur a small performance penalty. Thus, if at all possible, it is best to open using a spe-
cific type. See DBGetDriverTypeFromPath() for a function that uses cheap heuristics to
determine the driver type from specified filename.

Indeed, in order to use a specific VFD (see “DBCreate” on page 2-35) in HDF5, it is necessary to
pass the specific DB_HDF5_XXX argument in this call. If the caller wishes to support both HDF5
and PDB files and doesn’t always know ahead of time which file type will be opened, the caller
can always iterate over the file types just as the DB_UNKNOWN functionality currently does.

The reader will notice that one of HDF5’s VFDs, DB_HDF5_CORE, is not supported in this call.
This is because HDF5 does NOT currently support bringing a whole file into memory from disk. It
supports only the creation of new files with the core VFD.

The mode parameter allows a user to append to an existing Silo file. If a file is DBOpen’ed with a
mode of DB_APPEND, the file will support write operations as well as read operations.
Silo User’s Guide 2-37

DBClose
DBClose—Close a Silo database.

Synopsis:

int DBClose (DBfile *dbfile)

Fortran Equivalent:

integer function dbclose(dbid)

Arguments:

dbfile Database file pointer.

Returns:

DBClose returns zero on success and -1 on failure.

Description:

The DBClose function closes a Silo database.
2-38 Silo User’s Guide

DBGetToc
DBGetToc—Get the table of contents of a Silo database.

Synopsis:

DBtoc *DBGetToc (DBfile *dbfile)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

Returns:

DBGetToc returns a pointer to a DBtoc structure on success and NULL on error.

Description:

The DBGetToc function returns a pointer to a DBtoc structure, which contains the names of the
various Silo object contained in the Silo database. The returned pointer points into Silo private
space and must not be modified or freed. Also, calls to DBSetDir will free the DBtoc structure,
invalidating the pointer returned previously by DBGetToc.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-39

DBMkDir
DBMkDir—Create a new directory in a Silo file.

Synopsis:

int DBMkDir (DBfile *dbfile, char *dirname)

Fortran Equivalent:

integer function dbmkdir(dbid, dirname, ldirname, status)

Arguments:

dbfile Database file pointer.

dirname Name of the directory to create.

Returns:

DBMkDir returns zero on success and -1 on failure.

Description:

The DBMkDir function creates a new directory in the Silo file as a child of the current directory
(see DBSetDir). The directory name may be an absolute path name similar to “/dir/subdir”,
or may be a relative path name similar to “../../dir/subdir”.
2-40 Silo User’s Guide

DBSetDir
DBSetDir—Set the current directory within the Silo database.

Synopsis:

int DBSetDir (DBfile *dbfile, char *pathname)

Fortran Equivalent:

integer function dbsetdir(dbid, pathname, lpathname)

Arguments:

dbfile Database file pointer.

pathname Path name of the directory. This can be either an absolute or relative path name.

Returns:

DBSetDir returns zero on success and -1 on failure.

Description:

The DBSetDir function sets the current directory within the given Silo database. Also, calls to
DBSetDir will free the DBtoc structure, invalidating the pointer returned previously by DBGetToc.
DBGetToc must be called again in order to obtain a pointer to the new directory’s DBtoc structure.
Silo User’s Guide 2-41

DBGetDir
DBGetDir—Get the name of the current directory.

Synopsis:

int DBGetDir (DBfile *dbfile, char *dirname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

dirname Returned current directory name. The caller must allocate space for the returned
name. The maximum space used is 256 characters, including the NULL
terminator.

Returns:

DBGetDir returns zero on success and -1 on failure.

Description:

The DBGetDir function returns the name of the current directory.
2-42 Silo User’s Guide

DBGetDir
DBCpDir—Copy a directory hierarchy from one Silo file to another.

Synopsis:

int DBCpDir(DBfile *srcFile, const char *srcDir,
DBfile *dstFile, const char *dstDir)

Fortran Equivalent:

None

Arguments:

srcFile Source database file pointer.

srcDir Name of the directory within the source database file to copy.

dstFile Destination database file pointer.

dstDir Name of the top-level directory in the destination file. If an absolute path is
given, then all components of the path except the last must already exist.
Otherwise, the new directory is created relative to the current working directory
in the file.

Returns:

DBCpDir returns 0 on success, -1 on failure

Description:

DBCpDir copies an entire directory hierarchy from one Silo file to another.

Note that this function is available only on the HDF5 driver and only if the Silo library has been
compiled with HDF5 version 1.8 or later. This is because the implementation exploits functional-
ity available only in versions of HDF5 1.8 and later.
Silo User’s Guide 2-43

DBGrabDriver
DBGrabDriver—Obtain the low-level driver file handle

Synopsis:

void *DBGrabDriver(DBfile *file)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle.

Returns:

A void pointer to the low-level driver’s file handle on success. NULL(0) on failure.

Description:

This method is used to obtain the low-level driver’s file handle. For example, one can use it to
obtain the HDF5 file id. The caller is responsible for casting the returned pointer to a pointer to the
correct type. Use DBGetDriverType() to obtain information on the type of driver currently in use.

When the low-level driver’s file handle is grabbed, all Silo-level operations on the file are pre-
vented until the file is UNgrabbed. For example, after a call to DBGrabDriver, calls to functions
like DBPutQuadmesh or DBGetCurve will fail until the driver is UNgrabbed using DBUngrab-
Driver().

Notes:

As far as the integrity of a Silo file goes, grabbing is inherently dangerous. If the client is not care-
ful, one can easily wind up corrupting the file for the Silo library (though all may be ‘normal’ for
the underlying driver library). Therefore, to minimize the likelihood of corrupting the Silo file
while it is grabbed, it is recommended that all operations with the low-level driver grabbed be con-
fined to a separate sub-directory in the silo file. That is, one should not mix writing of Silo objects
and low-level driver objects in the same directory. To achieve this, before grabbing, create the
desired directory and descend into it using Silo’s DBMkDir() and DBSetDir() functions. Then,
grab the driver and do all the work with the low-level driver that is necessary. Finally, ungrab the
driver and immediately ascend out of the directory using Silo’s DBSetDir(“..”).

For reasons described above, if problems occur on files that have been grabbed, users will likely be
asked to re-produce the problem on a similar file that has NOT been grabbed to rule out the possi-
ble corruption from grabbing.
2-44 Silo User’s Guide

DBUngrabDriver
DBUngrabDriver—Ungrab the low-level file driver

Synopsis:

int DBUngrabDriver(DBfile *file, const void *drvr_hndl)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle.

drvr_hndl The low-level driver handle.

Returns:

The driver type on success, DB_UNKNOWN on failure.

Description:

This function returns the Silo file to an ungrabbed state, permitting ‘norma’ Silo calls to again pro-
ceed as normal.
Silo User’s Guide 2-45

DBGetDriverType
DBGetDriverType—Get the type of driver for the specified file

Synopsis:

int DBGetDriverType(const DBfile *file)

Fortran Equivalent:

None

Arguments:

file A Silo database file handle.

Returns:

DB_UNKNOWN for failure. Otherwise, the specified driver type is returned

Description:

This function returns the type of driver used for the specified file. If you want to ask this question
without actually opening the file, use DBGetDriverTypeFromPath
2-46 Silo User’s Guide

DBGetDriverTypeFromPath
DBGetDriverTypeFromPath—Guess the driver type used by a file with the given
pathname

Synopsis:

int DBGetDriverTypeFromPath(const char *path)

Fortran Equivalent:

None

Arguments:

path Path to a file on the filesystem

Returns:

DB_UNKNOWN on failure to determine type. Otherwise, the driver type (e.g. DB_PDB,
DB_HDF5)

Notes:

As currently implemented, it is not possible for this method to return a driver type the library has
not been compiled with.
Silo User’s Guide 2-47

DBInqFile
DBInqFile—Inquire if filename is a Silo file.

Synopsis:

int DBInqFile (char *filename)

Fortran Equivalent:

integer function dbinqfile(filename, lfilename, is_file)

Arguments:

filename Name of file.

Returns:

DBInqFile returns 0 if filename is not a Silo file, a positive number if filename is a Silo file,
and a negative number if an error occurred.

Description:

The DBInqFile function is mainly used for its return value, as seen above.

Prior to version 4.7.1 of the Silo library, this function could return false positives when the file-
name referred to a PDB file that was NOT created by Silo. The reason for this is that all this func-
tion really did was check whether or not DBOpen would succeed on the file.

Starting in version 4.7.1 of the Silo library, this function will attempt to count the number of Silo
objects (not including directories) in the first non-empty directory it finds. If it cannot find any Silo
objects in the file, it will return zero (0) indicating the file is NOT a Silo file.

Because very early versions of the Silo library did not store anything to a Silo file to distinguish it
from a PDB file, it is conceivable that this function will return false negatives for very old, empty
Silo files. But, that case should be rare.

Similar problems do not exist for HDF5 files because Silo’s HDF5 driver has always stored infor-
mation in the HDF5 file which helps to distinguish it as a Silo file.
2-48 Silo User’s Guide

DBInqFile
_silolibinfo—character array written by Silo to root directory indicating the Silo library
version number used to generate the file

Synopsis:

int n;
char vers[1024];
sprintf(vers, “silo-4.6”);
n = strlen(vers);
DBWrite(dbfile, “_silolibinfo”, vers, &n, 1, DB_CHAR);

Description:

This is a simple array variable written at the root directory in a Silo file that contains the Silo
library version string. It cannot be disabled.
Silo User’s Guide 2-49

DBInqFile
_hdf5libinfo—character array written by Silo to root directory indicating the HDF5
library version number used to generate the file

Synopsis:

int n;
char vers[1024];
sprintf(vers, “hdf5-1.6.6”);
n = strlen(vers);
DBWrite(dbfile, “_hdf5libinfo”, vers, &n, 1, DB_CHAR);

Description:

This is a simple array variable written at the root directory in a Silo file that contains the HDF5
library version string. It cannot be disabled. Of course, it exists, only in files created with the
HDF5 driver.
2-50 Silo User’s Guide

DBInqFile
_was_grabbed—single integer written by Silo to root directory whenever a Silo file has
been grabbed.

Synopsis:

int n=1;
DBWrite(dbfile, “_was_grabbed”, &n, &n, 1, DB_INT);

Description:

This is a simple array variable written at the root directory in a Silo whenever a Silo file has been
grabbed by the DBGrabDriver() function. It cannot be disabled.
Silo User’s Guide 2-51

DBInqFile
3 API Section Meshes, Variables and Materials

If you are interested in learning how to deal with these objects in parallel, See “Multi-Block
Objects, Parallelism and Poor-Man’s Parallel I/O” on page 131.

This section of the Silo API manual describes all the high-level Silo objects that are sufficiently
self-describing as to be easily shared between a variety of applications.

Silo supports a variety of mesh types including simple 1D curves, structured meshes including
block-structured Adaptive Mesh Refinement (AMR) meshes, point (or gridless) meshes consisting
entirely of points, unstructured meshes consisting of the standard zoo of element types, fully arbi-
trary polyhedral meshes and Constructive Solid Geometry “meshes” described by boolean opera-
tions of primitive quadric surfaces.

In addition, Silo supports both piecewise constant (e.g. zone-centered) and piecewise-linear (e.g.
node-centered) variables (e.g. fields) defined on these meshes. Silo also supports the decomposi-
tion of these meshes into materials (and material species) including cases where multiple materials
are mixing within a single mesh element. Finally, Silo also supports the specification of expres-
sions representing derived variables.

The functions described in this section of the manual include...

Meshes, Variables and Materials ...52
DBPutCurve . 54
DBGetCurve . 56
DBPutPointmesh. 57
DBGetPointmesh . 59
DBPutPointvar . 60
DBPutPointvar1 . 62
DBGetPointvar . 64
DBPutQuadmesh. 65
DBGetQuadmesh . 68
DBPutQuadvar . 69
DBPutQuadvar1 . 72
DBGetQuadvar . 74
DBPutUcdmesh. 75
DBPutUcdsubmesh . 83
DBGetUcdmesh . 84
DBPutZonelist . 85
DBPutZonelist2 . 86
DBPutPHZonelist . 88
DBGetPHZonelist . 91
DBPutFacelist . 92
DBPutUcdvar . 94
DBPutUcdvar1 . 97
DBGetUcdvar . 99
2-52 Silo User’s Guide

DBInqFile
DBPutCsgmesh. 100
DBGetCsgmesh. 105
DBPutCSGZonelist. 106
DBGetCSGZonelist . 111
DBPutCsgvar . 112
DBGetCsgvar . 114
DBPutMaterial . 115
DBGetMaterial . 119
DBPutMatspecies . 120
DBGetMatspecies . 122
DBPutDefvars . 123
DBGetDefvars. 125
DBInqMeshname . 126
DBInqMeshtype . 127
Silo User’s Guide 2-53

DBPutCurve
DBPutCurve—Write a curve object into a Silo file

Synopsis:

int DBPutCurve (DBfile *dbfile, char *curvename, void *xvals,
void *yvals, int datatype, int npoints,
DBoptlist *optlist)

Fortran Equivalent:

integer function dbputcurve(dbid, curvename, lcurvename, xvals,
yvals, datatype, npoints, optlist_id, status)

Arguments:

dbfile Database file pointer

curvename Name of the curve object

xvals Array of length npoints containing the x-axis data values. Must be NULL
when either DBOPT_XVARNAME or DBOPT_REFERENCE is used.

yvals Array of length npoints containing the y-axis data values. Must be NULL
when either DBOPT_YVARNAME or DBOPT_REFERENCE is used.

datatype Data type of the xvals and yvals arrays. One of the predefined Silo types.

npoints The number of points in the curve

optlist Pointer to an option list structure containing additional information to be
included in the compound array object written into the Silo file. Use NULL is
there are no options.

Returns:

DBPutCurve returns zero on success and -1 on failure.

Description:

The DBPutCurve function writes a curve object into a Silo file. A curve is a set of x/y points that
describes a two-dimensional curve.

Both the xvals and yvals arrays must have the same datatype.

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_LABEL int Problem cycle value. 0

DBOPT_XLABEL char * Label for the x-axis NULL

DBOPT_YLABEL char * Label for the y-axis NULL
2-54 Silo User’s Guide

DBPutCurve
In some cases, particularly when writing multi-part silo files from parallel clients, it is convenient
to write curve data to something other than the “master” or “root” file. However, for a visualization
tool to become aware of such objects, the tool is then required to traverse all objects in all the files
of a multi-part file to find such objects. The DBOPT_REFERENCE option helps address this issue
by permitting the writer to create knowledge of a curve object in the “master” or “root” file but put
the actual curve object (the referenced object) wherever is most convenient. This output option
would be useful for other Silo objects, meshes and variables, as well. However, it is currently only
available for curve objects.

DBOPT_XUNITS char * Character string defining the units for the
x-axis.

NULL

DBOPT_YUNITS char * Character string defining the units for the
y-axis

NULL

DBOPT_XVARNAME char * Name of the domain (x) variable. This is
the problem variable name, not the code
variable name passed into the xvals
argument.

NULL

DBOPT_YVARNAME char * Name of the domain (y) variable. This is
problem variable name, not the code vari-
able name passed into the yvals argu-
ment.

NULL

DBOPT_REFERENCE char * Name of the real curve object this object
references. The name can take the form of
‘<file:/path-to-curve-object>’ just as mesh
names in the DBPutMultiMesh call.

Note also that if this option is set, then the
caller must pass NULL for both xvals and
yvals arguments but must also pass valid
information for all other object attributes
including not only npoints and datatype
but also any options.

NULL

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

Option Name
Value

Data Type Option Meaning Default Value
Silo User’s Guide 2-55

DBGetCurve
DBGetCurve—Read a curve from a Silo database.

Synopsis:

DBcurve *DBGetCurve (DBfile *dbfile, char *curvename)

Fortran Equivalent:

integer function dbgetcurve(dbid, curvename, lcurvename, maxpts,
xvals, yvals, datatype, npts)

Arguments:

dbfile Database file pointer.

curvename Name of the curve to read.

Returns:

DBCurve returns a pointer to a DBcurve structure on success and NULL on failure.

Description:

The DBGetCurve function allocates a DBcurve data structure, reads a curve from the Silo data-
base, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-56 Silo User’s Guide

DBPutPointmesh
DBPutPointmesh—Write a point mesh object into a Silo file.

Synopsis:

int DBPutPointmesh (DBfile *dbfile, char *name, int ndims,
void *coords[], int nels, int datatype,
DBoptlist *optlist)

Fortran Equivalent:

integer function dbputpm(dbid, name, lname, ndims, x, y, z, nels,
datatype, optlist_id, status)

void* x, y, z (if ndims<3, z=0 ok, if ndims<2, y=0 ok)

Arguments:

dbfile Database file pointer.

name Name of the mesh.

ndims Number of dimensions.

coords Array of length ndims containing pointers to coordinate arrays.

nels Number of elements (points) in mesh.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
included in the mesh object written into the Silo file. Typically, this argument is
NULL.

Returns:

DBPutPointmesh returns zero on success and -1 on failure.

Description:

The DBPutPointmesh function accepts pointers to the coordinate arrays and is responsible for
writing the mesh into a point-mesh object in the Silo file.

A Silo point-mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the number of dimensions (1,2,3,...) and the number of points.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_XLABEL char * Character string defining the label associ-
ated with the X dimension.

NULL
Silo User’s Guide 2-57

DBPutPointmesh
DBOPT_YLABEL char * Character string defining the label associ-
ated with the Y dimension.

NULL

DBOPT_ZLABEL char * Character string defining the label associ-
ated with the Z dimension.

NULL

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XUNITS char * Character string defining the units associ-
ated with the X dimension.

NULL

DBOPT_YUNITS char * Character string defining the units associ-
ated with the Y dimension.

NULL

DBOPT_ZUNITS char * Character string defining the units associ-
ated with the Z dimension.

NULL

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to
be associated with this mesh.

NULL

DBOPT_NODENUM void* An array of length nnodes giving a global
node number for each node in the mesh.
By default, this array is treated as type int.

NULL

DBOPT_LLONGNZNUM int Indicates that the array passed for
DBOPT_NODENUM option is of long long
type instead of int.

0

The following optlist options have been deprecated. Instead use MRG trees

DBOPT_GROUPNUM int The group number to which this point-
mesh belongs.

-1 (not in a group)

Option Name
Value

Data Type Option Meaning Default Value
2-58 Silo User’s Guide

DBGetPointmesh
DBGetPointmesh—Read a point mesh from a Silo database.

Synopsis:

DBpointmesh *DBGetPointmesh (DBfile *dbfile, char *meshname)

Arguments:

dbfile Database file pointer.

meshname Name of the mesh.

Returns:

DBGetPointmesh returns a pointer to a DBpointmesh structure on success and NULL on failure.

Description:

The DBGetPointmesh function allocates a DBpointmesh data structure, reads a point mesh from
the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-59

DBPutPointvar
DBPutPointvar—Write a vector/tensor point variable object into a Silo file.

Synopsis:

int DBPutPointvar (DBfile *dbfile, char *name, char *meshname,
int nvars, void *vars[], int nels,
int datatype, DBoptlist *optlist)

Fortran Equivalent:

None. See DBPutPointvar1

Arguments:

dbfile Database file pointer.

name Name of the variable set.

meshname Name of the associated point mesh.

nvars Number of variables supplied in vars array.

vars Array of length nvars containing pointers to value arrays.

nels Number of elements (points) in variable.

datatype Datatype of the value arrays. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
is NULL.

Returns:

DBPutPointvar returns zero on success and -1 on failure.

Description:

The DBPutPointvar function accepts pointers to the value arrays and is responsible for writing the
variables into a point-variable object in the Silo file.

A Silo point-variable object contains all necessary information for describing a variable associated
with a point mesh. This includes the number of arrays, the datatype of the variable, and the number
of points. This function should be used when writing vector or tensor quantities. Otherwise, it is
more convenient to use DBPutPointvar1.
2-60 Silo User’s Guide

DBPutPointvar
Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_ASCII_LABEL int Indicate if the variable should be treated
as single character, ascii values. A value
of 1 indicates yes, 0 no.

0

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_REGION_PNAMES char** A null-pointer terminated array of pointers
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
“DBOPT_REGION_PNAMES” on
page 188.

NULL

DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

Silo User’s Guide 2-61

DBPutPointvar1
DBPutPointvar1—Write a scalar point variable object into a Silo file.

Synopsis:

int DBPutPointvar1 (DBfile *dbfile, char *name, char *meshname,
void *var, int nels, int datatype,
DBoptlist *optlist)

Fortran Equivalent:

integer function dbputpv1(dbid, name, lname, meshname, lmeshname,
var, nels, datatype, optlist_id, status)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the associated point mesh.

var Array containing data values for this variable.

nels Number of elements (points) in variable.

datatype Datatype of the variable. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
is NULL.

Returns:

DBPutPointvar1 returns zero on success and -1 on failure.

Description:

The DBPutPointvar1 function accepts a value array and is responsible for writing the variable into
a point-variable object in the Silo file.

A Silo point-variable object contains all necessary information for describing a variable associated
with a point mesh. This includes the number of arrays, the datatype of the variable, and the number
of points. This function should be used when writing scalar quantities. To write vector or tensor
quantities, one must use DBPutPointvar.
2-62 Silo User’s Guide

DBPutPointvar1
Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

Silo User’s Guide 2-63

DBGetPointvar
DBGetPointvar—Read a point variable from a Silo database.

Synopsis:

DBmeshvar *DBGetPointvar (DBfile *dbfile, char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Name of the variable.

Returns:

DBGetPointvar returns a pointer to a DBmeshvar structure on success and NULL on failure.

Description:

The DBGetPointvar function allocates a DBmeshvar data structure, reads a variable associated
with a point mesh from the Silo database, and returns a pointer to that structure. If an error occurs,
NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-64 Silo User’s Guide

DBPutQuadmesh
DBPutQuadmesh—Write a quad mesh object into a Silo file.

Synopsis:

int DBPutQuadmesh (DBfile *dbfile, char *name, char *coordnames[],
void *coords[], int dims[], int ndims,
int datatype, int coordtype,
DBoptlist *optlist)

Fortran Equivalent:

integer function dbputqm(dbid, name, lname, xname, lxname, yname,
lyname, zname, lzname, x, y, z, dims, ndims,
datatype, coordtype, optlist_id, status)

void* x, y, z (if ndims<3, z=0 ok, if ndims<2, y=0 ok)
character* xname, yname, zname (if ndims<3, zname=0 ok, etc.)

Arguments:

dbfile Database file pointer.

name Name of the mesh.

coordnames Array of length ndims containing pointers to the names to be provided when
writing out the coordinate arrays. This parameter is currently ignored and can
be set as NULL.

coords Array of length ndims containing pointers to the coordinate arrays.

dims Array of length ndims describing the dimensionality of the mesh. Each value
in the dims array indicates the number of nodes contained in the mesh along
that dimension.

ndims Number of dimensions.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

coordtype Coordinate array type. One of the predefined types: DB_COLLINEAR or
DB_NONCOLLINEAR. Collinear coordinate arrays are always one-
dimensional, regardless of the dimensionality of the mesh; non-collinear arrays
have the same dimensionality as the mesh.

optlist Pointer to an option list structure containing additional information to be
included in the mesh object written into the Silo file. Typically, this argument is
NULL.

Returns:

DBPutQuadmesh returns zero on success and -1 on failure.

Description:

The DBPutQuadmesh function accepts pointers to the coordinate arrays and is responsible for
writing the mesh into a quad-mesh object in the Silo file.
Silo User’s Guide 2-65

DBPutQuadmesh
A Silo quad-mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3,...) and the type (collinear or non-collinear). In
addition, other information is useful and is therefore optionally included (row-major indicator,
time and cycle of mesh, offsets to ‘real’ zones, plus coordinate system type.)

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_HI_OFFSET int * Array of length ndims which defines zero-
origin offsets from the last node for the
ending index along each dimension.

{0,0,...}

DBOPT_LO_OFFSET int * Array of ndims which defines zero-origin
offsets from the first node for the starting
index along each dimension.

{0,0,...}

DBOPT_XLABEL char * Character string defining the label associ-
ated with the X dimension.

NULL

DBOPT_YLABEL char * Character string defining the label associ-
ated with the Y dimension.

NULL

DBOPT_ZLABEL char * Character string defining the label associ-
ated with the Z dimension.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_PLANAR int Planar value. One of: DB_AREA or
DB_VOLUME.

DB_OTHER

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XUNITS char * Character string defining the units associ-
ated with the X dimension.

NULL
2-66 Silo User’s Guide

DBPutQuadmesh
The options DB_LO_OFFSET and DB_HI_OFFSET should be used if the mesh being described
uses the notion of “phoney” zones (i.e., some zones should be ignored.) For example, if a 2-D
mesh had designated the first column and row, and the last two columns and rows as “phoney”,
then we would use: lo_off = {1,1} and hi_off = {2,2}.

DBOPT_YUNITS char * Character string defining the units associ-
ated with the Y dimension.

NULL

DBOPT_ZUNITS char * Character string defining the units associ-
ated with the Z dimension.

NULL

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_BASEINDEX int[3] Indicate the indices of the mesh within its
group.

0,0,0

DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to
be associated with this mesh.

NULL

The following options have been deprecated. Use MRG trees instead

DBOPT_GROUPNUM int The group number to which this quad-
mesh belongs.

-1 (not in a group)

Option Name
Value

Data Type Option Meaning Default Value
Silo User’s Guide 2-67

DBGetQuadmesh
DBGetQuadmesh—Read a quadrilateral mesh from a Silo database.

Synopsis:

DBquadmesh *DBGetQuadmesh (DBfile *dbfile, char *meshname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

meshname Name of the mesh.

Returns:

DBGetQuadmesh returns a pointer to a DBquadmesh structure on success and NULL on failure.

Description:

The DBGetQuadmesh function allocates a DBquadmesh data structure, reads a quadrilateral mesh
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-68 Silo User’s Guide

DBPutQuadvar
DBPutQuadvar—Write a vector/tensor quad variable object into a Silo file.

Synopsis:

int DBPutQuadvar (DBfile *dbfile, char *name, char *meshname,
int nvars, char *varnames[], void *vars[], int
dims[], int ndims, void *mixvars[],
int mixlen, int datatype, int centering,
DBoptlist *optlist)

Fortran Equivalent:

None (see DBPutQuadvar1)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with DBPutQuadmesh
or DBPutUcdmesh). If no association is to be made, this value should be NULL.

nvars Number of sub-variables which comprise this variable. For a scalar array, this is
one. If writing a vector quantity, however, this would be two for a 2-D vector
and three for a 3-D vector.

varnames Array of length nvars containing pointers to character strings defining the
names associated with each sub-variable.

vars Array of length nvars containing pointers to arrays defining the values
associated with each subvariable. For true edge- or face-centering (as opposed
to DB_EDGECENT centering when ndims is 1 and DB_FACECENT centering
when ndims is 2), each pointer here should point to an array that holds ndims
sub-arrays, one for each of the i-, j-, k-oriented edges or i-, j-, k-intercepting
faces, respectively. Read the description for more details.

dims Array of length ndims which describes the dimensionality of the data stored in
the vars arrays. For DB_NODECENT centering, this array holds the number of
nodes in each dimension. For DB_ZONECENT centering, DB_EDGECENT
centering when ndims is 1 and DB_FACECENT centering when ndims is 2,
this array holds the number of zones in each dimension. Otherwise, for
DB_EDGECENT and DB_FACECENT centering, this array should hold the
number of nodes in each dimension.

ndims Number of dimensions.

mixvars Array of length nvars containing pointers to arrays defining the mixed-data
values associated with each subvariable. If no mixed values are present, this
should be NULL.

mixlen Length of mixed data arrays, if provided.

datatype Datatype of the variable. One of the predefined Silo data types.

centering Centering of the subvariables on the associated mesh. One of the predefined
Silo User’s Guide 2-69

DBPutQuadvar
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT or DB_ZONECENT.
Note that DB_EDGECENT centering on a 1D mesh is treated identically to
DB_ZONECENT centering. Likewise for DB_FACECENT centering on a 2D
mesh.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
is NULL.

Returns:

DBPutQuadvar returns zero on success and -1 on failure.

Description:

The DBPutQuadvar function writes a variable associated with a quad mesh into a Silo file. A quad-
var object contains the variable values.

For node- (or zone-) centered data, the question of which value in the vars array goes with which
node (or zone) is determined implicitly by a one-to-one correspondence with the multi-dimen-
sional array list of nodes (or zones) defined by the logical indexing for the associated mesh’s nodes
(or zones).

Edge- and face-centered data require a little more explanation. We can group edges according to
their logical orientation. In a 2D mesh of Nx by Ny nodes, there are (Nx-1)Ny i-oriented edges and
Nx(Ny-1) j-oriented edges. Likewise, in a 3D mesh of Nx by Ny by Nz nodes, there are
(Nx-1)NyNz i-oriented edges, Nx(Ny-1)Nz, j-oriented edges and NxNy(Nz-1) k-oriented edges.
Each group of edges is almost the same size as a normal node-centered variable. So, for concep-
tual convenience we in fact treat them that way and treat the extra slots in them as phony data. So,
in the case of edge-centered data, each of the pointers in the vars argument to DBPutQuadvar
is interpreted to point to an array that is ndims times the product of nodal sizes (NxNyNz). The
first part of the array (of size NxNy nodes for 2D or NxNyNz nodes for 3D) holds the i-oriented
edge data, the next part the j-oriented edge data, etc.

A similar approach is used for face centered data. In a 3D mesh of Nx by Ny by Nz nodes, there
are Nx(Ny-1)(Nz-1) i-intercepting faces, (Nx-1)Ny(Nz-1) j-intercepting faces and (Nx-1)(Ny-
1)Nz k-intercepting faces. Again, just as for edge-centered data, each pointer in the vars array is
interpreted to point to an array that is ndims times the product of nodal sizes. The first part holds
the i-intercepting face data, the next part the j-interception face data, etc.

Unlike node- and zone-centered data, there does not necessarily exist in Silo an explicit list of
edges or faces. As an aside, the DBPutFacelist call is really for writing the external faces of a
mesh so that a downstream visualization tool need not have to compute them when it displays the
mesh. Now, requiring the caller to create explicit lists of edges and/or faces in order to handle
edge- or face-centered data results in unnecessary additional data being written to a Silo file. This
increases file size as well as the time to write and read the file. To avoid this, we rely upon implicit
lists of edges and faces.

Finally, since the zones of a one dimensional mesh are basically edges, the case of
DB_EDGECENT centering for a one dimensional mesh is treated identically to the
DB_ZONECENT case. Likewise, since the zones of a two dimensional mesh are basically faces, the
DB_FACECENT centering for a two dimensional mesh is treated identically to the
DB_ZONECENT case.
2-70 Silo User’s Guide

DBPutQuadvar
Other information can also be included. This function is useful for writing vector and tensor fields,
whereas the companion function, DBPutQuadvar1, is appropriate for writing scalar fields.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_LABEL char * Character string defining the label associ-
ated with this variable.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBOPT_ASCII_LABEL int Indicate if the variable should be treated
as single character, ascii values. A value
of 1 indicates yes, 0 no.

0

DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

Silo User’s Guide 2-71

DBPutQuadvar
DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_REGION_PNAMES char** A null-pointer terminated array of pointers
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
“DBOPT_REGION_PNAMES” on
page 188.

NULL

Option Name
Value

Data Type Option Meaning Default Value
2-72 Silo User’s Guide

DBPutQuadvar1
DBPutQuadvar1— Write a scalar quad variable object into a Silo file.

Synopsis:

int DBPutQuadvar1 (DBfile *dbfile, char *name, char *meshname,
void *var, int dims[], int ndims,
void *mixvar, int mixlen, int datatype,
int centering, DBoptlist *optlist)

Fortran Equivalent:

integer function dbputqv1(dbid, name, lname, meshname, lmeshname,
var, dims, ndims, mixvar, mixlen, datatype,
centering, optlist_id, status)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with DBPutQuadmesh
or DBPutUcdmesh.) If no association is to be made, this value should be NULL.

var Array defining the values associated with this variable. For true edge- or face-
centering (as opposed to DB_EDGECENT centering when ndims is 1 and
DB_FACECENT centering when ndims is 2), each pointer here should point to
an array that holds ndims sub-arrays, one for each of the i-, j-, k-oriented edges
or i-, j-, k-intercepting faces, respectively. Read the description for
DBPutQuadvar more details.

dims Array of length ndims which describes the dimensionality of the data stored in
the var array. For DB_NODECENT centering, this array holds the number of
nodes in each dimension. For DB_ZONECENT centering, DB_EDGECENT
centering when ndims is 1 and DB_FACECENT centering when ndims is 2,
this array holds the number of zones in each dimension. Otherwise, for
DB_EDGECENT and DB_FACECENT centering, this array should hold the
number of nodes in each dimension.

ndims Number of dimensions.

mixvar Array defining the mixed-data values associated with this variable. If no mixed
values are present, this should be NULL.

mixlen Length of mixed data arrays, if provided.

datatype Datatype of sub-variables. One of the predefined Silo data types.

centering Centering of the subvariables on the associated mesh. One of the predefined
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT or DB_ZONECENT.
Note that DB_EDGECENT centering on a 1D mesh is treated identically to
DB_ZONECENT centering. Likewise for DB_FACECENT centering on a 2D
mesh.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. Typically, this argument
Silo User’s Guide 2-73

DBPutQuadvar1
is NULL.

Returns:

DBPutQuadvar1 returns zero on success and -1 on failure.

Description:

The DBPutQuadvar1 function writes a scalar variable associated with a quad mesh into a Silo file.
A quad-var object contains the variable values, plus the name of the associated quad-mesh. Other
information can also be included. This function should be used for writing scalar fields, and its
companion function, DBPutQuadvar, should be used for writing vector and tensor fields.

For edge- and face-centered data, please refer to the description for DBPutQuadvar for a more
detailed explanation.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_LABEL char * Character string defining the label associ-
ated with this variable.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

2-74 Silo User’s Guide

DBPutQuadvar1
DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

Option Name
Value

Data Type Option Meaning Default Value
Silo User’s Guide 2-75

DBGetQuadvar
DBGetQuadvar—Read a quadrilateral variable from a Silo database.

Synopsis:

DBquadvar *DBGetQuadvar (DBfile *dbfile, char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Name of the variable.

Returns:

DBGetQuadvar returns a pointer to a DBquadvar structure on success and NULL on failure.

Description:

The DBGetQuadvar function allocates a DBquadvar data structure, reads a variable associated
with a quadrilateral mesh from the Silo database, and returns a pointer to that structure. If an error
occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-76 Silo User’s Guide

DBPutUcdmesh
DBPutUcdmesh—Write a UCD mesh object into a Silo file.

Synopsis:

int DBPutUcdmesh (DBfile *dbfile, char *name, int ndims,
char *coordnames[], void *coords[],
int nnodes, int nzones,
char *zonel_name, char *facel_name,
int datatype, DBoptlist *optlist)

Fortran Equivalent:

integer function dbputum(dbid, name, lname, ndims, x, y, z, xname,
lxname, yname, lyname, zname, lzname, nnodes
nzones, zonel_name, lzonel_name, facel_name,
lfacel_name, datatype, optlist_id, status)

void *x,y,z (if ndims<3, z=0 ok, if ndims<2, y=0 ok)
character* xname,yname,zname (same rules)

Arguments:

dbfile Database file pointer.

name Name of the mesh.

ndims Number of spatial dimensions represented by this UCD mesh.

coordnames Array of length ndims containing pointers to the names to be provided when
writing out the coordinate arrays. This parameter is currently ignored and can
be set as NULL.

coords Array of length ndims containing pointers to the coordinate arrays.

nnodes Number of nodes in this UCD mesh.

nzones Number of zones in this UCD mesh.

zonel_name Name of the zonelist structure associated with this variable [written with
DBPutZonelist]. If no association is to be made or if the mesh is composed
solely of arbitrary, polyhedral elements, this value should be NULL. If a
polyhedral-zonelist is to be associated with the mesh, DO NOT pass the name of
the polyhedral-zonelist here. Instead, use the DBOPT_PHZONELIST option
described below. For more information on arbitrary, polyhedral zonelists, see
below and also see the documentation for DBPutPHZonelist.

facel_name Name of the facelist structure associated with this variable [written with
DBPutFacelist]. If no association is to be made, this value should be NULL.

datatype Datatype of the coordinate arrays. One of the predefined Silo data types.

optlist Pointer to an option list structure containing additional information to be
included in the mesh object written into the Silo file. See the table below for the
valid options for this function. If no options are to be provided, use NULL for
this argument.
Silo User’s Guide 2-77

DBPutUcdmesh
Returns:

DBPutUcdmesh returns zero on success and -1 on failure.

Description:

The DBPutUcdmesh function accepts pointers to the coordinate arrays and is responsible for writ-
ing the mesh into a UCD mesh object in the Silo file.

A Silo UCD mesh object contains all necessary information for describing a mesh. This includes
the coordinate arrays, the rank of the mesh (1,2,3,...) and the type (collinear or non-collinear.) In
addition, other information is useful and is therefore included (time and cycle of mesh, plus coor-
dinate system type).

A Silo UCD mesh may be composed of either zoo-type elements or arbitrary, polyhedral elements
or a mixture of both zoo-type and arbitrary, polyhedral elements. The zonelist (connectivity) infor-
mation for zoo-type elements is written with a call to DBPutZonelist. When there are only zoo-
type elements in the mesh, this is the only zonelist information associated with the mesh. However,
the caller can optionally specify the name of an arbitrary, polyhedral zonelist written with a call to
DBPutPHZonelist using the DBOPT_PHZONELIST option. If the mesh consists solely of arbi-
trary, polyhedral elements, the only zonelist associated with the mesh will be the one written with
the call to DBPutPHZonelist.

When a mesh is composed of both zoo-type elements and polyhedral elements, it is assumed that
all the zoo-type elements come first in the mesh followed by all the polyhedral elements. This has
implications for any DBPutUcdvar calls made on such a mesh. For zone-centered data, the vari-
able array should be organized so that values corresponding to zoo-type zones come first followed
by values corresponding to polyhedral zones. Also, since both the zoo-type zonelist and the poly-
hedral zonelist support hi- and lo- offsets for ghost zones, the ghost-zones of a mesh may consist
of zoo-type or polyhedral zones or a mixture of both.

Notes:

See the description of “DBCalcExternalFacelist” on page 2-194 or “DBCalcExternalFacelist2” on
page 2-196 for an automated way of computing the facelist needed for this call.
2-78 Silo User’s Guide

DBPutUcdmesh
Figure 0-1: Example usage of UCD zonelist and external facelist variables.

The order in which nodes are defined in the zonelist is important, especially for 3D cells. Nodes
defining a 2D cell should be supplied in either clockwise or counterclockwise order around the

1 2 3

4 5 6

7 8 9

10 11 12

nnodes = 13
nzones = 3
nzshapes = 2
lznodelist = 2*8 + 1*5 = 21 zone nodes
nfaces = 13 external faces
nfshapes = 2 external face shapes
nftypes = 0
lfnodelist = 9*4 + 4*3 = 48 external face nodes

fnodelist = { 1,2,8,7 external face nodelist
2,3,9,8,
8,9,12,11,
5,6,12,11,...}

fshapesize = {4,3} external face shape sizes
fshapecnt = {9,4} external face shape counts

znodelist = { 7,10,11,8,1,4,5,2, zone nodelist
8,11,12,9,2,5,6,3,

zshapesize = {8,5} zone shape sizes
zshapecnt = {2,1} zone shape counts

x = {0,1,2,0,1,2,0,1,2,0,1,2,3}
y = {1,1,1,0,0,0,1,1,1,0,0,0,.5}

X

Y

Z

z = {1,1,1,1,1,1,0,0,0,0,0,0,.5}

fzoneno = {1,2,2,2,...}external face zone nos

13

3,9,12,6,13}
Silo User’s Guide 2-79

DBPutUcdmesh
cell. The node, edge and face ordering and orientations for the predefined 3D cell types are illus-
trated below.

Figure 0-2: Node, edge and face ordering for zoo-type UCD zone shapes.

Given the node ordering in the left-most column, there is indeed an algorithm for determining the
other orderings for each cell type.

For edges, each edge is identified by a pair of integer indices; the first being the “tail” of an arrow
oriented along the edge and the second being the “head” with the smaller node index always
placed first (at the tail). Next, the ordering of edges is akin to a lexicographic ordering of these
pairs of integers. This means that we start with the lowest node number of a cell shape, zero, and
find all edges with node zero as one of the points on the edge. Each such edge will have zero as its
tail. Since they all start with node 0 as the tail, we order these edges from smallest to largest
“head” node. Then we go to the next lowest node number on the cell that has edges that have yet to

4

5

4

0

3

6

3

0

7

2

4

5

2

1

1

2

30

1

0

1

2

3
1 3

02

5

4

1

50

2

7

64
3

0
3

5
1

2 4
7 6

8

0

Node Order Edge Order Face Order

3
5
1

8
10

11
9

2
4

6
7

Tetrahedron

Pyramid

Prism

Hexahedron

0:012
1:023
2:031
3:132

0:0123
1:034
2:041
3:142
4:243

0:0123
1:034
2:0451
3:152
4:2543

0:0154
1:0321
2:0473
3:1265
4:2376
5:4567
2-80 Silo User’s Guide

DBPutUcdmesh
have been placed in the ordering. We find all the edges from that node (that have not already been
placed in the ordering) from smallest to largest “head” node. We continue this process until all the
edges on the cell have been placed in the ordering.

For faces, a similar algorithm is used. Starting with the lowest numbered node on a face, we enu-
merate the nodes over a face using the right hand rule for the normal to the face pointing away
from the innards of the cell. When one places the thumb of the right hand in the direction of this
normal, the direction of the fingers curling around it identify the direction we go to identify the
nodes of the face. Just as for edges, we start identifying faces for the lowest numbered node of the
cell (0). We find all faces that share this node. Of these, the face that enumerates the next lowest
node number as we traverse the nodes using the right hand rule, is placed first in the ordering.
Then, the face that has the next lowest node number and so on.

An example using arbitrary polyhedrons for some zones is illustrated in Figure 0-3 on page 82.
The nodes of a DB_ZONETYPE_POLYHEDRON are specified in the following fashion: First
specify the number of faces in the polyhedron. Then, for each face, specify the number of nodes in
the face followed by the nodes that make up the face. The nodes should be ordered such that they
are numbered in a counter-clockwise fashion when viewed from the outside. For a fully arbitrarily
connected mesh, see DBPutPHZonelist(). In addition, for a sequence of consecutive zones of type
DB_ZONETYPE_POLYHEDRON in a zonelist, the shapesize entry is taken to be the sum of all
the associated positions occupied in the nodelist data. So, for the example in Figure 0-3 on page
82, the shapesize entry for the DB_ZONETYPE_POLYEDRON segment of the zonelist is ‘53’
because for the two arbitrary polyhedral zones in the zonelist, 53 positions in the nodelist array are
used.
Silo User’s Guide 2-81

DBPutUcdmesh
Figure 0-3: Example usage of UCD zonelist combining a hex and 2 polyhedra. This example is intended to illustrate
the representation of arbitrary polyhedra. So, although the two polyhedra represent a hex and pyramid which would
ordinarily be handled just fine by a ‘normal’ zonelist, they are expressed using arbitrary connectivity here.

1 2 3

4 5 6

7 8 9

10 11 12

nzones = 3
nzshapes = 2
lznodelist = 8 + 1 + 6 * 5 + 1 + 5 + 4 * 4 = 61
znodelist = {7,10,11,8,1,4,5,2,

X

Y

Z

13

6,
4,11,12,9,8,
4,12,6,3,9,
4,6,5,2,3,
4,5,11,8,2,
4,5,6,12,11,
4,3,2,8,9,
5,
4,3,6,12,9,
3,6,13,12,
3,12,13,9,
3,9,13,3,
3,3,13,6}

zshapetype = {DB_ZONETYPE_HEX,
DB_ZONETYPE_POLYHEDRON}

zshapesize = {8, 53}
zshapecnt = {1, 2}
2-82 Silo User’s Guide

DBPutUcdmesh
The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_NODENUM void* An array of length nnodes giving a global
node number for each node in the mesh.
By default, this array is treated as type int.

NULL

DBOPT_LLONGNZNUM int Indicates that the array passed for
DBOPT_NODENUM option is of long long
type instead of int.

0

DBOPT_CYCLE int Problem cycle value 0

DBOPT_FACETYPE int Zone face type. One of the predefined
types: DB_RECTILINEAR or
DB_CURVILINEAR.

DB_RECTILINEAR

DBOPT_XLABEL char * Character string defining the label associ-
ated with the X dimension.

NULL

DBOPT_YLABEL char * Character string defining the label associ-
ated with the Y dimension.

NULL

DBOPT_ZLABEL char * Character string defining the label associ-
ated with the Z dimension.

NULL

DBOPT_NSPACE int Number of spatial dimensions used by this
mesh.

ndims

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_PLANAR int Planar value. One of: DB_AREA or
DB_VOLUME.

DB_NONE

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XUNITS char * Character string defining the units associ-
ated with the X dimension.

NULL

DBOPT_YUNITS char * Character string defining the units associ-
ated with the Y dimension.

NULL

DBOPT_ZUNITS char * Character string defining the units associ-
ated with the Z dimension.

NULL

DBOPT_PHZONELIST char * Character string holding the name for a
polyhedral zonelist object to be associated
with the mesh

NULL

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

Silo User’s Guide 2-83

DBPutUcdmesh
DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to
be associated with this mesh.

NULL

DBOPT_TOPO_DIM int Used to indicate the topological dimension
of the mesh apart from its spatial dimen-
sion.

-1 (not specified)

DBOPT_TV_CONNECTIVTY int A non-zero value indicates that the con-
nectivity of the mesh varies with time

0

DBOPT_DISJOINT_MODE int Indicates if any elements in the mesh are
disjoint. There are two possible modes.
One is DB_ABUTTING indicating that ele-
ments abut spatially but actually reference
different node ids (but spatially equivalent
nodal positions) in the node list. The other
is DB_FLOATING where elements neither
share nodes in the nodelist nor abut spa-
tially.

DB_NONE

The following options have been deprecated. Use MRG trees instead

DBOPT_GROUPNUM int The group number to which this quad-
mesh belongs.

-1 (not in a group)

Option Name
Value

Data Type Option Meaning Default Value
2-84 Silo User’s Guide

DBPutUcdsubmesh
DBPutUcdsubmesh—Write a subset of a parent, ucd mesh, to a Silo file

Synopsis:

int DBPutUcdsubmesh(DBfile *file, const char *name,
const char *parentmesh, int nzones, const char *zlname,
const char *flname, DBoptlist *opts)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle.

name The name of the ucd submesh object to create.

parentmesh The name of the parent ucd mesh this submesh is a portion of.

nzones The number of zones in this submesh.

zlname The name of the zonelist object.

fl [OPT] The name of the facelist object.

opts Additional options.

Returns:

A positive number on success; -1 on failure

Description:

DO NOT USE THIS METHOD.

It is an extremely limited, inefficient and soon to be retired way of trying to define subsets of
a ucd mesh. Instead, use a Mesh Region Grouping (MRG) tree. See “DBMakeMrgtree” on
page 165.
Silo User’s Guide 2-85

DBGetUcdmesh
DBGetUcdmesh—Read a UCD mesh from a Silo database.

Synopsis:

DBucdmesh *DBGetUcdmesh (DBfile *dbfile, char *meshname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

meshname Name of the mesh.

Returns:

DBGetUcdmesh returns a pointer to a DBucdmesh structure on success and NULL on failure.

Description:

The DBGetUcdmesh function allocates a DBucdmesh data structure, reads a UCD mesh from the
Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-86 Silo User’s Guide

DBPutZonelist
DBPutZonelist—Write a zonelist object into a Silo file.

Synopsis:

int DBPutZonelist (DBfile *dbfile, char *name, int nzones,
int ndims, int nodelist[], int lnodelist,
int origin, int shapesize[], int shapecnt[],
int nshapes)

Fortran Equivalent:

integer function dbputzl(dbid, name, lname, nzones, ndims,
nodelist, lnodelist, origin, shapesize,
shapecnt, nshapes, status)

Arguments:

dbfile Database file pointer.

name Name of the zonelist structure.

nzones Number of zones in associated mesh.

ndims Number of spatial dimensions represented by associated mesh.

nodelist Array of length lnodelist containing node indices describing mesh zones.

lnodelist Length of nodelist array.

origin Origin for indices in the nodelist array. Should be zero or one.

shapesize Array of length nshapes containing the number of nodes used by each zone
shape.

shapecnt Array of length nshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

Returns:

DBPutZonelist returns zero on success or -1 on failure.

Description:

Do not use this method. Use DBPutZonelist2() instead.

The DBPutZonelist function writes a zonelist object into a Silo file. The name assigned to this
object can in turn be used as the zonel_name parameter to the DBPutUcdmesh function.

Notes:

See the write-up of DBPutUcdmesh for a full description of the zonelist data structures.
Silo User’s Guide 2-87

DBPutZonelist2
DBPutZonelist2—Write a zonelist object containing ghost zones into a Silo file.

Synopsis:

int DBPutZonelist2 (DBfile *dbfile, char *name, int nzones,
int ndims, int nodelist[], int lnodelist,
int origin, int lo_offset, int hi_offset,
int shapetype[], int shapesize[],
int shapecnt[], int nshapes,
DBoptlist *optlist)

Fortran Equivalent:

integer function dbputzl2(dbid, name, lname, nzones, ndims,
nodelist, lnodelist, origin, lo_offset,
hi_offset, shapetype, shapesize, shapecnt,
nshapes, optlist_id, status)

Arguments:

dbfile Database file pointer.

name Name of the zonelist structure.

nzones Number of zones in associated mesh.

ndims Number of spatial dimensions represented by associated mesh.

nodelist Array of length lnodelist containing node indices describing mesh zones.

lnodelist Length of nodelist array.

origin Origin for indices in the nodelist array. Should be zero or one.

lo_offset The number of ghost zones at the beginning of the nodelist.

hi_offset The number of ghost zones at the end of the nodelist.

shapetype Array of length nshapes containing the type of each zone shape. See
description below.

shapesize Array of length nshapes containing the number of nodes used by each zone
shape.

shapecnt Array of length nshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutZonelist2 returns zero on success or -1 on failure.
2-88 Silo User’s Guide

DBPutZonelist2
Description:

The DBPutZonelist2 function writes a zonelist object into a Silo file. The name assigned to this
object can in turn be used as the zonel_name parameter to the DBPutUcdmesh function.

The allowed shape types are described in the following table:

Notes:

The following table describes the options accepted by this function:

For a description of how the nodes for the allowed shapes are enumerated, see “DBPutUcdmesh”
on page 2-77

Type Description

DB_ZONETYPE_BEAM A line segment

DB_ZONETYPE_POLYGON A polygon where nodes are enumerated to form a polygon

DB_ZONETYPE_TRIANGLE A triangle

DB_ZONETYPE_QUAD A quadrilateral

DB_ZONETYPE_POLYHEDRON A polyhedron with nodes enumerated to form faces and
faces are enumerated to form a polyhedron

DB_ZONETYPE_TET A tetrahedron

DB_ZONETYPE_PYRAMID A pyramid

DB_ZONETYPE_PRISM A prism

DB_ZONETYPE_HEX A hexahedron

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_ZONENUM void* Array of global zone numbers, one per
zone in this zonelist. By default, this is
assumed to be of type int.

NULL

DBOPT_LLONGNZNUM int Indicates that the array passed for
DBOPT_ZONENUM option is of long long
type instead of int.

0

DBOPT_EDGELIST char* Name of explicit edgelist object NULL
Silo User’s Guide 2-89

DBPutPHZonelist
DBPutPHZonelist—Write an arbitrary, polyhedral zonelist object into a Silo file.

Synopsis:

int DBPutPHZonelist (DBfile *dbfile, char *name, int nfaces,
int *nodecnts, int lnodelist, int *nodelist,
char *extface, int nzones, int *facecnts,
int lfacelist, int *facelist, int origin,
int lo_offset, int hi_offset,
DBoptlist *optlist)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name Name of the zonelist structure.

nfaces Number of faces in the zonelist. Note that faces shared between zones should
only be counted once.

nodecnts Array of length nfaces indicating the number of nodes in each face. That is
nodecnts[i] is the number of nodes in face i.

lnodelist Length of the succeeding nodelist array.

nodelist Array of length lnodelist listing the nodes of each face. The list of nodes
for face i begins at index Sum(nodecnts[j]) for j=0...i-1.

extface An optional array of length nfaces where extface[i]!=0x0 means that
face i is an external face. This argument may be NULL.

nzones Number of zones in the zonelist.

facecnts Array of length nzones where facecnts[i] is number of faces for zone i.

lfacelist Length of the succeeding facelist array.

facelist Array of face ids for each zone. The list of faces for zone i begins at index
Sum(facecnts[j]) for j=0...i-1. Note, however, that each face is
identified by a signed value where the sign is used to indicate which ordering of
the nodes of a face is to be used. A face id >= 0 means that the node ordering as
it appears in the nodelist should be used. Otherwise, the value is negative
and it should be 1-complimented to get the face’s true id. In addition, the node
ordering for such a face is the opposite of how it appears in the nodelist. Finally,
node orders over a face should be specified such that a right-hand rule yields the
outward normal for the face relative to the zone it is being defined for.

origin Origin for indices in the nodelist array. Should be zero or one.

lo-offset Index of first real (e.g. non-ghost) zone in the list. All zones with index less than
(<) lo-offset are treated as ghost-zones.

hi-offset Index of last real (e.g. non-ghost) zone in the list. All zones with index greater
2-90 Silo User’s Guide

DBPutPHZonelist
than (>) hi-offset are treated as ghost zones.

Returns:

DBPutPHZonelist returns zero on success or -1 on failure.

Description:

The DBPutPHZonelist function writes a polyhedral-zonelist object into a Silo file. The name
assigned to this object can in turn be used as the parameter in the DBOPT_PHZONELIST option
for the DBPutUcdmesh function.

Notes:

The following table describes the options accepted by this function:

In interpreting the diagram above, numbers correspond to nodes while letters correspond to faces.
In addition, the letters are drawn such that they will always be in the lower, right hand corner of a
face if you were standing outside the object looking towards the given face. In the example code
below, the list of nodes for a given face begin with the node nearest its corresponding letter.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_ZONENUM void* Array of global zone numbers, one per
zone in this zonelist. By default, it is
assumed this array is of type int*.

NULL

DBOPT_LLONGNZNUM int Indicates that the array passed for
DBOPT_ZONENUM option is of long long
type instead of int.

0

9 10 11

6 7 8

3 4 5

0 1 2

X

Z

Y

b

c d
e f

g h

i j

k

a

zone 0
zone 1
Silo User’s Guide 2-91

DBPutPHZonelist
#define NNODES 12
#define NFACES 11
#define NZONES 2

/* coordinate arrays */
float x[NNODES] = {0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0, 2.0};
float y[NNODES] = {0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0};
float z[NNODES] = {0.0, 0.0, 0.0, 1.0, 1.0, 1.0, 0.0, 0.0, 0.0, 1.0, 1.0, 1.0};

/* facelist where we enumerate the nodes over each face */
int nodecnts[NFACES] = {4,4,4,4,4,4,4,4,4,4,4};
int lnodelist = 4*NFACES;
/* a b c */
int nodelist[4*NFACES] = {1,7,6,0, 2,8,7,1 4,1,0,3,
/* d e f */
 5,2,1,4, 3,9,10,4, 4,10,11,5,
/* g h i */
 9,6,7,10, 10,7,8,11, 0,6,9,3,
/* j K */
 1,7,10,4, 5,11,8,2};

/* zonelist where we enumerate the faces over each zone */
int facecnts[NZONES] = {6,6};
int lfacelist = 6*NZONES;
int facelist[6*NZONES] = {0,2,4,6,8,-9, 1,3,5,7,9,10};

Figure 0-4: Example of a polyhedral zonelist representation for two hexahedral elements.
2-92 Silo User’s Guide

DBGetPHZonelist
DBGetPHZonelist—Read a polyhedral-zonelist from a Silo database.

Synopsis:

DBphzonelist *DBGetPHZonelist (DBfile *dbfile, char *phzlname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

phzlname Name of the polyhedral-zonelist.

Returns:

DBGetPHZonelist returns a pointer to a DBphzonelist structure on success and NULL on failure.

Description:

The DBGetPHZonelist function allocates a DBphzonelist data structure, reads a polyhedral-zonel-
ist from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-93

DBPutFacelist
DBPutFacelist—Write a facelist object into a Silo file.

Synopsis:

int DBPutFacelist (DBfile *dbfile, char *name, int nfaces,
int ndims, int nodelist[], int lnodelist,
int origin, int zoneno[], int shapesize[],
int shapecnt[], int nshapes, int types[],
int typelist[], int ntypes)

Fortran Equivalent:

integer function dbputfl(dbid, name, lname, ndims nodelist,
lnodelist, origin, zoneno, shapesize,
shapecnt, nshaps, types, typelist, ntypes,
status)

Arguments:

dbfile Database file pointer.

name Name of the facelist structure.

nfaces Number of external faces in associated mesh.

ndims Number of spatial dimensions represented by the associated mesh.

nodelist Array of length lnodelist containing node indices describing mesh faces.

lnodelist Length of nodelist array.

origin Origin for indices in nodelist array. Either zero or one.

zoneno Array of length nfaces containing the zone number from which each face
came. Use a NULL for this parameter if zone numbering info is not wanted.

shapesize Array of length nshapes containing the number of nodes used by each face
shape (for 3-D meshes only).

shapecnt Array of length nshapes containing the number of faces having each shape
(for 3-D meshes only).

nshapes Number of face shapes (for 3-D meshes only).

types Array of length nfaces containing information about each face. This
argument is ignored if ntypes is zero, or if this parameter is NULL.

typelist Array of length ntypes containing the identifiers for each type. This argument
is ignored if ntypes is zero, or if this parameter is NULL.

ntypes Number of types, or zero if type information was not provided.

Returns:

DBPutFacelist returns zero on success or -1 on failure.
2-94 Silo User’s Guide

DBPutFacelist
Description:

The DBPutFacelist function writes a facelist object into a Silo file. The name given to this object
can in turn be used as a parameter to the DBPutUcdmesh function.

Notes:

See the write-up of DBPutUcdmesh for a full description of the facelist data structures.
Silo User’s Guide 2-95

DBPutUcdvar
DBPutUcdvar—Write a vector/tensor UCD variable object into a Silo file.

Synopsis:

int DBPutUcdvar (DBfile *dbfile, char *name, char *meshname,
int nvars, char *varnames[], void *vars[], int
nels, void *mixvars[], int mixlen,
int datatype, int centering,
DBoptlist *optlist)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with DBPutUcdmesh).

nvars Number of sub-variables which comprise this variable. For a scalar array, this is
one. If writing a vector quantity, however, this would be two for a 2-D vector
and three for a 3-D vector.

varnames Array of length nvars containing pointers to character strings defining the
names associated with each subvariable.

vars Array of length nvars containing pointers to arrays defining the values
associated with each subvariable.

nels Number of elements in this variable.

mixvars Array of length nvars containing pointers to arrays defining the mixed-data
values associated with each subvariable. If no mixed values are present, this
should be NULL.

mixlen Length of mixed data arrays (i.e., mixvars).

datatype Datatype of sub-variables. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT,
DB_ZONECENT or DB_BLOCKCENT. See below for a discussion of
centering issues.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutUcdvar returns zero on success and -1 on failure.
2-96 Silo User’s Guide

DBPutUcdvar
Description:

The DBPutUcdvar function writes a variable associated with an UCD mesh into a Silo file. Note
that variables can be node-centered, zone-centered, edge-centered or face-centered.

For node- (or zone-) centered data, the question of which value in the vars array goes with which
node (or zone) is determined implicitly by a one-to-one correspondence with the list of nodes in
the DBPutUcdmesh call (or zones in the DBPutZonelist or DBPutZonelist2 call). For
example, the 237th value in a zone-centered vars array passed here goes with the 237th zone in
the zonelist passed in the DBPutZonelist2 (or DBPutZonelist) call.

Edge- and face-centered data require a little more explanation. Unlike node- and zone-centered
data, there does not exist in Silo an explicit list of edges or faces. As an aside, the DBPut-
Facelist call is really for writing the external faces of a mesh so that a downstream visualiza-
tion tool need not have to compute them when it displays the mesh. Now, requiring the caller to
create explicit lists of edges and/or faces in order to handle edge- or face-centered data results in
unnecessary additional data being written to a Silo file. This increases file size as well as the time
to write and read the file. To avoid this, we rely upon implicit lists of edges and faces.

We define implicit lists of edges and faces in terms of a traversal of the zonelist structure of the
associated mesh. The position of an edge (or face) in its list is determined by the order of its first
occurrence in this traversal. The traversal algorithm is to visit each zone in the zonelist and, for
each zone, visit its edges (or faces) in local order. See Figure 0-2 on page 80. Because this traversal
will wind up visiting edges multiple times, the first time an edge (or face) is encountered is what
determines its position in the implicit edge (or face) list.

If the zonelist contains arbitrary polyhedra or the zonelist is a polyhedral zonelist (written with
DBPutPHZonelist), then the traversal algorithm involves visiting each zone, then each face for a
zone and finally each edge for a face.

Note that DBPutUcdvar() can also be used to define a block-centered variable on a multi-block
mesh by specifying a multi-block mesh name for the meshname and DB_BLOCKCENT for the
centering. This is useful in defining, for example, multi-block variable extents.

Other information can also be included. This function is useful for writing vector and tensor fields,
whereas the companion function, DBPutUcdvar1, is appropriate for writing scalar fields.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character strings defining the label asso-
ciated with this variable.

NULL

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0
Silo User’s Guide 2-97

DBPutUcdvar
DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBOPT_ASCII_LABEL int Indicate if the variable should be treated
as single character, ascii values. A value
of 1 indicates yes, 0 no.

0

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_REGION_PNAMES char** A null-pointer terminated array of pointers
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
“DBOPT_REGION_PNAMES” on
page 188.

NULL

DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

Option Name
Value

Data Type Option Meaning Default Value
2-98 Silo User’s Guide

DBPutUcdvar1
DBPutUcdvar1—Write a scalar UCD variable object into a Silo file.

Synopsis:

int DBPutUcdvar1 (DBfile *dbfile, char *name, char *meshname,
void *var, int nels, void *mixvar,
int mixlen, int datatype, int centering,
DBoptlist *optlist)

Fortran Equivalent:

integer function dbputuv1(dbid, name, lname, meshname, lmeshname,
var, nels, mixvar, mixlen, datatype,
centering, optlist_id, staus)

Arguments:

dbfile Database file pointer.

name Name of the variable.

meshname Name of the mesh associated with this variable (written with either
DBPutUcdmesh).

var Array of length nels containing the values associated with this variable.

nels Number of elements in this variable.

mixvar Array of length mixlen containing the mixed-data values associated with this
variable. If mixlen is zero, this value is ignored.

mixlen Length of mixvar array. If zero, no mixed data is present.

datatype Datatype of variable. One of the predefined Silo data types.

centering Centering of the sub-variables on the associated mesh. One of the predefined
types: DB_NODECENT, DB_EDGECENT, DB_FACECENT or
DB_ZONECENT.

optlist Pointer to an option list structure containing additional information to be
included in the variable object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutUcdvar1 returns zero on success and -1 on failure.

Description:

DBPutUcdvar1 writes a variable associated with an UCD mesh into a Silo file. Note that variables
will be either node-centered or zone-centered. Other information can also be included. This func-
tion is useful for writing scalar fields, whereas the companion function, DBPutUcdvar, is appropri-
ate for writing vector and tensor fields.
Silo User’s Guide 2-99

DBPutUcdvar1
Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_COORDSYS int Coordinate system. One of:
DB_CARTESIAN, DB_CYLINDRICAL,
DB_SPHERICAL, DB_NUMERICAL, or
DB_OTHER.

DB_OTHER

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character strings defining the label asso-
ciated with this variable.

NULL

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

2-100 Silo User’s Guide

DBGetUcdvar
DBGetUcdvar—Read a UCD variable from a Silo database.

Synopsis:

DBucdvar *DBGetUcdvar (DBfile *dbfile, char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Name of the variable.

Returns:

DBGetUcdvar returns a pointer to a DBucdvar structure on success and NULL on failure.

Description:

The DBGetUcdvar function allocates a DBucdvar data structure, reads a variable associated with a
UCD mesh from the Silo database, and returns a pointer to that structure. If an error occurs, NULL
is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-101

DBPutCsgmesh
DBPutCsgmesh—Write a CSG mesh object to a Silo file

Synopsis:

DBPutCsgmesh(DBfile *dbfile, const char *name, int ndims,
 int nbounds,
 const int *typeflags, const int *bndids,
 const void *coeffs, int lcoeffs, int datatype,
 const double *extents, const char *zonel_name,
 DBoptlist *optlist);

Fortran Equivalent:

integer function dbputcsgm(dbid, name, lname, ndims, nbounds,
typeflags, bndids, coeffs, lcoeffs, datatype,
extents, zonel_name, lzonel_name, optlist_id,
status)

Arguments:

dbfile Database file pointer

name Name to associate with this DBcsgmesh object

ndims Number of spatial and topological dimensions of the CSG mesh object

nbounds Number of boundaries in the CSG mesh description.

typeflags Integer array of length nbounds of type information for each boundary. This is
used to encode various information about the type of each boundary such as, for
example, plane, sphere, cone, general quadric, etc as well as the number of
coefficients in the representation of the boundary. For more information, see the
description, below.

bndids Optional integer array of length nbounds which are the explicit integer
identifiers for each boundary. It is these identifiers that are used in expressions
defining a region of the CSG mesh. If the caller passes NULL for this argument,
a natural numbering of boundaries is assumed. That is, the boundary occurring
at position i, starting from zero, in the list of boundaries here is identified by
the integer i.

coeffs Array of length lcoeffs of coefficients used in the representation of each
boundary or, if the boundary is a transformed copy of another boundary, the
coefficients of the transformation. In the case where a given boundary is a
transformation of another boundary, the first entry in the coeffs entries for the
boundary is the (integer) identifier for the referenced boundary. Consequently, if
the datatype for coeffs is DB_FLOAT, there is an upper limit of about 16.7
million (2^24) boundaries that can be referenced in this way.

lcoeffs Length of the coeffs array.

datatype The data type of the data in the coeffs array.

zonel_name Name of CSG zonelist to be associated with this CSG mesh object

extents Array of length 2*ndims of spatial extents, xy(z)-minimums followed by
2-102 Silo User’s Guide

DBPutCsgmesh
xy(z)-maximums.

optlist Pointer to an option list structure containing additional information to be
included in the CSG mesh object written into the Silo file. Use NULL if there
are no options.

Returns:

DBPutCsgMesh returns zero on success and -1 on failure.

Description:

The word “mesh” in this function name is probably somewhat misleading because it suggests a
discretization of a domain into a “mesh”. In fact, a CSG (Constructive Solid Geometry) “mesh” in
Silo is a continuous, analytic representation of the geometry of some computational domain.
Nonetheless, most of Silo’s concepts for meshes, variables, materials, species and multi-block
objects apply equally well in the case of a CSG “mesh” and so that is what it is called, here. Pres-
ently, Silo does not have functions to discretize this kind of mesh. It has only the functions for stor-
ing and retrieving it. Nonetheless, a future version of Silo may include functions to discretize a
CSG mesh.

A CSG mesh is constructed by starting with a list of analytic boundaries, that is curves in 2D or
surfaces in 3D, such as planes, spheres and cones or general quadrics. Each boundary is defined by
an analytic expression (an equation) of the form f(x,y,z)=0 (or, in 2D, f(x,y)=0) in which the high-
est exponent for x, y or z is 2. That is, all the boundaries are quadratic (or “quadric”) at most.

The table below describes how to use the typeflags argument to define various kinds of bound-
aries in 3 dimensions.

typeflag

nu
m

-c
oe

ffs coefficients and equation

DBCSG_QUADRIC_G 10

DBCSG_SPHERE_PR 4

DBCSG_ELLIPSOID_PRRR 6

DBCSG_PLANE_G 4

DBCSG_PLANE_X 1

DBCSG_PLANE_Y 1

DBCSG_PLANE_Z 1

DBCSG_PLANE_PN 6

DBCSG_PLANE_PPP 9

DBCSG_CYLINDER_PNLR 8 to be completed

a0x
2

a1y
2

a2z
2

a3xy a4yz a5xz a6x a7y a8z a9+ + + + + + + + + 0=

x a0–()2
y a1–()2

z a2–()2
a3

2
–+ + 0=

x a0–()2
a3

2⁄ y a1–()2
a4

2⁄ z a2–()2
a5

2⁄ 1–+ + 0=

a0x a1y a2z a3+ + + 0=

x a0– 0=

y a0– 0=

z a0– 0=

x a0–()a3 y a1–()a4 z a2–()a5+ + 0=

x a0– y a1– z a2–

a3 a0– a4 a1– a5 a2–

a6 a0– a7 a1– a8 a2–

0=
Silo User’s Guide 2-103

DBPutCsgmesh
The table below defines an analogous set of typeflags for creating boundaries in two dimensions..

By replacing the ‘=’ in the equation for a boundary with either a ‘<‘ or a ‘>’, whole regions in 2 or
3D space can be defined using these boundaries. These regions represent the set of all points that
satisfy the inequality. In addition, regions can be combined to form new regions by unions, inter-
sections and differences as well other operations (See DBPutCSGZonelist).

DBCSG_CYLINDER_PPR 7 to be completed

DBCSG_BOX_XYZXYZ 6 to be completed

DBCSG_CONE_PNLA 8 to be completed

DBCSG_CONE_PPA to be completed

DBCSG_POLYHEDRON_KF | K 6K to be completed

DBCSG_HEX_6F 36 to be completed

DBCSG_TET_4F 24 to be completed

DBCSG_PYRAMID_5F 30 to be completed

DBCSG_PRISM_5F 30 to be completed

typeflag

nu
m

-c
oe

ffs coefficients and equation

DBCSG_QUADRATIC_G 6

DBCSG_CIRCLE_PR 3

DBCSG_ELLIPSE_PRR 4

DBCSG_LINE_G 3

DBCSG_LINE_X 1

DBCSG_LINE_Y 1

DBCSG_LINE_PN 4

DBCSG_LINE_PP 4

DBCSG_BOX_XYXY 4 to be completed

DBCSG_POLYGON_KP | K 2K to be completed

DBCSG_TRI_3P 6 to be completed

DBCSG_QUAD_4P 8 to be completed

typeflag

nu
m

-c
oe

ffs coefficients and equation

a0x
2

a1y
2

a2xy a3x a4y a5+ + + + + 0=

x a0–()2
y a1–()2

a2
2

–+ 0=

x a0–()2
a2

2⁄ y a1–()2
a3

2⁄ 1–+ 0=

a0x a1y a2+ + 0=

x a0– 0=

y a0– 0=

x a0–()a2 y a1–()a3+ 0=

a3 a1–

a2 a0–

y a1–

x a0–
--------------– 0=
2-104 Silo User’s Guide

DBPutCsgmesh
In this call, only the analytic boundaries used in the expressions to define the regions are written.
The expressions defining the regions themselves are written in a separate call, DBPutCSG-
Zonelist.

If you compare this call to write a CSG mesh to a Silo file with a similar call to write a UCD mesh,
you will notice that the boundary list here plays a role similar to that of the nodal coordinates of a
UCD mesh. For the UCD mesh, the basic geometric primitives are points (nodes) and a separate
call, DBPutZonelist, is used to write out the information that defines how points (nodes) are
combined to form the zones of the mesh.

Similarly, here the basic geometric primitives are analytic boundaries and a separate call,
DBPutCSGZonelist, is used to write out the information that defines how the boundaries are
combined to form regions of the mesh.

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of the DBoptlist construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_XLABEL char * Character string defining the label associ-
ated with the X dimension.

NULL

DBOPT_YLABEL char * Character string defining the label associ-
ated with the Y dimension.

NULL

DBOPT_ZLABEL char * Character string defining the label associ-
ated with the Z dimension.

NULL

DBOPT_XUNITS char * Character string defining the units associ-
ated with the X dimension.

NULL

DBOPT_YUNITS char * Character string defining the units associ-
ated with the Y dimension.

NULL

DBOPT_ZUNITS char * Character string defining the units associ-
ated with the Z dimension.

NULL

DBOPT_BNDNAMES char ** Array of nboundaries character strings
defining the names of the individual
boundaries.

NULL

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to
be associated with this mesh.

NULL

DBOPT_TV_CONNECTIVTY int A non-zero value indicates that the con-
nectivity of the mesh varies with time

0

Silo User’s Guide 2-105

DBPutCsgmesh
DBOPT_DISJOINT_MODE int Indicates if any elements in the mesh are
disjoint. There are two possible modes.
One is DB_ABUTTING indicating that ele-
ments abut spatially but actually reference
different node ids (but spatially equivalent
nodal positions) in the node list. The other
is DB_FLOATING where elements neither
share nodes in the nodelist nor abut spa-
tially.

DB_NONE

The following options have been deprecated. Use MRG trees instead

DBOPT_GROUPNUM int The group number to which this quad-
mesh belongs.

-1 (not in a
group)

Option Name
Value

Data Type Option Meaning Default Value
2-106 Silo User’s Guide

DBGetCsgmesh
DBGetCsgmesh—Get a CSG mesh object from a Silo file

Synopsis:

DBcsgmesh *DBGetCsgmesh(DBfile *dbfile, const char *meshname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer

meshname Name of the CSG mesh object to read

Returns:

A pointer to a DBcsgmesh structure on success and NULL on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-107

DBPutCSGZonelist
DBPutCSGZonelist—Put a CSG zonelist object in a Silo file.

Synopsis:

int DBPutCSGZonelist(DBfile *dbfile, const char *name, int nregs,
 const int *typeflags,
 const int *leftids, const int *rightids,
 const void *xforms, int lxforms, int datatype,
 int nzones, const int *zonelist,
 DBoptlist *optlist);

Fortran Equivalent:

integer function dbputcsgzl(dbid, name, lname, nregs, typeflags,
leftids, rightids, xforms, lxforms, datatype,
nzones, zonelist, optlist_id, status)

Arguments:

dbfile Database file pointer

name Name to associate with the DBcsgzonelist object

nregs The number of regions in the regionlist.

typeflags Integer array of length nregs of type information for each region. Each entry
in this array is one of either DB_INNER, DB_OUTER, DB_ON, DB_XFORM,
DB_SWEEP, DB_UNION, DB_INTERSECT, and DB_DIFF.

The symbols, DB_INNER, DB_OUTER, DB_ON, DB_XFORM and DB_SWEEP
represent unary operators applied to the referenced region (or boundary). The
symbols DB_UNION, DB_INTERSECT, and DB_DIFF represent binary
operators applied to two referenced regions.

For the unary operators, DB_INNER forms a region from a boundary (See
DBPutCsgmesh) by replacing the ‘=’ in the equation representing the boundary
with ‘<‘. Likewise, DB_OUTER forms a region from a boundary by replacing
the ‘=’ in the equation representing the boundary with ‘>’. Finally, DB_ON
forms a region (of topological dimension one less than the mesh) by leaving the
‘=’ in the equation representing the boundary as an ‘=’. In the case of
DB_INNER, DB_OUTER and DB_ON, the corresponding entry in the leftids
array is a reference to a boundary in the boundary list (See DBPutCsgmesh).

For the unary operator, DB_XFORM, the corresponding entry in the leftids
array is a reference to a region to be transformed while the corresponding entry
in the rightids array is the index into the xform array of the row-by-row
coefficients of the affine transform.

The unary operator DB_SWEEP is not yet implemented.

leftids Integer array of length nregs of references to other regions in the regionlist or
boundaries in the boundary list (See DBPutCsgmesh). Each referenced region
2-108 Silo User’s Guide

DBPutCSGZonelist
in the leftids array forms the left operand of a binary expression (or single
operand of a unary expression) involving the referenced region or boundary.

rightids Integer array of length nregs of references to other regions in the regionlist.
Each referenced region in the rightids array forms the right operand of a
binary expression involving the region or, for regions which are copies of other
regions with a transformation applied, the starting index into the xforms array
of the row-by-row, affine transform coefficients. If for a given region no right
reference is appropriate, put a value of ‘-1’ into this array for the given region.

xforms Array of length lxforms of row-by-row affine transform coefficients for those
regions that are copies of other regions except with a transformation applied. In
this case, the entry in the leftids array indicates the region being copied and
transformed and the entry in the rightids array is the starting index into this
xforms array for the transform coefficients. This argument may be NULL.

lxforms Length of the xforms array. This argument may be zero if xforms is NULL.

datatype The data type of the values in the xforms array. Ignored if xforms is NULL.

nzones The number of zones in the CSG mesh. A zone is really just a completely
defined region.

zonelist Integer array of length nzones of the regions in the regionlist that form the
actual zones of the CSG mesh.

optlist Pointer to an option list structure containing additional information to be
included in this object when it is written to the Silo file. Use NULL if there are
no options.

Returns:

DBPutCSGZonelist returns zero on success and -1 on failure.

Description:

A CSG mesh is a list of curves in 2D or surfaces in 3D. These are analytic expressions of the
boundaries of objects that can be expressed by quadratic equations in x, y and z.

The zonelist for a CSG mesh is constructed by first defining regions from the mesh boundaries. For
example, given the boundary for a sphere, we can create a region by taking the inside
(DB_INNER) of that boundary or by taking the outside (DB_OUTER). In addition, regions can also
be created by boolean operations (union, intersect, diff) on other regions. The table below summa-
rizes how to construct regions using the typeflags argument.

op. symbol name type meaning

DBCSG_INNER unary specifies the region created by all points satisfying the equa-
tion defining the boundary with ‘<‘ replacing ‘=’.

left operand indicates the boundary, right operand ignored

DBCSG_OUTER unary specifies the region created by all points satisfying the equa-
tion defining the boundary with ‘>‘ replacing ‘=’.

left operand indicates the boundary, right operand ignored
Silo User’s Guide 2-109

DBPutCSGZonelist
However, not all regions in a CSG zonelist form the actual zones of a CSG mesh. Some regions
exist only to facilitate the construction of other regions. Only certain regions, those that are com-
pletely constructed, form the actual zones. Consequently, the zonelist for a CSG mesh involves
both a list of regions (as well as the definition of those regions) and then a list of zones (which are
really just completely defined regions).

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of the DBoptlist construct.

DBCSG_ON unary specifies the region created by all points satisfying the equa-
tion defining the boundary.

left operand indicates the boundary, right operand ignored

DBCSG_UNION binary take the union of left and right operands

left and right operands indicate the regions

DBCSG_INTERSECT binary take the intersection of left and right operands

left and right operands indicate the regions

DBCSG_DIFF binary subtract the right operand from the left

left and right operands indicate the regions

DBCSG_COMPLIMENT unary take the compliment of the left operand,

left operand indicates the region, right operand ignored

DBCSG_XFORM unary to be implemented

DBCSG_SWEEP unary to be implemented

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_REGNAMES char ** Array of nregs character strings defining
the names of the individual regions.

NULL

DBOPT_ZONENAMES char** Array of nzones character strings defining
the names of individual zones.

NULL

op. symbol name type meaning
2-110 Silo User’s Guide

DBPutCSGZonelist
Figure 0-5: A relatively simple object to represent as a CSG mesh. It models an A/C vent outlet for a 1994 Toyota
Tercel. It consists of two zones. One is a partially-spherical shaped ring housing (darker area). The other is a lens-
shaped fin used to direct airflow (lighter area).

The table below describes the contents of the boundary list (written in the DBPutCsgmesh call)

The code below writes this CSG mesh to a silo file

int *typeflags={DBCSG_SPHERE_PR, DBCSG_PLANE_X, DBCSG_PLANE_X,
 DBCSG_CYLINDER_PPR, DBCSG_SPHERE_PR, DBCSG_SPHERE_PR};
float *coeffs = {0.0, 0.0, 0.0, 5.0, 1.0, 0.0, 0.0, -2.5,
 1.0, 0.0, 0.0, 2.5, 1.0, 0.0, 0.0, 0.0, 3.0,
 0.0, 0.0, 49.5, 50.0, 0.0. 0.0, -49.5, 50.0};

DBPutCsgmesh(dbfile, “csgmesh”, 3, typeflags, NULL,
 coeffs, 25, DB_FLOAT, “csgzl”, NULL);

typeflags id coefficients name (optional)

DBCSG_SPHERE_PR 0 0.0, 0.0, 0.0, 5.0 “housing outer shell”

DBCSG_PLANE_X 1 -2.5 “housing front”

DBCSG_PLANE_X 2 2.5 “housing back”

DBCSG_CYLINDER_PPR 3 0.0, 0.0, 0.0, 1.0, 0.0. 0.0, 3.0 “housing cavity”

DBCSG_SPHERE_PR 4 0.0, 0.0, 49.5, 50.0 “fin top side”

DBCSG_SPHERE_PR 5 0.0. 0.0, -49.5, 50.0 “fin bottom side”

front

top

side
Silo User’s Guide 2-111

DBPutCSGZonelist
The table below describes the contents of the regionlist, written in the DBPutCSGZonelist call.

The table above creates 11 regions, only 2 of which form the actual zones of the CSG mesh. The 2
complete zones are for the spherical ring housing and the lens-shaped fin that sits inside it. They
are identified by region ids 6 and 10. The other regions exist solely to facilitate the construction.
The code to write this CSG zonelist to a silo file is given below.

int nregs = 11;
int *typeflags={DBCSG_INNER, DBCSG_INNER, DBCSG_OUTER, DBCSG_INNER,
 DBCSG_INTERSECT, DBCSG_INTERSECT, DBCSG_DIFF,

DBCSG_INNER, DBCSG_INNER, DBCSG_INTERSECT,
DBCSG_INTERSECT};

int *leftids={0,1,2,3,0,4,5,4,5,7,9};
int *rightids={-1,-1,-1,-1,1,2,3,-1,-1,8,0};
int nzones = 2;
int *zonelist = {6, 10};

DBPutCSGZonelist(dbfile, “csgzl”, nregs, typeflags,
 leftids, rightids, NULL, 0, DB_INT,
 nzones, zonelist, NULL);

typeflags regid leftids rightids notes

DBCSG_INNER 0 0 -1 creates inner sphere region from boundary 0

DBCSG_INNER 1 1 -1 creates front half-space region from boundary 1

DBCSG_OUTER 2 2 -1 creates back half-space region from boundary 2

DBCSG_INNER 3 3 -1 creates inner cavity region from boundary 3

DBCSG_INTERSE
CT

4 0 1 cuts front of sphere by intersecting regions 0 &1

DBCSG_INTERSE
CT

5 4 2 cuts back of sphere by intersecting regions 4 & 2

DBCSG_DIFF 6 5 3 creates cavity in sphere by removing region 3

DBCSG_INNER 7 4 -1 creates large sphere region for fin upper surface from boundary 4

DBCSG_INNER 8 5 -1 creates large sphere region for fin lower surface from boundary 5

DBCSG_INTERSE
CT

9 7 8 creates lens-shaped fin with razor edge protruding from sphere
housing by intersecting regions 7 & 8

DBCSG_INTERSE
CT

10 9 0 cuts razor edge of lens-shaped fin to sphere housing
2-112 Silo User’s Guide

DBGetCSGZonelist
DBGetCSGZonelist—Read a CSG mesh zonelist from a Silo file

Synopsis:

DBcsgzonelist *DBGetCSGZonelist(DBfile *dbfile,
 const char *zlname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer

zlname Name of the CSG mesh zonelist object to read

Returns:

A pointer to a DBcsgzonelist structure on success and NULL on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-113

DBPutCsgvar
DBPutCsgvar—Write a CSG mesh variable to a Silo file

Synopsis:

int DBPutCsgvar(DBfile *dbfile, const char *vname,
 const char *meshname, int nvars,
 const char *varnames[], const void *vars[],
 int nvals, int datatype, int centering,
 DBoptlist *optlist);

Fortran Equivalent:

integer function dbputcsgv(dbid, vname, lvname, meshname,
lmeshname, nvars, var_ids, nvals, datatype,
centering, optlist_id, status)

integer* var_ids (array of “pointer ids” created using dbmkptr)

Arguments:

dbfile Database file pointer

vname The name to be associated with this DBcsgvar object

meshname The name of the CSG mesh this variable is associated with

nvars The number of subvariables comprising this CSG variable

varnames Array of length nvars containing the names of the subvariables

vars Array of pointers to variable data

nvals Number of values in each of the vars arrays

datatype The type of data in the vars arrays (e.g. DB_FLOAT, DB_DOUBLE)

centering The centering of the CSG variable (DB_ZONECENT or DB_BNDCENT)

optlist Pointer to an option list structure containing additional information to be
included in this object when it is written to the Silo file. Use NULL if there are
no options

Description:

The DBPutCsgvar function writes a variable associated with a CSG mesh into a Silo file. Note that
variables will be either zone-centered or boundary-centered.

Just as UCD variables can be zone-centered or node-centered, CSG variables can be zone-centered
or boundary-centered. For a zone-centered variable, the value(s) at index i in the vars array(s) are
associated with the ith region (zone) in the DBcsgzonelist object associated with the mesh.
For a boundary-centered variable, the value(s) at index i in the vars array(s) are associated with the
ith boundary in the DBcsgbnd list associated with the mesh.
2-114 Silo User’s Guide

DBPutCsgvar
Other information can also be included via the optlist:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character strings defining the label asso-
ciated with this variable.

NULL

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_UNITS char * Character string defining the units associ-
ated with this variable.

NULL

DBOPT_USESPECMF int Boolean (DB_OFF or DB_ON) value
specifying whether or not to weight the
variable by the species mass fraction
when using material species data.

DB_OFF

DBOPT_ASCII_LABEL int Indicate if the variable should be treated
as single character, ascii values. A value
of 1 indicates yes, 0 no.

0

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_REGION_PNAMES char** A null-pointer terminated array of pointers
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names. See
“DBOPT_REGION_PNAMES” on
page 188.

NULL

DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

Silo User’s Guide 2-115

DBGetCsgvar
DBGetCsgvar—Read a CSG mesh variable from a Silo file

Synopsis:

DBcsgvar *DBGetCsgvar(DBfile *dbfile, const char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer

varname Name of CSG variable object to read

Returns:

A pointer to a DBcsgvar structure on success and NULL on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-116 Silo User’s Guide

DBPutMaterial
DBPutMaterial—Write a material data object into a Silo file.

Synopsis:

int DBPutMaterial (DBfile *dbfile, char *name, char *meshname,
int nmat, int matnos[], int matlist[],
int dims[], int ndims, int mix_next[],
int mix_mat[], int mix_zone[], void *mix_vf,
int mixlen, int datatype, DBoptlist *optlist)

Fortran Equivalent:

integer function dbputmat(dbid, name, lname, meshname, lmeshname,
nmat, matnos, matlist, dims, ndims, mix_next,
mix_mat, mix_zone, mix_vf, mixlien, datatype,
optlist_id, status)

void* mix_vf

Arguments:

dbfile Database file pointer.

name Name of the material data object.

meshname Name of the mesh associated with this information.

nmat Number of materials.

matnos Array of length nmat containing material numbers.

matlist Array whose dimensions are defined by dims and ndims. It contains the
material numbers for each single-material (non-mixed) zone, and indices into
the mixed data arrays for each multi-material (mixed) zone. A negative value
indicates a mixed zone, and its absolute value is used as an index into the mixed
data arrays.

dims Array of length ndims which defines the dimensionality of the matlist
array.

ndims Number of dimensions in matlist array.

mix_next Array of length mixlen of indices into the mixed data arrays (one-origin).

mix_mat Array of length mixlen of material numbers for the mixed zones.

mix_zone Optional array of length mixlen of back pointers to originating zones. The
origin is determined by DBOPT_ORIGIN. Even if mixlen > 0, this argument
is optional.

mix_vf Array of length mixlen of volume fractions for the mixed zones. Note, this
can actually be either single- or double-precision. Specify actual type in
datatype.

mixlen Length of mixed data arrays (or zero if no mixed data is present). If mixlen >
0, then the “mix_” arguments describing the mixed data arrays must be non-
NULL.

datatype Volume fraction data type. One of the predefined Silo data types.
Silo User’s Guide 2-117

DBPutMaterial
optlist Pointer to an option list structure containing additional information to be
included in the material object written into the Silo file. See the table below for
the valid options for this function. If no options are to be provided, use NULL
for this argument.

Returns:

DBPutMaterial returns zero on success and -1 on failure.

Description:

Note that material functionality, even mixing materials, can now be handled, often more con-
veniently and efficiently, via a Mesh Region Grouping (MRG) tree. Users are encouraged to
consider an MRG tree as an alternative to DBPutMaterial(). See “DBMakeMrgtree” on
page 165.

The DBPutMaterial function writes a material data object into the current open Silo file. The min-
imum required information for a material data object is supplied via the standard arguments to this
function. The optlist argument must be used for supplying any information not requested
through the standard arguments.

Notes:

The following table describes the options accepted by this function. See the section titled “Using
the Silo Option Parameter” for details on the use of this construct.

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_LABEL char * Character string defining the label associ-
ated with material data.

NULL

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for mix_zone. Zero or one. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_MATNAMES char** Array of strings defining the names of the
individual materials.

NULL

DBOPT_MATCOLORS char** Array of strings defining the names of col-
ors to be associated with each material.
The color names are taken from the X win-
dows color database. If a color name
begins with a’#’ symbol, the remaining 6
characters are interpreted as the hexa-
decimal RGB value for the color.

NULL
2-118 Silo User’s Guide

DBPutMaterial
The model used for storing material data is the most efficient for VisIt, and works as follows:

One zonal array, matlist, contains the material number for a clean zone or an index into the
mixed data arrays if the zone is mixed. Mixed zones are marked with negative entries in
matlist, so you must take ABS(matlist[i]) to get the actual 1-origin mixed data index. All
indices are 1-origin to allow matlist to use zero as a material number.

The mixed data arrays are essentially a linked list of information about the mixed elements within
a zone. Each mixed data array is of length mixlen. For a given index i, the following information
is known about the i’th element:

mix_zone[i] The index of the zone which contains this element. The origin is determined by
DBOPT_ORIGIN.

mix_mat[i] The material number of this element

mix_vf[i] The volume fraction of this element

mix_next[i] The 1-origin index of the next material entry for this zone, else 0 if this is the
last entry.

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_ALLOWMAT0 int If set to non-zero, indicates that a zero
entry in the matlist array is actually not a
valid material number but is instead being
used to indicate an ‘unused’ zone.

0

Option Name
Value

Data Type Option Meaning Default Value
Silo User’s Guide 2-119

DBPutMaterial
.

Figure 0-6: Example using mixed data arrays for representing material information

1

1 1

1 2

2

2

2

Mesh ‘plot’
with material
numbers and

1

1

2

2-1

-3 Corresponding
matlist array

mix_zone

1:
2:
3:
4:

2
2
5
5

mix_mat

1:
2:
3:
4:

1
2
1
2

mix_vf

1:
2:
3:
4:

.4

.6

.7

.3

mix_next

1:
2:
3:
4:

2
0
4
0

interface
2-120 Silo User’s Guide

DBGetMaterial
DBGetMaterial—Read material data from a Silo database.

Synopsis:

DBmaterial *DBGetMaterial (DBfile *dbfile, char *mat_name)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

mat_name Name of the material variable to read.

Returns:

DBGetMaterial returns a pointer to a DBmaterial structure on success and NULL on failure.

Description:

The DBGetMaterial function allocates a DBmaterial data structure, reads material data from the
Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-121

DBPutMatspecies
DBPutMatspecies—Write a material species data object into a Silo file.

Synopsis:

int DBPutMatspecies (DBfile *dbfile, char *name, char *matname,
int nmat, int nmatspec[], int speclist[],
int dims[], int ndims, int nspecies_mf,
void *species_mf, int mix_spec[],
int mixlen, int datatype, DBoptlist *optlist)

Fortran Equivalent:

integer function dbputmsp(dbid, name, lname, matname, lmatname,
nmat, nmatspec, speclist, dims, ndims,
species_mf, species_mf, mix_spec, mixlen,
datatype, optlist_id, status)

void *species_mf

Arguments:

dbfile Database file pointer.

name Name of the material species data object.

matname Name of the material object with which the material species object is
associated.

nmat Number of materials in the material object referenced by matname.

nmatspec Array of length nmat containing the number of species associated with each
material.

speclist Array of dimension defined by ndims and dims of indices into the
species_mf array. Each entry corresponds to one zone. If the zone is clean,
the entry in this array must be positive or zero. A positive value is a 1-origin
index into the species_mf array. A zero can be used if the material in this
zone contains only one species. If the zone is mixed, this value is negative and is
used to index into the mix_spec array in a manner analogous to the mix_mat
array of the DBPutMaterial() call.

dims Array of length ndims that defines the shape of the speclist array.

ndims Number of dimensions in the speclist array.

nspecies_mf Length of the species_mf array.

species_mf Array of length nspecies_mf containing mass fractions of the material
species. Note, this can actually be either single or double precision. Specify type
in datatype argument.

mix_spec Array of length mixlen containing indices into the species_mf array.
These are used for mixed zones. For every index j in this array,
mix_list[j] corresponds to the DBmaterial structure’s material
mix_mat[j] and zone mix_zone[j].

mixlen Length of the mix_spec array.
2-122 Silo User’s Guide

DBPutMatspecies
datatype The datatype of the mass fraction data in species_mf. One of the predefined
Silo data types.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMatspecies returns zero on success and -1 on failure.

Description:

The DBPutMatspecies function writes a material species data object into a Silo file. The minimum
required information for a material species data object is supplied via the standard arguments to
this function. The optlist argument must be used for supplying any information not requested
through the standard arguments.

It is easiest to understand material species information by example. First, in order for a material
species object in Silo to have meaning, it must be associated with a material object. A material
species object by itself with no corresponding material object cannot be correctly interpreted.

So, suppose you had a problem which contains two materials, brass and steel. Now, neither brass
nor steel are themselves pure elements on the periodic table. They are instead alloys of other
(pure) metals. For example, common yellow brass is, nominally, a mixture of Copper (Cu) and
Zinc (Zn) while tool steel is composed primarily of Iron (Fe) but mixed with some Carbon (C) and
a variety of other elements.

For this example, lets suppose we are dealing with Brass (65% Cu, 35% Zn), T-1 Steel (76.3% Fe,
0.7% C, 18% W, 4% Cr,1% V) and O-1 Steel (99.962% Fe, 0.90% C,1.4% Mn, 0.50% Cr, 0.50%
Ni, 0.50% W). Since T-1 Steel and O-1 Steel are composed of different elements, we wind up hav-
ing to represent each type of steel as a different material in the material object. So, the material
object would have 3 materials; Brass, T-1 Steel and O-1 Steel.

Brass is composed of 2 species, T-1 Steel, 5 species and O-1 Steel, 6. (Alternatively, one could opt
to characterize both T-1 Steel and O-1 Steel has having 7 species, Fe, C, Mn, Cr, Ni, W, V where
for T-1 Steel, the Mn and Ni components are always zero and for O-1 Steel the V component is
always zero. In that case, you would need only 2 materials in the associated material object.)

The material species object would be defined such that nmat=3 and nmatspec={2,5,6}. If
the composition of Brass, T-1 Steel and O-1 Steel is constant over the whole mesh, the
species_mf array would contain just 2 + 5 + 6 = 13 entries...

If all of the zones in the mesh are clean (e.g. not mixing in material) and have the same composi-
tion of species, the speclist array would contain a ‘1’ for every Brass zone (1-origin indexing
would mean it would index species_mf[0]), a ‘3’ for every T-1 Steel zone and a ‘8’ for every O-1

Brass (2
values)

T-1 Steel

(5 values starting at offset 3)

O-1 Steel

(6 values starting at offset 8)

species_mf .65 .35 .763 .007 .18 .04 .001 .99962 .009 .014 .005 .005 .005

element Cu Zn Fe C W Cr V Fe C Mn Cr Ni W

1-origin index 1 2 3 4 5 6 7 8 9 10 11 12 13
Silo User’s Guide 2-123

DBPutMatspecies
Steel zone. However, if some cells had a Brass mixture with an extra 1% Cu, then you could create
another two entries at positions 14 and 15 in the species_mf array with the values 0.66 and
0.34, respectively, and the speclist array for those cells would point to ’14’ instead of ’1’.

The speclist entries indicate only where to start reading species mass fractions from the
species_mf array for a given zone. How do we know how many values to read? The associated
material object indicates which material is in the zone. The entry in the nmatspec array for that
material indicates how many mass fractions there are.

As simulations evolve, the relative mass fractions of species comprising each material vary away
from their nominal values. In this case, the species_mf array would grow to accommodate all
the variations of combinations of mass fraction for each material and the entries in the speclist
array would vary so that each zone would index the correct position in the species_mf array.

Finally, when zones contain mixing materials the speclist array needs to specify the
species_mf entries for each of the materials in the zone. In this case, negative values are
assigned to the speclist entries for these zones and the linked-list like structure of the associ-
ated material (e.g. mix_next, mix_mat, mix_vf, mix_zone args of the DBPutMaterial()
call) is used to traverse them.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_MAJORORDER int Indicator for row-major (0) or column-
major (1) storage for multidimensional
arrays.

0

DBOPT_ORIGIN int Origin for arrays. Zero or one. 0

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_SPECNAMES char** Array of strings defining the names of the
individual species. The length of this array
is the sum of the values in the nmatspec
argument to this function.

NULL

DBOPT_SPECCOLORS char** Array of strings defining the names of col-
ors to be associated with each species.
The color names are taken from the X win-
dows color database. If a color name
begins with a’#’ symbol, the remaining 6
characters are interpreted as the hexa-
decimal RGB value for the color. The
length of this array is the sum of the val-
ues in the nmatspec argument to this
function.

NULL
2-124 Silo User’s Guide

DBGetMatspecies
DBGetMatspecies—Read material species data from a Silo database.

Synopsis:

DBmatspecies *DBGetMatspecies (DBfile *dbfile, char *ms_name)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

ms_name Name of the material species data to read.

Returns:

DBGetMatspecies returns a pointer to a DBmatspecies structure on success and NULL on failure.

Description:

The DBGetMatspecies function allocates a DBmatspecies data structure, reads material species
data from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-125

DBPutDefvars
DBPutDefvars—Write a derived variable definition(s) object into a Silo file.

Synopsis:

int DBPutDefvars(DBfile *dbfile, const char *name, int ndefs,
 const char *names[], int *types,
 const char *defns[], DBoptlist *optlist[]);

Fortran Equivalent:

integer function dbputdefvars(dbid, name, lname, ndefs, names,
lnames, types, defns, ldefns, optlist_id,
status)

character*N names (See “dbset2dstrlen” on page 248.)
character*N defns (See “dbset2dstrlen” on page 248.)

Arguments:

dbfile Database file pointer.

name Name of the derived variable definition(s) object.

ndefs number of derived variable definitions.

names Array of length ndefs of derived variable names

types Array of length ndefs of derived variable types such as
DB_VARTYPE_SCALAR, DB_VARTYPE_VECTOR,
DB_VARTYPE_TENSOR, DB_VARTYPE_SYMTENSOR,
DB_VARTYPE_ARRAY, DB_VARTYPE_MATERIAL,
DB_VARTYPE_SPECIES, DB_VARTYPE_LABEL

defns Array of length ndefs of derived variable definitions.

optlist Array of length ndefs pointers to option list structures containing additional
information to be included with each derived variable. The options available are
the same as those available for the respective variables.

Returns:

DBPutDefvars returns zero on success and -1 on failure.

Description:

The DBPutDefvars function is used to put definitions of derived variables in the Silo file. That is
variables that are derived from other variables in the Silo file or other derived variable definitions.
One or more variable definitions can be written with this function. Note that only the definitions of
the derived variables are written to the file with this call. The variables themselves are not in any
way computed by Silo.

If variable references within the defns strings do not have a leading slash (‘/’) (indicating an
absolute name), they are interpreted relative to the directory into which the Defvars object is writ-
ten. For the defns string, in cases where a variable’s name includes special characters (such as /
. { } [] + - =), the entire variable reference should be bracketed by < and > characters.
2-126 Silo User’s Guide

DBPutDefvars
The interpretation of the defns strings written here is determined by the post-processing tool that
reads and interprets these definitions. Since in common practice that tool tends to be VisIt, the dis-
cussion that follows describes how VisIt would interpret this string.

The table below illustrates examples of the contents of the various array arguments to DBPutDef-
vars for a case that defines 6 derived variables.

The first entry (0) defines a derived scalar variable named “totaltemp” which is the sum of vari-
ables whose names are “nodet” and “zonetemp”. The next entry (1) defines a derived scalar vari-
able named “sz” in a group of variables named “stress” (the slash character (‘/’) is used to group
variable names much the way file pathnames are grouped in Linux). Note also that the definition of
“sz” uses the special bracketing characters (‘<‘) and (‘>’) for the variable references due to the fact
that these variable references have a slash character (‘/’) in them.

The third entry (2) defines a derived vector variable named “vel” from three scalar variables named
“Vx”, “Vy”, and “Vz” while the fourth entry (3) defines a scalar variable, “speed” to be the magni-
tude of the vector variable named “vel”. The last entry (4) defines a deviatoric stress tensor. These
last two cases demonstrate that derived variable definitions may reference other derived variables.

The last few examples demonstrate the use of two operators, {}, and magnitude(). We call
these expression operators. In VisIt, there are numerous expression operators to help define
derived variables including such things as sqrt(), round(), abs(), cos(), sin(),
dot(), cross() as well as comparison operators, gt(), ge(), lt(), le(), eq(),
and the conditional if(). Furthermore, the list of expression operators in VisIt grows regularly.
Only a few examples are illustrated here. For a more complete list of the available expression oper-
ators and their syntax, the reader is referred to the Expressions portion of the VisIt user’s manual.

names types defns

0 “totaltemp” DB_VARTYPE_SCALAR “nodet+zonetemp”

1 “<stress/sz>” DB_VARTYPE_SCALAR “-<stress/sx>-<stress/sy>”

2 “vel” DB_VARTYPE_VECTOR “{Vx, Vy, Vz}”

3 “speed” DB_VARTYPE_SCALAR “magntidue(vel)”

4 “dev_stress” DB_VARTYPE_TENSOR “{{<stress/sx>,<stress/txy>,<stress/txz>},
 { 0, <stress/sy>,<stress/tyz>},
 { 0, 0, <stress/sz>}}”
Silo User’s Guide 2-127

DBGetDefvars
DBGetDefvars—Get a derived variables definition object from a Silo file.

Synopsis:

DBdefvars DBGetDefvars(DBfile *dbfile, const char *name)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name The name of the DBdefvars object to read

Returns:

DBGetDefvars returns a pointer to a DBdefvars structure on success and NULL on failure.

Description:

The DBGetDefvars function allocates a DBdefvars data structure, reads the object from the Silo
database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-128 Silo User’s Guide

DBInqMeshname
DBInqMeshname—Inquire the mesh name associated with a variable.

Synopsis:

int DBInqMeshname (DBfile *dbfile, char *varname, char *meshname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Variable name.

meshname Returned mesh name. The caller must allocate space for the returned name. The
maximum space used is 256 characters, including the NULL terminator.

Returns:

DBInqMeshname returns zero on success and -1 on failure.

Description:

The DBInqMeshname function returns the name of a mesh associated with a mesh variable. Given
the name of a variable to access, one must call this function to find the name of the mesh before
calling DBGetQuadmesh or DBGetUcdmesh.
Silo User’s Guide 2-129

DBInqMeshtype
DBInqMeshtype—Inquire the mesh type of a mesh.

Synopsis:

int DBInqMeshtype (DBfile *dbfile, char *meshname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

meshname Mesh name.

Returns:

DBInqMeshtype returns the mesh type on success and -1 on failure.

Description:

The DBInqMeshtype function returns the type of the given mesh. The value returned is described
in the following table:

Mesh Type Returned Value

Multi-Block DB_MULTIMESH

UCD DB_UCDMESH

Pointmesh DB_POINTMESH

Quad (Collinear) DB_QUAD_RECT

Quad (Non-Collinear) DB_QUAD_CURV

CSG DB_CSGMESH
2-130 Silo User’s Guide

DBInqMeshtype
4 API Section Multi-Block Objects, Parallelism and
Poor-Man’s Parallel I/O

Individual pieces of mesh created with a number of DBPutXxxmesh() calls can be assembled
together into larger, multi-block objects. Likewise for variables and materials defined on these
meshes.

In Silo, multi-block objects are really just lists of all the individual pieces of a larger, coherent
object. For example, a multi-mesh object is really just a long list of object names, each name being
the string passed as the name argument to a DBPutXxxmesh() call.

A key feature of multi-block object is that references to the individual pieces include the option of
specifying the name of the Silo file in which a piece is stored. This option is invoked when the
colon operator (‘:’) appears in the name of an individual piece. All characters before the colon
specify the name of a Silo file. All characters after a colon specify the directory path within the file
where the object lives.

The fact that multi-block objects can reference individual pieces that reside in different Silo files
means that Silo, a serial I/O library, can be used very effectively and scalably in parallel without
resorting to writing a file per processor. The “technique” used to affect parallel I/O in this manner
with Silo is affectionately called Poor Man’s Parallel I/O (PMPIO).

A separate convenience interface, PMPIO, is provided for this purpose. The PMPIO interface pro-
vides almost all of the functionality necessary to use Silo in a Poor Man’s Parallel way. The appli-
cation is required to implement a few callback functions. The PMPIO interface is described at the
end of this section.

The functions described in this section of the manual include...

DBPutMultimesh . 129
DBGetMultimesh . 133
DBPutMultimeshadj . 134
DBGetMultimeshadj . 137
DBPutMultivar . 138
DBGetMultivar . 141
DBPutMultimat. 142
DBGetMultimat . 145
DBPutMultimatspecies . 146
DBGetMultimatspecies. 148
PMPIO_Init. 149
PMPIO_CreateFileCallBack. 152
PMPIO_OpenFileCallBack. 153
PMPIO_CloseFileCallBack . 154
PMPIO_WaitForBaton . 155
PMPIO_HandOffBaton. 156
PMPIO_Finish . 157
PMPIO_GroupRank . 158
PMPIO_RankInGroup . 159
Silo User’s Guide 2-131

DBPutMultimesh
DBPutMultimesh—Write a multi-block mesh object into a Silo file.

Synopsis:

int DBPutMultimesh (DBfile *dbfile, char *name, int nmesh,
char *meshnames[],int meshtypes[],
DBoptlist *optlist)

Fortran Equivalent:

integer function dbputmmesh(dbid, name, lname, nmesh, meshnames,
lmeshnames, meshtypes, optlist_id, status)

character*N meshnames (See “dbset2dstrlen” on page 248.)

Arguments:

dbfile Database file pointer.

name Name of the multi-block mesh structure.

nmesh Number of meshes provided.

meshnames Array of length nmesh containing pointers to the names of each of the mesh
blocks written with DBPutPointmesh(), DBPutQuadmesh(), DBPutUcdmesh,
DBPutCsgmesh(). Ordinarily, the meshes are stored in different sub-directories
within a Silo file and, optionally, even in different Silo files altogether. So, the
name of each mesh is specified using its full Silo path name. The full Silo
pathname is the form...

[<silo-filename>:]<path-to-mesh>

The existence of a colon (‘:’) anywhere in the meshnames[i] indicates that
the ith mesh block name is specified using both the Silo filename and the path in
the file. All characters before the colon are the Silo file pathname within the
filesystem on which the file(s) reside. Use whatever slash character (‘\’ for
Windows or ‘/’ for Unix) is appropriate for the underlying filesystem in this part
of the string only. Silo will automatically handle changes in the slash character
in this part of the string if this data is ever read on a different filesystem. All
characters after the colon are the path of the object within the Silo file and must
use only the ‘/’ slash character.

Use the keyword “EMPTY” for any block for which the associated mesh object
does not exist. This convention is often convenient in cases where there are
many related multi-block objects and/or that evolve in time in such a way that
some blocks do not exist for some times.

Finally, the individual mesh names referenced here CANNOT be the names of
other multi-block meshes. In other words, it is not valid to create a multi-mesh
that references other multi-meshes.

meshtypes Array of length nmesh containing the type of each mesh. One of the predefined
types such as DB_QUAD_RECT, DB_QUAD_CURV, DB_UCDMESH,
2-132 Silo User’s Guide

DBPutMultimesh
DB_POINTMESH, and DB_CSGMESH.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMultimesh returns zero on success and -1 on failure.

Description:

The DBPutMultimesh function writes a multi-block mesh object into a Silo file. It accepts as input
descriptions of the various sub-meshes (blocks) which are part of this mesh.

For example, in the case where the are 6 blocks to be assembled into a larger mesh named ‘multi-
mesh’ in the file ‘foo.silo’ and the blocks are stored in three files as in the figure below,

Figure 0-7: Strings for multi-block objects.

the array of strings to be passed as the meshnames argument of DBPutMultimesh are illustrated.
Note that the two pieces of mesh that are in the same file as the multi-mesh object itself, ‘multi-
mesh’, do NOT require the colon and filename option. Only those pieces of the multi-mesh object
that are in different files from the one the multi-block object itself resides in require the colon and
filename option.

Note also that what is described here for the mulitmesh object in the way of names of objects in
different files applies as well to all other multi-block objects.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning
Default
Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_EXTENTS_SIZEa int Number of values in each extent tuple 0

/mesh1
/dir1/mesh2

/dir1/mesh1

file “foo.silo”

/dir2/mesh2
/a/b/c/mesh1
/mesh2

file “bar.silo”

/multi-mesh

file “gorfo.silo”

“/mesh1”
“/dir1/mesh2”
“bar.silo:/dir1/mesh1”
“bar.silo:/dir2/mesh2”
“gorfo.silo:/a/b/c/mesh1”
“gorfo.silo:/mesh2”
Silo User’s Guide 2-133

DBPutMultimesh
DBOPT_EXTENTSa double* Pointer to an array of length nmesh *
DBOPT_EXTENTS_SIZE doubles where
each group of DBOPT_EXTENTS_SIZE
doubles is an extent tuple for the mesh
coordinates (see below).
DBOPT_EXTENTS_SIZE must be set for
this option to work correctly.

NULL

DBOPT_ZONECOUNTSa int* Pointer to an array of length nmesh indi-
cating the number of zones in each block.

NULL

DBOPT_HAS_EXTERNAL_ZONESa int* Pointer to an array of length nmesh indi-
cating for each block whether that block
has zones external to the whole multi-
mesh object. A non-zero value at index i
indicates block i has external zones. A
value of 0 (zero) indicates it does not.

NULL

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_MRGTREE_NAME char * Name of the mesh region grouping tree to
be associated with this multimesh.

NULL

DBOPT_TV_CONNECTIVTY int A non-zero value indicates that the con-
nectivity of the mesh varies with time.

0

DBOPT_DISJOINT_MODE int Indicates if any elements in the mesh are
disjoint. There are two possible modes.
One is DB_ABUTTING indicating that ele-
ments abut spatially but actually reference
different node ids (but spatially equivalent
nodal positions) in the node list. The other
is DB_FLOATING where elements neither
share nodes in the nodelist nor abut spa-
tially.

DB_NONE

DBOPT_TOPO_DIM int Used to indicate the topological dimension
of the mesh apart from its spatial dimen-
sion.

-1 (not
specified)

The options specified below have been deprecated. Use Mesh Region Group (MRG) trees instead.

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi-
mesh object.

0

DBOPT_ADJACENCY_NAMEa char * Name of a multi-mesh, nodal adjacency
object written with a call to adj.

NULL

DBOPT_GROUPINGS_SIZE int Number of integer entries in the associ-
ated groupings array

0

Option Name
Value

Data Type Option Meaning
Default
Value
2-134 Silo User’s Guide

DBPutMultimesh
There is a class of options for DBMulti- objects that is VERY IMPORTANT in helping to acceler-
ate performance in down-stream post-processing tools. We call these Down-stream Performance
Options. In order of utility, these options are DBOPT_EXTENTS, DBOPT_MIXLENS and
DBOPT_MATLISTS and DBOPT_ZONECOUNTS. Although these options are creating redun-
dant data in the Silo database, the data is stored in a manner that is far more convenient to down-
stream applications that read Silo databases. Therefore, the user is strongly encouraged to make
use of these options.

Regarding the DBOPT_EXTENTS option, see the notes for DBPutMultivar. Note, however, that
here the extents are for the coordinates of the mesh.

Regarding the DBOPT_ZONECOUNTS option, this option will help down-stream post-processing
tools to select an appropriate static load balance of blocks to processors.

Regarding the DBOPT_HAS_EXTERNAL_ZONES option, this option will help down-stream post-
processing tools accelerate computation of external boundaries. When a block is known not to
contain any external zones, it can be quickly skipped in the computation. Note that while false pos-
itives can negatively effect only performance during downstream external boundary calculations,
false negatives will result in serious errors.

In other words, it is ok for a block that does not have external zones to be flagged as though it does.
In this case, all that will happen in down-stream post-processing tools is that work to compute
external faces that could have been avoided will be wasted. However, it is not ok for a block that
has external zones to be flagged as though it does not. In this case, down-stream post-processing
tools will skip boundary computation when it should have been computed.

Three options, DBOPT_GROUPINGS_SIZE, DBOPT_GROUPINGS are deprecated. Instead, use
MRG trees to handle grouping. Also, see notes regarding _visit_domain_groups variable conven-
tion.

DBOPT_GROUPINGS int * Integer array of length specified by
DBOPT_GROUPINGS_SIZE containing
information on how different mesh blocks
are organized into, possibly hierarchical,
groups. See below for detailed discussion.

NULL

DBOPT_GROUPINGS_NAMES char ** Optional set of names to be associated
with each group in the groupings array

NULL

a. Indicates a Down-stream Performance Option. See notes below.

Option Name
Value

Data Type Option Meaning
Default
Value
Silo User’s Guide 2-135

DBGetMultimesh
DBGetMultimesh—Read a multi-block mesh from a Silo database.

Synopsis:

DBmultimesh *DBGetMultimesh (DBfile *dbfile, char *meshname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

meshname Name of the multi-block mesh.

Returns:

DBGetMultimesh returns a pointer to a DBmultimesh structure on success and NULL on failure.

Description:

The DBGetMultimesh function allocates a DBmultimesh data structure, reads a multi-block mesh
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-136 Silo User’s Guide

DBPutMultimeshadj
DBPutMultimeshadj—Write some or all of a multi-mesh adjacency object into a Silo
file.

Synopsis:

int DBPutMultimeshadj(DBfile *dbfile, const char *name,
 int nmesh, const int *mesh_types, const int *nneighbors,
 const int *neighbors, const int *back,
 const int *nnodes, const int *nodelists[],
 const int *nzones, const int *zonelists[],
 DBoptlist *optlist)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name Name of the multi-mesh adjacency object.

nmesh The number of mesh pieces in the corresponding multi-mesh object. This value
must be identical in repeated calls to DBPutMultimeshadj.

mesh_types Integer array of length nmesh indicating the type of each mesh in the
corresponding multi-mesh object. This array must be identical to that which is
passed in the DBPutMultimesh call and in repeated calls to
DBPutMultimeshadj.

nneighbors Integer array of length nmesh indicating the number of neighbors for each
mesh piece. This array must be identical in repeated calls to
DBPutMultimeshadj.

In the argument descriptions to follow, let . That is,
let be the sum of the first k entries in the nneighbors array.

neighbors Array of integers enumerating for each mesh piece all other mesh pieces
that neighbor it. Entries from index to index enumerate the
neighbors of mesh piece k. This array must be identical in repeated calls to
DBPutMultimeshadj.

back Array of integers enumerating for each mesh piece, the local index of that
mesh piece in each of its neighbors lists of neighbors. Entries from index to
index enumerate the local indices of mesh piece k in each of the
neighbors of mesh piece k. This argument may be NULL. In any case, this array
must be identical in repeated calls to DBPutMultimeshadj.

nnodes Array of integers indicating for each mesh piece, the number of nodes
that it shares with each of its neighbors. Entries from index to index
indicate the number of nodes that mesh piece k shares with each of its
neighbors. This array must be identical in repeated calls to
DBPutMultimeshadj. This argument may be NULL.

Sk nneighbors[i]
i 0=
k∑=

Sk

Snmesh

Sk Sk 1+ 1–

Snmesh

Sk

Sk 1+ 1–

Snmesh

Sk Sk 1+ 1–
Silo User’s Guide 2-137

DBPutMultimeshadj
nodelists Array of pointers to arrays of integers. Entries from index to index
 enumerate the nodes that mesh piece k shares with each of its

neighbors. The contents of a specific nodelist array depend on the types of
meshes that are neighboring each other (See description below). nodelists[m]
may be NULL even if nnodes[m] is non-zero. See below for a description of
repeated calls to DBPutMultimeshadj. This argument must be NULL if nnodes
is NULL.

nzones Array of integers indicating for each mesh piece, the number of zones
that are adjacent with each of its neighbors. Entries from index to index

 indicate the number of zones that mesh piece k has adjacent to each of
its neighbors. This array must be identical in repeated calls to
DBPutMultimeshadj. This argument may be NULL.

zonelists Array of pointers to arrays of integers. Entries from index to index
 enumerate the zones that mesh piece k has adjacent with each of its

neighbors. The contents of a specific zonelist array depend on the types of
meshes that are neighboring each other (See description below). zonelists[m]
may be NULL even if nzones[m] is non-zero. See below for a description of
repeated calls to DBPutMultimeshadj. This argument must be NULL if nzones
is NULL.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Description:

Note that the functionality this object provides is now more efficiently and conveniently han-
dled via a Mesh Region Grouping (MRG) tree. Users are encouraged to use MRG trees as an
alternative to DBPutMultimeshadj(). See “DBMakeMrgtree” on page 165.

DBPutMultimeshadj is another Down-stream Performance Option (See “DBPutMultimesh” on
page 2-132). It is an alternative to including ghost-zones (See “DBPutMultimesh” on page 2-132)
in the mesh and can therefore help to reduce file size, particularly for unstructured meshes.

A multi-mesh adjacency object informs down-stream, post-processing tools such as VisIt how
nodes and/or zones, should be shared between neighboring mesh pieces to eliminate post-process-
ing discontinuity artifacts along the boundaries between the pieces. If neither this information is
provided nor ghost zones are stored in the file, post-processing tools must then infer this informa-
tion from global node or zone ids (if they exist) or, worse, by matching coordinates which is a
time-consuming process.

DBPutMultimeshadj is used to indicate how various mesh pieces in a multi-mesh object abut by
specifying for each mesh piece, the nodes it shares with other mesh pieces and/or the zones is has
adjacent to other mesh pieces. Note the important distinction in how nodes and zones are classified
here. Nodes are shared between mesh pieces while zones are merely adjacent between mesh
pieces. In a call to DBPutMultimeshadj, a caller may write information for either shared nodes or
adjacent zones, or both.

In practice, applications tend to use the same mesh type for every mesh piece. Thus, for ucd and
point meshes, the nodelist (or zonelist) arrays will consists of pairs of integers where the first of
the pair identifies a node (or zone) in the given mesh while the second identifies the shared node

Snmesh Sk

Sk 1+ 1–

Snmesh

Sk

Sk 1+ 1–

Snmesh Sk

Sk 1+ 1–
2-138 Silo User’s Guide

DBPutMultimeshadj
(or adjacent zone) in a neighbor. Likewise, for quad meshes, the nodelist (or zonelist) arrays will
consists of 15 integers the first 6 of which identify a slab of nodes (or zones) in the given quad
mesh. The second set of 6 integers identify the slab of shared nodes (or zones) in a neighbor quad
mesh and the last 3 integers indicate the orientation of the neighbor quad mesh relative to the given
quad mesh. For example the entries (1,2,3) for these 3 integers mean that all axes are aligned. The
entries (-2,1,3) mean that the -J axis of the neighbor mesh piece aligns with the +I axis of the given
mesh piece, the +I axis of the neighbor mesh piece aligns with the +J axis of the given mesh piece,
and the +K axes both align the same way.

The specific contents of a given nodelist array depend on the types of meshes between which it
enumerates shared nodes. The table below describes the contents of nodelist array m given the dif-
ferent mesh types that it may enumerate shared nodes for.

This function is designed so that it may be called multiple times, each time writing a different por-
tion of multi-mesh adjacency information to the object. On the first call, space is allocated in the
Silo file for the entire object. The required space is determined by the contents of all but the
nodelists (and/or zonelists) arrays. The contents of the nodelists (and/or zonelists) arrays are the
only arguments that are permitted to vary from call to call and then they may vary only in which
entries are NULL and non-NULL. Whenever an entry is NULL and the corresponding entry in
nnodes (or nzones) array is non-zero, the assumption is that the information is provided in some
other call to DBPutMultimeshadj.

Neighbor mesh type

DB_POINT or DB_UCD DB_QUAD

G
iv

en
 m

es
h

ty
pe

D
B

_P
O

IN
T

 o
r

D
B

_U
C

D

nnodes[m] pairs of integers

nnodes[m]+6 integers.

The first nnodes[m] integers
identify the nodes in the given
point or ucd mesh.

The next 6 integers identify ijk
bounds of the corresponding
nodes in the quad mesh neigh-
bor.

D
B

_Q
U

A
D

6+nnodes[m] integers.

The first 6 integers identify ijk
bounds of the nodes in the given
quad mesh.

The last nnodes[m] integers
identify the nodes in the neighbor
point or ucd mesh.

15 integers

The first set of 6 integers identify
ijk bounds of nodes in the given
quad mesh.

The second set of 6 integers
identify ijk bounds of nodes in the
neighbor quad mesh

The next 3 integers specify the
orientation of the neighbor quad
mesh relative to the given mesh.
Silo User’s Guide 2-139

DBGetMultimeshadj
DBGetMultimeshadj—Get some or all of a multi-mesh nodal adjacency object

Synopsis:

DBmultimeshadj *DBGetMultimeshadj(DBfile *dbfile,
 const char *name,
 int nmesh, const int *mesh_pieces)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer

name Name of the multi-mesh nodal adjacency object

nmesh Number of mesh pieces for which nodal adjacency information is being
obtained. Pass zero if you want to obtain all nodal adjacency information in a
single call.

mesh_pieces Integer array of length nmesh indicating which mesh pieces nodal adjacency
information is desired for. May pass NULL if nmesh is zero.

Returns:

A pointer to a fully or partially populated DBmultimeshadj object or NULL on failure.

Description:

DBGetMultimeshadj returns a nodal adjacency object. This function is designed so that it may be
called multiple times to obtain information for different mesh pieces in different calls. The nmesh
and mesh_pieces arguments permit the caller to specify for which mesh pieces adjacency informa-
tion shall be obtained.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-140 Silo User’s Guide

DBPutMultivar
DBPutMultivar—Write a multi-block variable object into a Silo file.

Synopsis:

int DBPutMultivar (DBfile *dbfile, char *name, int nvar,
char *varnames[], int vartypes[],
DBoptlist *optlist);

Fortran Equivalent:

integer function dbputmvar(dbid, name, lname, nvar, varnames,
lvarnames, vartypes, optlist_id, status)

character*N varnames (See “dbset2dstrlen” on page 248.)

Arguments:

dbfile Database file pointer.

name Name of the multi-block variable.

nvar Number of variables associated with the multi-block variable.

varnames Array of length nvar containing pointers to the names of the variables. These
are variables written with DBPutPointvar, DBPutQuadvar, and DBPutUcdvar.
Ordinarily, the variables are stored in different sub-directories within a Silo file
and, optionally, even in different Silo files altogether. So, the name of each
block variable is specified using its full Silo path name. The full Silo pathname
is the form...

[<silo-filename>:]<path-to-mesh>

 The existence of a colon (‘:’) anywhere in the meshnames[i] indicates that
the ith block variable name is specified using both the Silo filename and the path
in the file. All characters before the colon are the Silo file pathname within the
filesystem on which the file(s) reside. Use whatever slash character (‘\’ for
Windows or ‘/’ for Unix) is appropriate for the underlying filesystem in this part
of the string only. Silo will automatically handle changes in the slash character
in this part of the string if this data is ever read on a different filesystem. All
characters after the colon are the path of the object within the Silo file and must
use only the ‘/’ slash character.

Use the keyword “EMPTY” for any block for which the associated variable
object does not exist. This convention is often convenient in cases where there
are many related multi-block objects and/or that evolve in time in such a way
that some blocks do not exist for some times.

Finally, the individual variable names referenced here CANNOT be the names
of other multi-block variables. In other words, it is not valid to create a multi-var
that references other multi-vars.

vartypes Array of length nvar containing the types of the variables. Each entry must be
one of the following: DB_POINTVAR, DB_QUADVAR, or DB_UCDVAR.
Silo User’s Guide 2-141

DBPutPointmesh
optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMultivar returns zero on success and -1 on failure.

Description:

The DBPutMultivar function writes a multi-block variable object into a Silo file.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_EXTENTS_SIZEa int Number of values in each extent tuple 0

DBOPT_EXTENTSa double* Pointer to an array of length nvar *
DBOPT_EXTENTS_SIZE doubles where
each group of DBOPT_EXTENTS_SIZE
doubles is an extent tuple (see below).
DBOPT_EXTENTS_SIZE must be set for
this option to work correctly.

NULL

DBOPT_MMESH_NAME char * Name of the multimesh this variable is
associated with. Note, this option is very
important as down-stream post process-
ing tools are otherwise required to guess
as to the mesh a given variable is associ-
ated with. Sometimes, the tools can guess
wrong.

NULL

DBOPT_TENSOR_RANK int Specify the variable type; one of either
DB_VARTYPE_SCALAR,
DB_VARTYPE_VECTOR
DB_VARTYPE_TENSOR,
DB_VARTYPE_SYMTENSOR,

DB_VARTYPE_ARRAY

DB_VARTYPE_LABEL

DB_VARTYPE
_SCALAR
2-142 Silo User’s Guide

DBPutPointmesh
Regarding the DBOPT_EXTENTS option, an extent tuple is a tuple of the variable’s minimum
value(s) followed by the variable’s maximum value(s). If the variable is a single, scalar variable,
each extent tuple will be 2 values of the form {min,max}. Thus, DBOPT_EXTENTS_SIZE will be
2. If the variable consists of nvars subvariables (e.g. the nvars argument in any of DBPutPoint-
var, DBPutQuadvar, DBPutUcdvar is greater than 1), then each extent tuple is 2*nvars values of
each subvariable’s minimum value followed by each subvariable’s maximum value. In this case,
DBOPT_EXTENTS_SIZE will be 2*nvars.

For example, if we have a multi-var object of a 3D velocity vector on 2 blocks, then
DBOPT_EXTENTS_SIZE will be 2*3=6 and the DBOPT_EXTENTS array will be an array of
2*6 doubles organized as follows...

{Vx_min_0, Vy_min_0, Vz_min_0, Vx_max_0, Vy_max_0, Vz_max_0,
Vx_min_1, Vy_min_1, Vz_min_1, Vx_max_1, Vy_max_1, Vz_max_1}

Note that if ghost zones are present in a block, the extents must be computed such that they include
contributions from data in the ghost zones. On the other hand, if a variable has mixed components,

DBOPT_REGION_PNAMES char** A null-pointer terminated array of pointers
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names.See
“DBOPT_REGION_PNAMES” on
page 188.

NULL

DBOPT_CONSERVED int Indicates if the variable represents a phys-
ical quantity that must be conserved under
various operations such as interpolation.

0

DBOPT_EXTENSIVE int Indicates if the variable represents a phys-
ical quantity that is extensive (as opposed
to intensive). Note, while it is true that any
conserved quantity is extensive, the con-
verse is not true. By default and histori-
cally, all Silo variables are treated as
intensive.

0

The options below have been deprecated. Use MRG trees instead.

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi-
mesh object.

0

a. Indicates a Down-stream Performance Option. See notes for DBPutMultimesh.

Option Name
Value

Data Type Option Meaning Default Value
Silo User’s Guide 2-143

DBPutPointmesh
that is component values on materials mixing within zones, then the extents should NOT include
contributions from the mixed variable values.
2-144 Silo User’s Guide

DBGetMultivar
DBGetMultivar—Read a multi-block variable definition from a Silo database.

Synopsis:

DBmultivar *DBGetMultivar (DBfile *dbfile, char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Name of the multi-block variable.

Returns:

DBGetMultivar returns a pointer to a DBmultivar structure on success and NULL on failure.

Description:

The DBGetMultivar function allocates a DBmultivar data structure, reads a multi-block variable
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-145

DBPutMultimat
DBPutMultimat—Write a multi-block material object into a Silo file.

Synopsis:

int DBPutMultimat (DBfile *dbfile, char *name, int nmat,
char *matnames[], DBoptlist *optlist)

Fortran Equivalent:

integer function dbputmmat(dbid, name, lname, nmat, matnames,
lmatnames, optlist_id, status)

Arguments:

dbfile Database file pointer.

name Name of the multi-material object.

nmat Number of materials provided.

matnames Array of length nmat containing pointers to the names of the material block
objects, written with DBPutMaterial(), to be associated with the multi-material
object. Ordinarily, the material objects are stored in different sub-directories
within a Silo file and, optionally, even in different Silo files altogether. So, the
name of each material object is specified using its full Silo path name. The full
Silo pathname is the form...

[<silo-filename>:]<path-to-mesh>

The existence of a colon (‘:’) anywhere in the meshnames[i] indicates that the
ith material object block name is specified using both the Silo filename and the
path in the file. All characters before the colon are the Silo file pathname within
the filesystem on which the file(s) reside. Use whatever slash character (‘\’ for
Windows or ‘/’ for Unix) is appropriate for the underlying filesystem in this part
of the string only. Silo will automatically handle changes in the slash character
in this part of the string if this data is ever read on a different filesystem. All
characters after the colon are the path of the object within the Silo file and must
use only the ‘/’ slash character.

Use the keyword "EMPTY" for any block for which the associated material
object does not exist. This convention is often convenient in cases where there
are many related multi-block objects and/or that evolve in time in such a way
that some blocks do not exist for some times.

Finally, the individual material object names referenced here CANNOT be the
names of other multi-block materials.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options
2-146 Silo User’s Guide

DBPutMultimat
Returns:

DBPutMultimat returns zero on success and -1 on error.

Description:

The DBPutMultimat function writes a multi-material object into a Silo file.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_NMATNOS int Number of material numbers stored in the
DBOPT_MATNOS option.

0

DBOPT_MATNOS int * Pointer to an array of length
DBOPT_NMATNOS containing a complete
list of the material numbers used in the
Multimat object. DBOPT_NMATNOS must
be set for this to work correctly.

NULL

DBOPT_MATNAMES char** Pointer to an array of length
DBOPT_NMATNOS containing a complete
list of the material names used in the Mul-
timat object. DBOPT_NMATNOS must be
set for this to work correctly.

NULL

DBOPT_MATCOLORS char** Array of strings defining the names of col-
ors to be associated with each material.
The color names are taken from the X win-
dows color database. If a color name
begins with a’#’ symbol, the remaining 6
characters are interpreted as the hexa-
decimal RGB value for the color.
DBOPT_NMATNOS must be set for this to
work correctly.

NULL

DBOPT_CYCLE int Problem cycle value. 0

DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_MIXLENSa int* Array of nmat ints which are the values of
the mixlen arguments in each of the indi-
vidual block’s material objects.

DBOPT_MATCOUNTSa int* Array of nmat counts indicating the num-
ber of materials actually in each block.

NULL

DBOPT_MATLISTSa int* Array of material numbers in each block.
Length is the sum of values in
DBOPT_MATCOUNTS. DBOPT_MATCOUNTS
must be set for this option to work cor-
rectly.

NULL
Silo User’s Guide 2-147

DBPutMultimat
Regarding the DBOPT_MIXLENS option, this option will help down-stream post-processing tools
to select an appropriate load balance of blocks to processors. Material mixing and material inter-
face reconstruction have a big effect on cost of certain post-processing operations.

Regarding the DBOPT_MATLISTS options, this option will give down-stream post-processing
tools better knowledge of how materials are distributed among blocks.

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_ALLOWMAT0 int If set to non-zero, indicates that a zero
entry in the matlist array is actually not a
valid material number but is instead being
used to indicate an ‘unused’ zone.

0

DBOPT_MMESH_NAME char * Name of the multimesh this material is
associated with. Note, this option is very
important as down-stream post process-
ing tools are otherwise required to guess
as to the mesh a given material is associ-
ated with. Sometimes, the tools can guess
wrong.

NULL

The options below have been deprecated. Use MRG trees instead.

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi-
mesh object.

0

a. Indicates a Down-stream Performance Option. See notes for DBPutMultimesh.

Option Name
Value

Data Type Option Meaning Default Value
2-148 Silo User’s Guide

DBGetMultimat
DBGetMultimat—Read a multi-block material object from a Silo database

Synopsis:

DBmultimat *DBGetMultimat (DBfile *dbfile, char *name)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer

name Name of the multi-block material object

Returns:

DBGetMultimat returns a pointer to a DBmultimat structure on success and NULL on failure.

Description:

The DBGetMultimat function allocates a DBmultimat data structure, reads a multi-block material
from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-149

DBPutMultimatspecies
DBPutMultimatspecies—Write a multi-block species object into a Silo file.

Synopsis:

int DBPutMultimatspecies (DBfile *dbfile, char *name, int nspec,
char *specnames[], DBoptlist *optlist)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name Name of the multi-block species structure.

nspec Number of species objects provided.

specnames Array of length nspec containing pointers to the names of each of the species.

optlist Pointer to an option list structure containing additional information to be
included in the object written into the Silo file. Use a NULL if there are no
options.

Returns:

DBPutMultimatspecies returns zero on success and -1 on failure.

Description:

The DBPutMultimatspecies function writes a multi-block material species object into a Silo file. It
accepts as input descriptions of the various sub-species (blocks) which are part of this mesh.

Notes:

The following table describes the options accepted by this function:

Option Name
Value

Data Type Option Meaning Default Value

DBOPT_BLOCKORIGIN int The origin of the block numbers. 1

DBOPT_MATNAME char * Character string defining the name of the
multi-block material with which this object
is associated.

NULL

DBOPT_NMAT int The number of materials in the associated
material object.

0

DBOPT_NMATSPEC int * Array of length DBOPT_NMAT containing
the number of material species associated
with each material. DBOPT_NMAT must be
set for this to work correctly.

NULL

DBOPT_CYCLE int Problem cycle value. 0
2-150 Silo User’s Guide

DBPutMultimatspecies
DBOPT_TIME float Problem time value. 0.0

DBOPT_DTIME double Problem time value. 0.0

DBOPT_HIDE_FROM_GUI int Specify a non-zero value if you do not
want this object to appear in menus of
downstream tools

0

DBOPT_SPECNAMES char** Array of strings defining the names of the
individual species. DBOPT_NMATSPEC
must be set for this to work correctly. The
length of this array is the sum of the val-
ues in the argument to the
DBOPT_NMATSPEC option.

NULL

DBOPT_SPECCOLORS char** Array of strings defining the names of col-
ors to be associated with each species.
The color names are taken from the X win-
dows color database. If a color name
begins with a’#’ symbol, the remaining 6
characters are interpreted as the hexa-
decimal RGB value for the color.
DBOPT_NMATSPEC must be set for this to
work correctly. The length of this array is
the sum of the values in the argument to
the DBOPT_NMATSPEC option.

NULL

The options below have been deprecated. Use MRG trees instead.

DBOPT_GROUPORIGIN int The origin of the group numbers. 1

DBOPT_NGROUPS int The total number of groups in this multi-
mesh object.

0

Option Name
Value

Data Type Option Meaning Default Value
Silo User’s Guide 2-151

DBGetMultimatspecies
DBGetMultimatspecies—Read a multi-block species from a Silo database.

Synopsis:

DBmultimesh *DBGetMultimatspecies (DBfile *dbfile, char *name)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name Name of the multi-block material species.

Returns:

DBGetMultimatspecies returns a pointer to a DBmultimatspecies structure on success and NULL
on failure.

Description:

The DBGetMultimatspecies function allocates a DBmultimatspecies data structure, reads a multi-
block material species from the Silo database, and returns a pointer to that structure. If an error
occurs, NULL is returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-152 Silo User’s Guide

PMPIO_Init
PMPIO_Init—Initialize a Poor Man’s Parallel I/O interaction with the Silo library

Synopsis:

PMPIO_baton_t *PMPIO_Init(int numFiles, PMPIO_iomode_t ioMode,
MPI_Comm mpiComm, int mpiTag,
PMPIO_CreateFileCallBack createCb,
PMPIO_OpenFileCallBack openCb,
PMPIO_CloseFileCallBack closeCB,
void *userData)

Fortran Equivalent:

None

Arguments:

numFiles The number of individual Silo files to generate. Note, this is the number of
parallel I/O streams that will be running simultaneously during I/O. A value of 1
cause PMPIO to behave serially. A value equal to the number of processors
causes PMPIO to create a file-per-processor. Both values are unwise. For most
parallel HPC platforms, values between 8 and 64 are appropriate.

ioMode Choose one of either PMPIO_READ or PMPIO_WRITE. Note, you can not use
PMPIO to handle both read and write in the same interaction.

mpiComm The MPI communicator you would like PMPIO to use when passing the tiny
baton messages it needs to coordinate access to the underlying Silo files. See
documentation on MPI for a description of MPI communicators.

mpiTag The MPI message tag you would like PMPIO to use when passing the tiny baton
messages it needs to coordinate access to the underlying Silo files.

createCb The file creation callback function. This is a function you implement that
PMPIO will call when the first processor in each group needs to create the Silo
file for the group. It is needed only for PMPIO_WRITE operations. If default
behavior is acceptable, pass PMPIO_DefaultCreate here.

openCb The file open callback function. This is a function you implement that PMPIO
will call when the second and subsequent processors in each group need to open
a Silo file. It is needed for both PMPIO_READ and PMPIO_WRITE operations.
If default behavior is acceptable, pass PMPIO_DefaultOpen here.

closeCb The file close callback function. This is a function you implement that PMPIO
will call when a processor in a group needs to close a Silo file. If default
behavior is acceptable, pass PMPIO_DefaultClose here.

userData [OPT] Arbitrary user data that will be passed back to the various callback
functions. Pass NULL(0) if this is not needed.

Returns:

A pointer to a PMPIO_baton_t object to be used in subsequent PMPIO calls on success. NULL on
failure.
Silo User’s Guide 2-153

PMPIO_Init
Description:

The PMPIO interface was designed to be separate from the Silo library. To use it, you must
include the PMPIO header file, pmpio.h, after the MPI header file, mpi.h, in your applica-
tion. This interface was designed to work with any serial library and not Silo specifically. For
example, these same routines can be used with raw HDF5 or PDB files if so desired.

The PMPIO interface decomposes a set of P processors into N groups and then provides access, in
parallel, to a separate Silo file per group. This is the essence of Poor Man’s Parallel I/O.

For PMPIO_WRITE operations, each processor in a group creates its own Silo sub-directory
within the Silo file to write its data to. At any one moment, only one processor from each group
has a file open for writing. Hence, the I/O is serial within a group. However, because a processor in
each of the N groups is writing to its own Silo file, simultaneously, the I/O is parallel across
groups.

The number of files, N, can be chosen wholly independently of the total number of processors per-
mitting the application to tune N to the underlying filesystem. If N is set to 1, the result will be
serial I/O to a single file. If N is set to P, the result is one file per processor. Both of these are poor
choices.

Typically, one chooses N based on the number of available I/O channels. For example, a parallel
application running on 2,000 processors and writing to a filesystem that supports 8 parallel I/O
channels could select N=8 and achieve nearly optimum I/O performance and create only 8 Silo
files.

On every processor, the sequence of PMPIO operations takes the following form...

PMPIO_baton_t *bat = PMPIO_Init(...);
dbFile = (DBfile *) PMPIO_WaitForBaton(bat, ...);

/* local work (e.g. DBPutXXX() calls) for this processor */
.
.
.

PMPIO_HandOffBaton(bat, ...);
PMPIO_Finish(bat);

For a given PMPIO group of processors, only one processor in the group is in the “local work”
block of the above code. All other processors have either completed it or are waiting their prede-
cessor to finish. However, every PMPIO group will have one processor working in the “local
work” block, concurrently, to different files.

After PMPIO_Finish(), there is still one final step that PMPIO DOES NOT HELP with. That
is the creation of the multi-block objects that reference the individual pieces written by all the pro-
cessors with DBPutXXX calls in the “local work” part of the above sequence. It is the applica-
tion’s responsibility to correctly assembly the names of all these pieces and then create the multi-
block objects that reference them. Ordinarily, the application designates one processor to write
these multi-block objects and one of the N Silo files to write them to. Again, this last step is not
something PMPIO will help with.
2-154 Silo User’s Guide

PMPIO_Init
Poor Man’s Parallel I/O is a simple and effective I/O strategy that has been used by codes like
Ale3d and SAMRAI for many years and has shown excellent scaling behavior. A drawback of this
approach is, of course, that multiple files are generated. However, when used appropriately, this
number of files is typically small (e.g. 8 to 64). In addition, our experience has been that concur-
rent, parallel I/O to a single file which also supports sufficient variation in size, shape and pattern
of I/O requests from processor to processor is a daunting challenge to perform scalably. So, while
Poor Man’s Parallel I/O is not truly concurrent, parallel I/O, it has demonstrated that it is not only
highly flexible and highly scalable but also very easy to implement and for these reasons, often a
superior choice to true, concurrent, parallel I/O.
Silo User’s Guide 2-155

PMPIO_CreateFileCallBack
PMPIO_CreateFileCallBack—The PMPIO file creation callback

Synopsis:

typedef void *(*PMPIO_CreateFileCallBack)(const char *fname,
const char *dname, void *udata);

Fortran Equivalent:

None

Arguments:

fname The name of the Silo file to create.

dname The name of the directory within the Silo file to create.

udata A pointer to any additional user data. This is the pointer passed as the
userData argument to PMPIO_Init().

Returns:

A void pointer to the created file handle.

Description:

This defines the PMPIO file creation callback interface.

Your implementation of this file creation callback should minimally do the following things.

For PMPIO_WRITE operation, your implementation should DBCreate() a Silo file of name
fname, DBMkDir() a directory of name dname for the first processor of a group to write to and
DBSetDir() to that directory.

For PMPIO_READ operations, your implementation of this callback is never called.

The PMPIO_DefaultCreate function does only the minimal work, returning a void pointer to
the created DBfile Silo file handle.
2-156 Silo User’s Guide

PMPIO_OpenFileCallBack
PMPIO_OpenFileCallBack—The PMPIO file open callback

Synopsis:

typedef void *(*PMPIO_OpenFileCallBack)(const char *fname,
const char *dname, PMPIO_iomode_t iomode, void *udata);

Fortran Equivalent:

None

Arguments:

fname The name of the Silo file to open.

dname The name of the directory within the Silo file to work in.

iomode The iomode of this PMPIO interaction. This is the value passed as ioMode
argument to PMPIO_Init().

udate A pointer to any additional user data. This is the pointer passed as the
userData argument to PMPIO_Init().

Returns:

A void pointer to the opened file handle that was.

Description:

This defines the PMPIO open file callback.

Your implementation of this open file callback should minimally do the following things.

For PMPIO_WRITE operations, it should DBOpen() the Silo file named fname, DBMkDir() a
directory named dname and DBSetDir() to directory dname.

For PMPIO_READ operations, it should DBOpen() the Silo file named fname and then
DBSetDir() to the directory named dname.

The PMPIO_DefaultOpen function does only the minimal work, returning a void pointer to the
opened DBfile Silo handle.
Silo User’s Guide 2-157

PMPIO_CloseFileCallBack
PMPIO_CloseFileCallBack—The PMPIO file close callback

Synopsis:

typedef void (*PMPIO_CloseFileCallBack)(void *file, void *udata);

Fortran Equivalent:

None

Arguments:

file void pointer to the file handle (DBfile pointer).

udata A pointer to any additional user data. This is the pointer passed as the
userData argument to PMPIO_Init().

Returns:

None

Description:

This defines the PMPIO close file callback interface.

Your implementation of this callback function should simply close the file. It us up to the imple-
mentation to know the correct time of the file handle passed as the void pointer file.

The PMPIO_DefaultClose function simply closes the Silo file.
2-158 Silo User’s Guide

PMPIO_WaitForBaton
PMPIO_WaitForBaton—Wait for exclusive access to a Silo file

Synopsis:

void *PMPIO_WaitForBaton(PMPIO_baton_t *bat,
const char *filename, const char *dirname)

Fortran Equivalent:

None

Arguments:

bat The PMPIO baton handle obtained via a call to PMPIO_Init().

filename The name of the Silo file this processor will create or open.

dirname The name of the directory within the Silo file this processor will work in.

Returns:

NULL (0) on failure. Otherwise, for PMPIO_WRITE operations the return value is whatever the
create or open file callback functions return. For PMPIO_READ operations, the return value is
whatever the open file callback function returns.

Description:

All processors should call this function as the next PMPIO function to call following a call to
PMPIO_Init().

For all processors that are the first processors in their groups, this function will return immediately
after having called the file creation callback specified in PMPIO_Init(). Typically, this callback
will have created a file with the name filename and a directory in the file with the name
dirname as well as having set the current working directory to dirname.

For all processors that are not the first in their groups, this call will block, waiting for the processor
preceding it to finish its work on the Silo file for the group and pass the baton to the next proces-
sor.

A typical naming convention for filename is something like “my_file_%03d.silo” where the
“%03d” is replaced with the group rank (See “PMPIO_GroupRank” on page 162.) of the proces-
sor. Likewise, a typical naming convention for dirname is something like “domain_%03d” where
the “%03d” is replaced with the rank-in-group (See “PMPIO_RankInGroup” on page 163.) of the
processor.
Silo User’s Guide 2-159

PMPIO_HandOffBaton
PMPIO_HandOffBaton—Give up all access to a Silo file

Synopsis:

void PMPIO_HandOffBaton(const PMPIO_baton_t *bat, void *file)

Fortran Equivalent:

None

Arguments:

bat The PMPIO baton handle obtained via a call to PMPIO_Init().

file A void pointer to the Silo DBfile object.

Returns:

None

Description:

When a processor has completed all its work on a Silo file, it gives up access to the file by calling
this function. This has the effect of closing the Silo file and then passing the baton to the next pro-
cessor in the group.
2-160 Silo User’s Guide

PMPIO_Finish
PMPIO_Finish—Finish a Poor Man’s Parallel I/O interaction with the Silo library

Synopsis:

void PMPIO_Finish(PMPIO_baton *bat)

Fortran Equivalent:

None

Arguments:

bat The PMPIO baton handle obtained via a call to PMPIO_Init().

Returns:

None.

Description:

After a processor has finished a PMPIO interaction with the Silo library, call this function to free
the baton object associated with the interaction.
Silo User’s Guide 2-161

PMPIO_GroupRank
PMPIO_GroupRank—Obtain ‘group rank’ of the calling processor

Synopsis:

int PMPIO_GroupRank(const PMPIO_baton_t *bat, int rankInComm)

Fortran Equivalent:

None

Arguments:

bat The PMPIO baton handle obtained via a call to PMPIO_Init().

rankInComm Rank of calling processor in the MPI communicator passed in
PMPIO_Init().

Returns:

The ‘group rank’ of the calling processor. In other words, the group number of the calling proces-
sor, indexed from zero.

Description:

This is a convenience function to help applications identify which PMPIO group a given processor
belongs to.
2-162 Silo User’s Guide

PMPIO_RankInGroup
PMPIO_RankInGroup—Obtain the rank of the calling processor within its PMPIO group

Synopsis:

int PMPIO_RankInGroup(const PMPIO_baton_t *bat, int rankInComm)

Fortran Equivalent:

None

Arguments:

bat The PMPIO baton handle obtained via a call to PMPIO_Init().

rankInComm Rank of the calling processor in the MPI communicator used in
PMPIO_Init().

Returns:

The rank of the calling processor within its PMPIO group.

Description:

This is a convenience function for applications to determine which processor a given processor is
within its PMPIO group.
Silo User’s Guide 2-163

PMPIO_RankInGroup
5 API Section Part Assemblies, AMR, Slide Surfaces,
Nodesets and Other Arbitrary Mesh Subsets

This section of the API manual describes Mesh Region Grouping (MRG) trees and Groupel Maps.
MRG trees describe the decomposition of a mesh into various regions such as parts in an assembly,
materials (even mixing materials), element blocks, processor pieces, nodesets, slide surfaces,
boundary conditions, etc. Groupel maps describe the, problem sized, details of the subsetted
regions. MRG trees and groupel maps work hand-in-hand in efficiently (and scalably) characteriz-
ing the various subsets of a mesh.

MRG trees are associated with (e.g. bound to) the mesh they describe using the
DBOPT_MRGTREE_NAME optlist option in the DBPutXxxmesh() calls. MRG trees are used
both to describe a multi-mesh object and then again, to describe individual pieces of the multi-
mesh.

In addition, once an MRG tree has been defined for a mesh, variables to be associated with the
mesh can be defined on only specific subsets of the mesh using the DBOPT_REGION_PNAMES
optlist option in the DBPutXxxvar() calls.

Because MRG trees can be used to represent a wide variety of subsetting functionality and because
applications have still to gain experience using MRG trees to describe their subsetting applica-
tions, the methods defined here are design to be as free-form as possible with few or no limitations
on, for example, naming conventions of the various types of subsets. It is simply impossible to
know a priori all the different ways in which applications may wish to apply MRG trees to con-
struct subsetting information.

For this reason, where a specific application of MRG trees is desired (to represent materials for
example), we document the naming convention an application must use to affect the representa-
tion.

The functions described in this section of the API manual are...

DBMakeMrgtree . 161
DBAddRegion. 165
DBAddRegionArray . 167
DBSetCwr . 169
DBGetCwr . 170
DBPutMrgtree. 171
DBGetMrgtree . 172
DBFreeMrgtree . 173
DBMakeNamescheme . 174
DBGetName . 176
DBPutMrgvar . 177
DBGetMrgvar . 179
DBPutGroupelmap . 180
DBGetGroupelmap . 182
DBFreeGroupelmap . 183
DBOPT_REGION_PNAMES . 184
2-164 Silo User’s Guide

DBMakeMrgtree
DBMakeMrgtree—Create and initialize an empty mesh region grouping tree

Synopsis:

DBmrgtree *DBMakeMrgtree(int mesh_type, int info_bits,
int max_children, DBoptlist *opts)

Fortran Equivalent:

integer function dbmkmrgtree(mesh_type, info_bits, max_children,
optlist_id, tree_id)

Arguments:

mesh_type The type of mesh object the MRG tree will be associated with. An example
would be DB_MULTIMESH, DB_QUADMESH, DB_UCDMESH.

info_bits UNUSED

max_childrenMaximum number of immediate children of the root.

opts Additional options

Returns:

A pointer to a new DBmrgtree object on success and NULL on failure

Description:

This function creates a Mesh Region Grouping Tree (MRG) tree used to define different regions in
a mesh.

An MRG tree is used to describe how a mesh is composed of regions such as materials, parts in an
assembly, levels in an adaptive refinement hierarchy, nodesets, slide surfaces, boundary conditions,
as well as many other kinds of regions. An example is shown in Figure 0-8 on page 165.

Figure 0-8: Example of MRGTree

mesh

nodesets materials assembly

wingsfueselagens_a ns_b copper zinc iron

left rightcabin cockpitregion-only node

grouping-only node

region & grouping node

node-type legend
Silo User’s Guide 2-165

DBMakeMrgtree
In a multi-mesh setting, an MRG tree describing all of the subsets of the mesh is associated with
the top-level multimesh object. In addition, separate MRG trees representing the relevant portions
of the top-level MRG tree are also associated with each block.

MRG trees can be used to describe a wide variety of subsets of a mesh. In the paragraphs below,
we outline the use of MRG trees to describe a variety of common subsetting scenarios. In some
cases, a specific naming convention is required to fully specify the subsetting scenario.

The paragraphs below describe how to utilize an MRG tree to describe various common kinds of
decompositions and subsets.

Multi-Block Grouping (obsoletes DBOPT_GROUPING options for DBPutMultimesh,
_visit_domain_groups convention)

A multi-block grouping is the assignment of the blocks of a multi-block mesh (e.g. the mesh
objects created with DBPutXxxmesh() calls and enumerated by name in a DBPutMultimesh() call)
to one of several groups. Each group in the grouping represents several blocks of the multi-block
mesh. Historically, support for such a grouping in Silo has been limited in a couple of ways. First,
only a single grouping could be defined for a multi-block mesh. Second, the grouping could not be
hierarchically defined. MRG trees, however, support both multiple groupings and hierarchical
groupings.

In the MRG tree, define a child node of the root named “groupings.” All desired groupings shall be
placed under this node in the tree.

For each desired grouping, define a groupel map where the number of segments of the map is
equal to the number of desired groups. Map segment i will be of groupel type DB_BLOCKCENT
and will enumerate the blocks to be assigned to group i. Next, add regions (either an array of
regions or one at a time) to the MRG tree, one region for each group and specify the groupel map
name and other map parameters to be associated with these regions.

Figure 0-9: Examples of MRG trees for single and multiple groupings.

In the diagram above, for the multiple grouping case, two groupel map objects are defined; one for
each grouping. For the ‘A’ grouping, the groupel map consists of 4 segments (all of which are of

mesh

groupings

grouping A grouping B

side top bottom front skinny fat

Multiple Groupings

mesh

groupings

bottom front

Single, Hierarchical Grouping

groupel map object

groupel map segments refs.

interior exterior

deep shallow faces edges
2-166 Silo User’s Guide

DBMakeMrgtree
groupel type DB_BLOCKCENT) one for each grouping in ‘side’, ‘top’, ‘bottom’ and ‘front.’ Each
segment identifies the blocks of the multi-mesh (at the root of the MRG tree) that are in each of the
4 groups. For the ‘B’ grouping, the groupel map consists of 2 segments (both of type
DB_BLOCKCENT), for each grouping in ‘skinny’ and ‘fat’. Each segment identifies the blocks of
the multi-mesh that are in each group.

If, in addition to defining which blocks are in which groups, an application wishes to specify spe-
cific nodes and/or zones of the group that comprise each block, additional groupel maps of type
DB_NODECENT or DB_ZONECENT are required. However, because such groupel maps are speci-
fied in terms of nodes and/or zones, these groupel maps need to be defined on an MRG tree that is
associated with an individual mesh block. Nonetheless, the manner of representation is analogous.

Multi-Block Neighbor Connectivity (obsoletes DBPutMultimeshadj):

Multi-block neighbor connectivity information describes the details of how different blocks of a
multi-block mesh abut with shared nodes and/or adjacent zones. For a given block, multi-block
neighbor connectivity information lists the blocks that share nodes (or have adjacent zones) with
the given block and then, for each neighboring block, also lists the specific shared nodes (or adja-
cent zones).

If the underlying mesh type is structured (e.g. DBPutQuadmesh() calls were used to create the
individual mesh blocks), multi-block neighbor connectivity information can be scalably repre-
sented entirely at the multi-block level in an MRG tree. Otherwise, it cannot and it must be repre-
sented at the individual block level in the MRG tree. This section will describe both scenarios.
Note that these scenarios were previously handled with the now deprecated DBPutMultimeshadj()
call. That call, however, did not have favorable scalaing behavior for the unstructured case.

The first step in defining multi-block connectivity information is to define a top-level MRG tree
node named “neighbors.” Underneath this point in the MRG tree, all the information identifying
multi-block connectivity will be added.

Next, create a groupel map with number of segments equal to the number of blocks. Segment i of
the map will by of type DB_BLOCKCENT and will enumerate the neighboring blocks of block i.
Next, in the MRG tree define a child node of the root named “neighborhoods”. Underneath this
node, define an array of regions, one for each block of the multiblock mesh and associate the
groupel map with this array of regions.

For the structured grid case, define a second groupel map with number of segments equal to the
number of blocks. Segment i of the map will be of type DB_NODECENT and will enumerate the
slabs of nodes block i shares with each of its neighbors in the same order as those neighbors are
listed in the previous groupel map. Thus, segment i of the map will be of length equal to the num-
ber of neighbors of block i times 6 (2 ijk tuples specifying the lower and upper bounds of the slab
of shared nodes).

For the unstructured case, it is necessary to store groupel maps that enumerate shared nodes
between shared blocks on MRG trees that are associated with the individual blocks and NOT the
multi-block mesh itself. However, the process is otherwise the same.

In the MRG tree to be associated with a given mesh block, create a child of the root named “neigh-
bors.” For each neighboring block of the given mesh block, define a groupel map of type
DB_NODECENT, enumerating the nodes in the current block that are shared with another block
(or of type DB_ZONECENT enumerating the nodes in the current block that abut another block).
Silo User’s Guide 2-167

DBMakeMrgtree
Underneath this node in the MRG tree, create a region representing each neighboring block of the
given mesh block and associate the appropriate groupel map with each region.

Multi-Block, Structured Adaptive Mesh Refinement:

In a structured AMR setting, each AMR block (typically called a “patch” by the AMR commu-
nity), is written by a DBPutQuadmesh() call. A DBPutMultimesh() call groups all these
blocks together, defining all the individual blocks of mesh that comprise the complete AMR mesh.

An MRG tree, or portion thereof, is used to define which blocks of the multi-block mesh comprise
which levels in the AMR hierarchy as well as which blocks are refinements of other blocks.

First, the grouping of blocks into levels is identical to multi-block grouping, described previously.
For the specific purpose of grouping blocks into levels, a different top-level node in the MRG
needs to be defined named “amr-levels.” Below this node in the MRG tree, there should be a set of
regions, each region representing a separate refinement level. A groupel map of type
DB_BLOCKCENT with number of segments equal to number of levels needs to be defined and
associated with each of the regions defined under the “amr-levels’ region. The ith segment of the
map will enumerate those blocks that belong to the region representing level i. In addition, an
MRG variable defining the refinement ratios for each level named “amr-ratios” must be defined on
the regions defining the levels of the AMR mesh.

For the specific purpose of identifying which blocks of the multi-block mesh are refinements of a
given block, another top-level region node is added to the MRG tree called “amr-refinements”.
Below the “amr-refinements” region node, an array of regions representing each block in the
multi-block mesh should be defined. In addition, define a groupel map with a number of segments
equal to the number of blocks. Map segment i will be of groupel type DB_BLOCKCENT and will
define all those blocks which are immediate refinements of block i. Since some blocks, with finest
resolution do not have any refinements, the map segments defining the refinements for these
blocks will be of zero length.
2-168 Silo User’s Guide

DBAddRegion
DBAddRegion—Add a region to an MRG tree

Synopsis:

int DBAddRegion(DBmrgtree *tree, const char *reg_name,
int info_bits, int max_children, const char *maps_name,
int nsegs, int *seg_ids, int *seg_lens, int *seg_types,
DBoptlist *opts)

Fortran Equivalent:

integer function dbaddregion(tree_id, reg_name, lregname,
info_bits, max_children, maps_name,
lmaps_name, nsegs, seg_ids, seg_lens,
seg_types, optlist_id, status)

Arguments:

tree The MRG tree object to add a region to.

reg_name The name of the new region.

info_bits UNUSED

max_childrenMaximum number of immediate children this region will have.

maps_name [OPT] Name of the groupel map object to associate with this region. Pass
NULL if none.

nsegs [OPT] Number of segments in the groupel map object specified by the
maps_name argument that are to be associated with this region. Pass zero if
none.

seg_ids [OPT] Integer array of length nsegs of groupel map segment ids. Pass NULL (0)
if none.

seg_lens [OPT] Integer array of length nsegs of groupel map segment lengths. Pass
NULL (0) if none.

seg_types [OPT] Integer array of length nsegs of groupel map segment element types. Pass
NULL (0) if none. These types are the same as the centering options for
variables; DB_ZONECENT, DB_NODECENT, DB_EDGECENT,
DB_FACECENT and DB_BLOCKCENT (for the blocks of a multimesh)

opts [OPT] Additional options. Pass NULL (0) if none.

Returns:

A positive number on success; -1 on failure

Description:

Adds a single region node to an MRG tree below the current working region (See “DBSetCwr” on
page 173.).
Silo User’s Guide 2-169

DBAddRegion
If you need to add a large number of similarly purposed region nodes to an MRG tree, consider
using the more efficient DBAddRegionArray() function although it does have some limita-
tions with respect to the kinds of groupel maps it can reference.

A region node in an MRG tree can represent either a specific region, a group of regions or both all
of which are determined by actual use by the application.

Often, a region node is introduced to an MRG tree to provide a separate namespace for regions to
be defined below it. For example, to define material decompositions of a mesh, a region named
“materials” is introduced as a top-level region node in the MRG tree. Note that in so doing, the
region node named “materials” does NOT really represent a distinct region of the mesh. In fact, it
represents the union of all material regions of the mesh and serves as a place to define one, or
more, material decompositions.

Because MRG trees are a new feature in Silo, their use in applications is not fully defined and the
implementation here is designed to be as free-form as possible, to permit the widest flexibility in
representing regions of a mesh. At the same time, in order to convey the semantic meaning of cer-
tain kinds of information in an MRG tree, a set of pre-defined region names is described below.

When a region is being defined in an MRG tree to be associated with a multi-block mesh, often the
groupel type of the maps associated with the region are of type DB_BLOCKCENT.

Region Naming Convention Meaning

“materials” Top-level region below which material decomposition information is
defined. There can be multiple material decompositions, if so desired.
Each such decomposition would be rooted at a region named
“material_<name>” underneath the “materials” region node.

“groupings” Top-level region below which multi-block grouping information is
defined. There can be multiple groupings, if so desired. Each such
grouping would be rooted at a region named “grouping_<name>”
underneath the “groupings” region node.

“amr-levels” Top-level region below which Adaptive Mesh Refinement level group-
ings are defined.

“amr-refinements” Top-level region below which Adaptive Mesh Refinment refinement
information is defined. This where the information indicating which
blocks are refinements of other blocks is defined.

“neighbors” Top-level region below which multi-block adjacency information is
defined.
2-170 Silo User’s Guide

DBAddRegionArray
DBAddRegionArray—Efficiently add multiple, like-kind regions to an MRG tree

Synopsis:

int DBAddRegionArray(DBmrgtree *tree, int nregn,
const char **regn_names, int info_bits,
const char *maps_name, int nsegs, int *seg_ids,
int *seg_lens, int *seg_types, DBoptlist *opts)

Fortran Equivalent:

integer function dbaddregiona(tree_id, nregn, regn_names,
lregn_names, info_bits, maps_name, lmaps_name, nsegs
seg_ids, seg_lens, seg_types, optlist_id, status)

Arguments:

tree The MRG tree object to add the regions to.

nregn The number of regions to add.

regn_names This is either an array of nregn pointers to character string names for each
region or it is an array of 1 pointer to a character string specifying a printf-style
naming scheme for the regions. The existence of a percent character (‘%’) (used
to introduce conversion specifications) anywhere in regn_names[0] will
indicate the latter mode.The latter mode is almost always preferable, especially
if nergn is large (say more than 100). See below for the format of the printf-
style naming string.

info_bits UNUSED

maps_name [OPT] Name of the groupel maps object to be associated with these regions.
Pass NULL (0) if none.

nsegs [OPT] The number of groupel map segments to be associated with each region.
Note, this is a per-region value. Pass 0 if none.

seg_ids [OPT] Integer array of length nsegs*nregn groupel map segment ids. The
first nsegs ids are associated with the first region. The second nsegs ids are
associated with the second region and so fourth. In cases where some regions
will have fewer than nsegs groupel map segments associated with them, pass -
1 for the corresponding segment ids. Pass NULL (0) if none.

seg_lens [OPT] Integer array of length nsegs*nregn indicating the lengths of each of
the groupel maps. In cases where some regions will have fewer than nsegs
groupel map segments associated with them, pass 0 for the corresponding
segment lengths. Pass NULL (0) if none.

seg_types [OPT] Integer array of length nsegs*nregn specifying the groupel types of
each segment. In cases where some regions will have fewer than nsegs
groupel map segments associated with them, pass 0 for the corresponding
segment lengths. Pass NULL (0) if none.

opts [OPT] Additional options. Pass NULL (0) if none.
Silo User’s Guide 2-171

DBAddRegionArray
Returns:

A positive number on success; -1 on failure

Description:

Use this function instead of DBAddRegion() when you have a large number of similarly purposed
regions to add to an MRG tree AND you can deal with the limitations of the groupel maps associ-
ated with these regions.

The key limitation of the groupel map associated with a region created with DBAddRegionArray()
array and a groupel map associated with a region created with DBAddRegion() is that every region
in the region array must reference nseg map segments (some of which can of course be of zero
length).

Adding a region array is a substantially more efficient way to add regions to an MRG tree than
adding them one at a time especially when a printf-style naming convention is used to specify the
region names.

The existence of a percent character (‘%’) anywhere in regn_names[0] indicates that a printf-style
namescheme is to be used. The format of a printf-style namescheme to specify region names is
described in the documentation of DBMakeNamescheme() (See “DBMakeNamescheme” on
page 178.)

Note that the names of regions within an MRG tree are not required to obey the same variable
naming conventions as ordinary Silo objects (See “DBVariableNameValid” on page 12.) except
that MRG region names can in no circumstance contain either a semi-colon character (‘;’) or a
new-line character (‘\n’).
2-172 Silo User’s Guide

DBSetCwr
DBSetCwr—Set the current working region for an MRG tree

Synopsis:

int DBSetCwr(DBmrgtree *tree, const char *path)

Fortran Equivalent:

integer function dbsetcwr(tree, path, lpath)

Arguments:

tree The MRG tree object.

path The path to set.

Returns:

Positive, depth in tree, on success, -1 on failure.

Description:

Sets the current working region of the MRG tree. The concept of the current working region is
completely analogous to the current working directory of a filesystem.

Notes:

Currently, this method is limited to settings up or down the MRG tree just one level. That is, it will
work only when the path is the name of a child of the current working region or is “..”. This limita-
tion will be relaxed in the next release.
Silo User’s Guide 2-173

DBGetCwr
DBGetCwr—Get the current working region of an MRG tree

Synopsis:

const char *GetCwr(DBmrgtree *tree)

Arguments:

tree The MRG tree.

Returns:

A pointer to a string representing the name of the current working region (not the full path name,
just current region name) on success; NULL (0) on failure.

Description:
2-174 Silo User’s Guide

DBPutMrgtree
DBPutMrgtree—Write a completed MRG tree object to a Silo file

Synopsis:

int DBPutMrgtree(DBfile *file, const char *name,
const char *mesh_name, DBmrgtree *tree, DBoptlist *opts)

Fortran Equivalent:

int dbputmrgtree(dbid, name, lname, mesh_name, lmesh_name,
tree_id, optlist_id, status)

Arguments:

file The Silo file handle

name The name of the MRG tree object in the file.

mesh_name The name of the mesh the MRG tree object is associated with.

tree The MRG tree object to write.

opts [OPT] Additional options. Pass NULL (0) if none.

Returns:

Positive or zero on success, -1 on failure.

Description:

After using DBPutMrgtree to write the MRG tree to a Silo file, the MRG tree object itself must be
freed using DBFreeMrgtree().
Silo User’s Guide 2-175

DBGetMrgtree
DBGetMrgtree—Read an MRG tree object from a Silo file

Synopsis:

DBmrgtree *DBGetMrgtree(DBfile *file, const char *name)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle

name The name of the MRG tree object in the file.

Returns:

A pointer to a DBmrgtree object on success; NULL (0) on failure.

Description:

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-176 Silo User’s Guide

DBFreeMrgtree
DBFreeMrgtree—Free the memory associated by an MRG tree object

Synopsis:

void DBFreeMrgtree(DBmrgtree *tree)

Fortran Equivalent:

integer function dbfreemrgtree(tree_id)

Arguments:

tree The MRG tree object to free.

Returns:

None.

Description:

Frees all the memory associated with an MRG tree.
Silo User’s Guide 2-177

DBFreeMrgtree
DBMakeNamescheme—Create a DBnamescheme object for generating names

Synopsis:

DBnamescheme *DBMakeNamescheme(const char *fmt, ...)

Fortran Equivalent:

None

Arguments:

fmt Format string for the name scheme as described below.

... [Optional] additional arguments for external array references.

Description:

A namescheme defines a mapping between the non-negative integers (e.g. the natural numbers)
and a sequence of strings such that each string to be associated with a given integer (n) can be gen-
erated from printf-style formatting of simple expressions. Nameschemes are most often used to
define names of regions in region arrays.

The format of a printf-style namescheme is as follows. The first character of fmt is treated as
delimiter character definition. Wherever this delimiter character appears (except as the first char-
acter), this will indicate the end of one substring within fmt and the beginning of a next substring.
The delimiter character cannot be any of the characters used in the expression language (see
below) for defining expressions to generate names of a namescheme.

The first substring of fmt (that is the characters from position 1 to the first delimiter character)
will contain the complete printf-style format string. The remaining substrings will contain simple
expressions, one for each conversion specifier found in the format substring, which when evaluated
will be used as the corresponding argument in an sprintf call to generate the actual region name,
when and if needed, on demand.

The expression language for building up the arguments to be used along with the printf-style for-
mat string is pretty simple.

It supports the ‘+’, ‘-’, ‘*’, ‘/’, ‘%’ (modulo), ‘|’, ‘&’, ‘^’ integer operators and a variant of the
question-mark-colon operator, ‘? : :’ which requires an extra, terminating colon.

It supports grouping via ‘(‘ and ‘)’ characters.

It supports grouping of characters into arbitrary strings via the string (single quote) characters ‘’’
and ‘’’. Any characters appearing between enclosing single quotes are treated as a literal string
suitable for an argument to be associated with a %s-type conversion specifier in the format string.

It supports references to external, integer valued, arrays introduced via a ‘$’ appearing before an
array’s name.

Finally, the special operator ‘n’ appearing in an expression represents a region’s natural number
within the region array (zero-origin region index). See below for some examples...
2-178 Silo User’s Guide

DBFreeMrgtree
Except for singly quoted strings which evaluate to a literal string suitable for output via a %s type
conversion specifier, all other expressions are treated as evaluating to integer values suitable for
any of the integer conversion specifiers (%[ouxXdi]) which may be used in the format substring..

Use DBFreeNamescheme() to free up the space associated with a namescheme. Note, however,
that DBFreenamescheme() does not free memory associated with external arrays.

fmt Interpretation

“|slide_%s|(n%2)?’master’:’slave’:” The delimiter character is ‘|’. The format substring is “slide_%s”. The
expression substring for the argument to the first (and only in this
case) conversion specifier (%s) is “(n%2)?’master’:’slave’:” When this
expression is evaluated for a given region, the region’s natural num-
ber will be inserted for ‘n’. The modulo operation with 2 will be
applied. If that result is non-zero, the ?:: expression will evaluate to
‘master’. Otherwise, it will evaluate to ‘slave’. Note the terminating
colon for the ?:: operator. This naming scheme might be useful for an
array of regions representing, alternately, master and slave sides of
slide surfaces.

“#block_%02dx%02d#n/16#n%16” The delimiter character is ‘#’. The format substring is
‘block_%02dx%02d”. The expression substring for the argument to
the first conversion specifier (%02d) is “n/256”. The expression sub-
string for the argument to the second conversion specifier (also
%02d) is “n%16”. When this expression is evaluated, the region’s nat-
ural number will be inserted for ‘n’ and the div and mod operators will
be evaluated. This naming scheme might be useful for a region array
of 256 regions to be named as a 2D array of regions with names like
“block_09x11”

“@domain_%03d@n” The delimiter character is ‘@’. The format substring is
“domain_%03d”. The expression substring for the argument to the
one and only conversion specifier is ‘n’. When this expression is eval-
uated, the region’s natural number is inserted for ‘n’. This results in
names like “domain_000”, “domain_001”, etc.

“@domain_%03d@n+1” This is just like the case above except that region names begin with
“domain_001” instead of “domain_000”. This might be useful to deal
with different indexing origins; Fortran vs. C.

“#foo_%03dx%03d#$P[n]#$U[n%4]” The delimiter character is ‘#’. The format substring is
“foo_%03dx%03d”. The expression substring for the first argument is
an external array reference ‘$P[n]’ where the index into the array is
just the natural number, n. Because ‘P’ is the first externally refer-
enced array in the format string, it must be the first array to appear in
the varargs list of additional args to DBMakeNamescheme. The
expression substring for the second argument is another external
array reference, ‘$U[n%4]’ where the index is an expression ‘n%4’ on
the natural number n. Because U is the second externally referenced
array, it must appear second in the varargs list of additional args to
DBMakeNamescheme.
Silo User’s Guide 2-179

DBFreeMrgtree
DBGetName—Generate a name from a DBnamescheme object

Synopsis:

const char *DBGetName(DBnamescheme *ns, int natnum)

Fortran Equivalent:

None

Arguments:

natnum Natural number of the entry in a namescheme to be generated. Must be greater
than or equal to zero.

Returns:

A string representing the generated name. If there are problems with the namescheme, the string
could be of length zero (e.g. the first character is a null terminator).

Description:

Once a namescheme has been created via DBMakeNamescheme, this function can be used to gen-
erate names at will from the namescheme.
2-180 Silo User’s Guide

DBPutMrgvar
DBPutMrgvar—Write variable data to be associated with (some) regions in an MRG tree

Synopsis:

int DBPutMrgvar(DBfile *file, const char *name,
const char *mrgt_name,
int ncomps, const char **compnames,
int nregns, const char **reg_pnames,
int datatype, void **data, DBoptlist *opts)

Fortran Equivalent:

integer function dbputmrgv(dbid, name, lname, mrgt_name,
lmrgt_name, ncomps, compnames, lcompnames,
nregns, reg_names, lreg_names, datatype,
data_ids, optlist_id, status)

character*N compnames (See “dbset2dstrlen” on page 248.)
character*N reg_names (See “dbset2dstrlen” on page 248.)
int* data_ids (use dbmkptr to get id for each pointer)

Arguments:

file Silo database file handle.

name Name of this mrgvar object.

tname name of the mrg tree this variable is associated with.

ncomps An integer specifying the number of variable components.

compnames [OPT] Array of ncomps pointers to character strings representing the names of
the individual components. Pass NULL(0) if no component names are to be
specified.

nregns The number of regions this variable is being written for.

reg_pnames Array of nregns pointers to strings representing the pathnames of the regions
for which the variable is being written. If nregns>1 and
reg_pnames[1]==NULL, it is assumed that reg_pnames[i]=NULL for
all i>0 and reg_pnames[0] contains either a printf-style naming
convention for all the regions to be named or, if reg_pnames[0] is found to
contain no printf-style conversion specifications, it is treated as the pathname of
a single region in the MRG tree that is the parent of all the regions for which
attributes are being written.

data Array of ncomps pointers to variable data. The pointer, data[i] points to an
array of nregns values of type datatype.

opts Additional options.

Returns:

Zero on success; -1 on failure.
Silo User’s Guide 2-181

DBPutMrgvar
Description:

Sometimes, it is necessary to associate variable data with regions in an MRG tree. This call allows
an application to associate variable data with a bunch of different regions in one of several ways all
of which are determined by the contents of the reg_pnames argument.

Variable data can be associated with all of the immediate children of a given region. This is the
most common case. In this case, reg_pnames[0] is the name of the parent region and
reg_pnames[i] is set to NULL for all i>0.

Alternatively, variable data can be associated with a bunch of regions whose names conform to a
common, printf-style naming scheme. This is typical of regions created with the DBPutRegion-
Array() call. In this case, reg_pnames[0] is the name of the parent region and
reg_pnames[i] is set to NULL for all i>0 and, in addition, reg_pnames[0] is a specially
formatted, printf-style string, for naming the regions. See “DBAddRegionArray” on page 171. for
a discussion of the regn_names argument format.

Finally, variable data can be associated with a bunch of arbitrarily named regions. In this case,
each region’s name must be explicitly specified in the reg_pnames array.

Because MRG trees are a new feature in Silo, their use in applications is not fully defined and the
implementation here is designed to be as free-form as possible, to permit the widest flexibility in
representing regions of a mesh. At the same time, in order to convey the semantic meaning of cer-
tain kinds of information in an MRG tree, a set of pre-defined MRG variables is descirbed below.

Don’t forget to associate the resulting region variable object(s) with the MRG tree by using the
DBOPT_MRGV_ONAMES and DBOPT_MRGV_RNAMES options in the DBPutMrgtree() call.

Variable Naming Convention Meaning

“amr-ratios” An integer variable of 3 components defining the refinement ratios (rx,
ry, rz) for an AMR mesh. Typically, the refinement ratios can be speci-
fied on a level-by-level basis. In this case, this variable should be
defined for nregns=<# of levels> on the level regions underneath the
“amr-levels” grouping. However, if refinment ratios need to be defined
on an individual patch basis instead, this variable should be defined
on the individual patch regions under the “amr-refinements” group-
ings.

“ijk-orientations” An integer variable of 3 components defined on the individual blocks
of a multi-block mesh defining the orientations of the individual blocks
in a large, ijk indexing space (Ares convention)

“<var>-extents” A double precision variable defining the block-by-block extents of a
multi-block variable. If <var>==”coords”, then it defines the spatial
extents of the mesh itself. Note, this convention obsoletes the
DBOPT_XXX_EXTENTS options on DBPutMultivar/DBPutMultimesh
calls.
2-182 Silo User’s Guide

DBGetMrgvar
DBGetMrgvar—Retrieve an MRG variable object from a silo file

Synopsis:

DBmrgvar *DBGetMrgvar(DBfile *file, const char *name)

Fortran Equivalent:

None

Arguments:

file Silo database file handle.

name The name of the region variable object to retrieve.

Returns:

A pointer to a DBmrgvar object on success; NULL (0) on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
Silo User’s Guide 2-183

DBPutGroupelmap
DBPutGroupelmap—Write a groupel map object to a Silo file

Synopsis:

int DBPutGroupelmap(DBfile *file, const char *name, int num_segs,
int *seg_types, int *seg_lens, int *seg_ids, int **seg_data,
void **seg_fracs, int fracs_type, DBoptlist *opts)

Fortran Equivalent:

integer function dbputgrplmap(dbid, name, lname, num_segs,
seg_types, seg_lens, seg_ids, seg_data_ids,
seg_fracs_ids, fracs_type, optlist_id, status)

integer* seg_data_ids (use dbmkptr to get id for each pointer)
integer* seg_fracs_ids (use dbmkptr to get id for each pointer)

Arguments:

file The Silo database file handle.

name The name of the groupel map object in the file.

nsegs The number of segments in the map.

seg_types Integer array of length nsegs indicating the groupel type associated with each
segment of the map; one of DB_BLOCKCENT, DB_NODECENT,
DB_ZONECENT, DB_EDGECENT, DB_FACECENT.

seg_lens Integer array of length nsegs indicating the length of each segment

seg_ids [OPT] Integer array of length nsegs indicating the identifier to associate with
each segment. By default, segment identifiers are 0...negs-1. If default
identifiers are sufficient, pass NULL (0) here. Otherwise, pass an explicit list of
integer identifiers.

seg_data The groupel map data, itself. An array of nsegs pointers to arrays of integers
where array seg_data[i] is of length seg_lens[i].

seg_fracs [OPT] Array of nsegs pointers to floating point values indicating fractional
inclusion for the associated groupels. Pass NULL (0) if fractional inclusions are
not required. If, however, fractional inclusions are required but on only some of
the segments, pass an array of pointers such that if segment i has no fractional
inclusions, seg_fracs[i]=NULL(0). Fractional inclusions are useful for,
among other things, defining groupel maps involving mixing materials.

fracs_type [OPT] data type of the fractional parts of the segments. Ignored if seg_fracs
is NULL (0).

opts Additional options

Returns:

Zero on success; -1 on failure.
2-184 Silo User’s Guide

DBPutGroupelmap
Description:

By itself, an MRG tree is not sufficient to fully characterize the decomposition of a mesh into var-
ious regions. The MRG tree serves only to identify the regions and their relationships in gross
terms. This frees MRG trees from growing linearly (or worse) with problem size.

All regions in an MRG tree are ultimately defined, in detail, by enumerating a primitive set of
Grouping Elements (groupels) that comprise the regions. A groupel map is the object used for this
purpose. The problem-sized information needed to fully characterize the regions of a mesh is
stored in groupel maps.

The grouping elements or groupels are the individual pieces of mesh which, when enumerated,
define specific regions.

For a multi-mesh object, the groupels are whole blocks of the mesh. For Silo’s other mesh types
such as ucd or quad mesh objects, the groupels can be nodes (0d), zones (2d or 3d depending on
the mesh dimension), edges (1d) and faces (2d).

The groupel map concept is best illustrated by example. Here, we will define a groupel map for the
material case illustrated in Figure 0-6 on page 120.

Figure 0-10: Example of using groupel map for (mixing) materials.

In the example in the above figure, the groupel map has the behavior of representing the clean and
mixed parts of the material decomposition by enumerating in alternating segments of the map, the
clean and mixed parts for each successive material.

1

1 1

1 2

2

2

2

Mesh ‘plot’
with material
numbers and
interface (zone #’s

0 1 2

3 4 5
in lower left)

0 3

1 4

2 5

1 4

.7 .4

.3 .6

(NULL)

(NULL)seg_data[0]

seg_data[1]

seg_data[2]

seg_data[3]

seg_fracs[0]

seg_fracs[1]

seg_fracs[2]

seg_fracs[3]

num_segs = 4;
seg_types[] = {DB_ZONECENT, DB_ZONECENT, DB_ZONECENT, DB_ZONECENT};
seg_lens[] = {2,2,2,2};

material “1”

material “2”

seg_ids[] ={1,1,2,2}; /* material numbers used as ids */
Silo User’s Guide 2-185

DBGetGroupelmap
DBGetGroupelmap—Read a groupel map object from a Silo file

Synopsis:

DBgroupelmap *DBGetGroupelmap(DBfile *file, const char *name)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle.

name The name of the groupel map object to read.

Returns:

A pointer to a DBgroupelmap object on success. NULL (0) on failure.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-186 Silo User’s Guide

DBFreeGroupelmap
DBFreeGroupelmap—Free memory associated with a groupel map object

Synopsis:

void DBFreeGroupelmap(DBgroupelmap *map)

Fortran Equivalent:

None

Arguments:

map Pointer to a DBgroupel map object.

Returns:

None

Description:
Silo User’s Guide 2-187

DBFreeGroupelmap
DBOPT_REGION_PNAMES—option for defining variables on specific regions of a mesh

Synopsis:

All of Silo’s DBPutXxxvar() calls support the DBOPT_REGION_PNAMES option to specify
the variable on only some region(s) of the associated mesh. However, the use of the option has
implications regarding the ordering of the values in the vars[] arrays passed into the
DBPutXxxvar() functions. This section explains the ordering requirements.

Ordinarily, when the DBOPT_REGION_PNAMES option is not being used, the order of the values
in the vars arrays passed here is considered to be one-to-one with the order of the nodes (for
DB_NODECENT centering) or zones (for DB_ZONECENT centering) of the associated mesh. How-
ever, when the DBOPT_REGION_PNAMES option is being used, the order of values in the
vars[] is determined by other conventions described below.

If the DBOPT_REGION_PNAMES option references regions in an MRG tree, the ordering is one-
to-one with the groupel’s identified in the groupel map segment(s) (of the same groupel type as the
variable’s centering) associated with the region(s); all of the segment(s), in order, of the groupel
map of the first region, then all of the segment(s) of the groupel map of the second region, and so
on. If the set of groupel map segments for the regions specified include the same groupel multiple
times, then the vars[] arrays will wind up needing to include the same value, multiple times.

The preceding ordering convention works because the ordering is explicitly represented by the
order in which groupels are identified in the groupel maps. However, if the
DBOPT_REGION_PNAMES option references material name(s) in a material object created by a
DBPutMaterial() call, then the ordering is not explicitly represented. Instead, it is based on a
traversal of the mesh zones restricted to the named materials. In this case, the ordering convention
requires further explanation and is described below.

For DB_ZONECENT variables, as one traverses the zones of a mesh from the first zone to the last,
if a zone contains a material listed in DBOPT_REGION_PNAMES (wholly or partially), that zone
is considered in the traversal and placed conceptually in an ordered list of traversed zones. In addi-
tion, if the zone contains the material only partially, that zone is also placed conceptually in an
ordered list of traversed mixed zones. In this case, the values in the vars[] array must be one-to-
one with this traversed zones list. Likewise, the values of the mixvars[] array must be one-to-
one with the traversed mixed zones list.

For DB_NODECENT variables, the situation is complicated by the fact that materials are zone-cen-
tric but the variable being defined is node-centered. So, an additional level of local traversal over a
zone’s nodes is required. In this case, as one traverses the zones of a mesh from the first zone to the

DBOPT_REGION_PNAMES char** A null-pointer terminated array of pointers
to strings specifying the pathnames of
regions in the mrg tree for the associated
mesh where the variable is defined. If
there is no mrg tree associated with the
mesh, the names specified here will be
assumed to be material names of the
material object associated with the mesh.
The last pointer in the array must be null
and is used to indicate the end of the list
of names.

NULL
2-188 Silo User’s Guide

DBFreeGroupelmap
last, if a zone contains a material listed in DBOPT_REGION_PNAMES (wholly or partially), then
that zone’s nodes are traversed according to the ordering specified in “Node, edge and face order-
ing for zoo-type UCD zone shapes.” on page 2-80. On the first encounter of a node, that node is
considered in the traversal and placed conceptually in an ordered list of traversed nodes. The val-
ues in the vars[] array must be one-to-one with this traversed nodes list. Because we are not
aware of any cases of node-centered variables that have mixed material components, there is no
analogous traversed mixed nodes list.

For DBOPT_EDGECENT and DBOPT_FACECENT variables, the traversal is handled similarly.
That is, the list of zones for the mesh is traversed and for each zone found to contain one of the
materials listed in DBOPT_REGION_PNAMES, the zone’s edge’s (or face’s) are traversed in local
order specified in “Node, edge and face ordering for zoo-type UCD zone shapes.” on page 2-80.

For Quad meshes, there is no explicit list of zones (or nodes) comprising the mesh. So, the notion
of traversing the zones (or nodes) of a Quad mesh requires further explanation. If the mesh’s nodes
(or zones) were to be traversed, which would be the first? Which would be the second?

Unless the DBOPT_MAJORORDER option was used, the answer is that the traversal is identical to
the standard C programming language storage convention for multi-dimensional arrays often
called row-major storage order. That is, was we traverse through the list of nodes (or zones) of a
Quad mesh, we encounter first node with logical index [0,0,0], then [0,0,1], then
[0,0,2]...[0,1,0]...etc. A traversal of zones would behave similarly. Traversal of edges or faces of a
quad mesh would follow the description with “DBPutQuadvar” on page 2-69.
Silo User’s Guide 2-189

DBFreeGroupelmap
6 API Section Object Allocation and Free

This section describes methods to allocate and initialize many of Silo’s objects. The functions
described here are...

DBAlloc… . 187
2-190 Silo User’s Guide

DBAlloc…
DBFree…188DBAlloc…—Allocate and initialize a Silo structure.

Synopsis:

DBcompoundarray *DBAllocCompoundarray (void)
DBcsgmesh *DBAllocCsgmesh (void)
DBcsgvar *DBAllocCsgvar (void)
DBcurve *DBAllocCurve (void)
DBcsgzonelist *DBAllocCSGZonelist (void)
DBdefvars *DBAllocDefvars (void)
DBedgelist *DBAllocEdgelist (void)
DBfacelist *DBAllocFacelist (void)
DBmaterial *DBAllocMaterial (void)
DBmatspecies *DBAllocMatspecies (void)
DBmeshvar *DBAllocMeshvar (void)
DBmultimat *DBAllocMultimat (void)
DBmultimatspecies *DBAllocMultimatspecies (void)
DBmultimesh *DBAllocMultimesh (void)
DBmultimeshadj *DBAllocMultimeshadj (void)
DBmultivar *DBAllocMultivar (void)
DBpointmesh *DBAllocPointmesh (void)
DBquadmesh *DBAllocQuadmesh (void)
DBquadvar *DBAllocQuadvar (void)
DBucdmesh *DBAllocUcdmesh (void)
DBucdvar *DBAllocUcdvar (void)
DBzonelist *DBAllocZonelist (void)
DBphzonelist *DBAllocPHZonelist (void)

Fortran Equivalent:

None

Returns:

These allocation functions return a pointer to a newly allocated and initialized structure on success
and NULL on failure.

Description:

The allocation functions allocate a new structure of the requested type, and initialize all values to
NULL or zero. There are counterpart functions for freeing structures of a given type (see
DBFree….
Silo User’s Guide 2-191

DBFree…
DBFree…—Release memory associated with a Silo structure.

Synopsis:

void DBFreeCompoundarray (DBcompoundarray *x)
void DBFreeCsgmesh (DBcsgmesh *x)
void DBFreeCsgvar (DBcsgvar *x)
void DBFreeCSGZonelist (DBcsgzonelist *x)
void DBFreeDefvars (DBdefvars *x)
void DBFreeEdgelist (DBedgelist *x)
void DBFreeFacelist (DBfacelist *x)
void DBFreeMaterial (DBmaterial *x)
void DBFreeMatspecies (DBmatspecies *x)
void DBFreeMeshvar (DBmeshvar *x)
void DBFreeMultimesh (DBmultimesh *x)
void DBFreeMultimeshadj (DBmultimeshadj *x)
void DBFreeMultivar (DBmultivar *x)
void DBFreePointmesh (DBpointmesh *x)
void DBFreeQuadmesh (DBquadmesh *x)
void DBFreeQuadvar (DBquadvar *x)
void DBFreeUcdmesh (DBucdmesh *x)
void DBFreeUcdvar (DBucdvar *x)
void DBFreeZonelist (DBzonelist *x)
void DBFreePHZonelist (DBphzonelist *x)

Arguments:

x A pointer to a structure which is to be freed. Its type must correspond to the type
in the function name.

Fortran Equivalent:

None

Returns:

These free functions return zero on success and -1 on failure.

Description:

The free functions release the given structure as well as all memory pointed to by these structures.
This is the preferred method for releasing these structures. There are counterpart functions for
allocating structures of a given type (see DBAlloc…).

The functions will not fail if a NULL pointer is passed to them.
2-192 Silo User’s Guide

DBFree…
7 API Section Calculational

This section of the API manual describes functions that can be used to compute things such as
Facelists. Currently, only functions for calculating facelists are described here.

DBCalcExternalFacelist . 190
DBCalcExternalFacelist2 . 192
Silo User’s Guide 2-193

DBCalcExternalFacelist
DBCalcExternalFacelist—Calculate an external facelist for a UCD mesh.

Synopsis:

DBfacelist *DBCalcExternalFacelist (int nodelist[], int nnodes,
int origin, int shapesize[],
int shapecnt[], int nshapes, int matlist[],
int bnd_method)

Fortran Equivalent:

integer function dbcalcfl(nodelist, nnodes, origin, shapesize,
shapecnt, nshapes, matlist, bnd_method)

returns the pointer-id of the created object.

Arguments:

nodelist Array of node indices describing mesh zones.

nnodes Number of nodes in associated mesh.

origin Origin for indices in the nodelist array. Should be zero or one.

shapesize Array of length nshapes containing the number of nodes used by each zone
shape.

shapecnt Array of length nshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

matlist Array containing material numbers for each zone (else NULL).

bnd_method Method to use for calculating external faces. See description below.

Returns:

DBCalcExternalFacelist returns a DBfacelist pointer on success and NULL on failure.

Description:

The DBCalcExternalFacelist function calculates an external facelist from the zonelist and zone
information describing a UCD mesh. The calculation of the external facelist is controlled by the
bnd_method parameter as defined in the table below:

bnd_method Meaning

0 Do not use material boundaries when computing external faces. The
matlist parameter can be replaced with NULL.

1 In addition to true external faces, include faces on material boundaries
between zones. Faces get generated for both zones sharing a common
face. This setting should not be used with meshes that contain mixed
material zones. If this setting is used with meshes with mixed material
zones, all faces which border a mixed material zone will be include. The
matlist parameter must be provided.
2-194 Silo User’s Guide

DBCalcExternalFacelist
For a description of how to nodes for the allowed shares are enumerated, see “DBPutUcdmesh” on
page 2-77.
Silo User’s Guide 2-195

DBCalcExternalFacelist2
DBCalcExternalFacelist2—Calculate an external facelist for a UCD mesh
containing ghost zones.

Synopsis:

DBfacelist *DBCalcExternalFacelist2 (int nodelist[], int nnodes,
int low_offset, int hi_offset, int origin,
int shapetype[], int shapesize[],
int shapecnt[], int nshapes, int matlist[],
int bnd_method)

Fortran Equivalent:

None

Arguments:

nodelist Array of node indices describing mesh zones.

nnodes Number of nodes in associated mesh.

lo_offset The number of ghost zones at the beginning of the nodelist.

hi_offset The number of ghost zones at the end of the nodelist.

origin Origin for indices in the nodelist array. Should be zero or one.

shapetype Array of length nshapes containing the type of each zone shape. See
description below.

shapesize Array of length nshapes containing the number of noes used by each zone
shape.

shapecnt Array of length nshapes containing the number of zones having each shape.

nshapes Number of zone shapes.

matlist Array containing material numbers for each zone (else NULL).

bnd_method Method to use for calculating external faces. See description below.

Returns:

DBCalcExternalFacelist2 returns a DBfacelist pointer on success and NULL on failure.
2-196 Silo User’s Guide

DBCalcExternalFacelist2
Description:

The DBCalcExternalFacelist2 function calculates an external facelist from the zonelist and zone
information describing a UCD mesh. The calculation of the external facelist is controlled by the
bnd_method parameter as defined in the table below:

The allowed shape types are described in the following table:

For a description of how the nodes for the allowed shapes are enumerated, see “DBPutUcdmesh”
on page 2-77.

bnd_method Meaning

0 Do not use material boundaries when computing external faces. The
matlist parameter can be replaced with NULL.

1 In addition to true external faces, include faces on material boundaries
between zones. Faces get generated for both zones sharing a com-
mon face. This setting should not be used with meshes that contain
mixed material zones. If this setting is used with meshes with mixed
material zones, all faces which border a mixed material zone will be
included. The matlist parameter must be provided.

Type Description

DB_ZONETYPE_BEAM A line segment

DB_ZONETYPE_POLYGON A polygon where nodes are enumerated to form a polygon

DB_ZONETYPE_TRIANGLE A triangle

DB_ZONETYPE_QUAD A quadrilateral

DB_ZONETYPE_POLYHED
RON

A polyhedron with nodes enumerated to form faces and
faces are enumerated to form a polyhedron

DB_ZONETYPE_TET A tetrahedron

DB_ZONETYPE_PYRAMID A pyramid

DB_ZONETYPE_PRISM A prism

DB_ZONETYPE_HEX A hexahedron
Silo User’s Guide 2-197

DBCalcExternalFacelist2
8 API Section Optlists

Many Silo functions take as a last argument a pointer to an Options List or optlist. This is intended
to permit the Silo API to grow and evolve as necessary without requiring substantial changes to the
API itself.

In the documentation associated with each function, the list of available options and their meaning
is described.

This section of the manual describes only the functions to create and manage options lists. These
are...

DBMakeOptlist . 195
DBAddOption . 196
DBClearOption . 197
DBGetOption . 198
DBFreeOptlist . 199
DBClearOptlist . 200
2-198 Silo User’s Guide

DBMakeOptlist
DBMakeOptlist—Allocate an option list.

Synopsis:

DBoptlist *DBMakeOptlist (int maxopts)

Fortran Equivalent:

integer function dbmkoptlist(maxopts, optlist_id)
returns created optlist pointer-id in optlist_id

Arguments:

maxopts Maximum number of options needed for this option list.

Returns:

DBMakeOptlist returns a pointer to an option list on success and NULL on failure.

Description:

The DBMakeOptlist function allocates memory for an option list and initializes it. Use the func-
tion DBAddOption to populate the option list structure, and DBFreeOptlist to free it.
Silo User’s Guide 2-199

DBAddOption
DBAddOption—Add an option to an option list.

Synopsis:

int DBAddOption (DBoptlist *optlist, int option, void *value)

Fortran Equivalent:

integer function dbaddcopt (optlist_id, option, cvalue, lcvalue)
integer function dbadddopt (optlist_id, option, dvalue)
integer function dbaddiopt (optlist_id, option, ivalue)
integer function dbaddropt (optlist_id, option, rvalue)

integer ivalue, optlist_id, option, lcvalue
double precision dvalue
real rvalue
character*N cvalue (See “dbset2dstrlen” on page 248.)

Arguments:

optlist Pointer to an option list structure containing option/value pairs. This structure is
created with the DBMakeOptlist function.

option Option definition. One of the predefined values described in the table in the
notes section of each command which accepts an option list.

value Pointer to the value associated with the provided option description. The data
type is implied by option.

Returns:

DBAddOption returns a zero on success and -1 on failure.

Description:

The DBAddOption function adds an option/value pair to an option list. Several of the output func-
tions accept option lists to provide information of an ancillary nature.
2-200 Silo User’s Guide

DBClearOption
DBClearOption—Remove an option from an option list

Synopsis:

int DBClearOption(DBoptlist *optlist, int optid)

Fortran Equivalent:

None

Arguments:

optlist The option list object for which you wish to remove an option

optid The option id of the option you would like to remove

Returns:

DBClearOption returns zero on success and -1 on failure.

Description:

This function can be used to remove options from an option list. If the option specified by optid
exists in the given option list, that option is removed from the list and the total number of options
in the list is reduced by one.

This method can be used together with DBAddOption to modify an existing option in an option
list. To modify an existing option in an option list, first call DBClearOption for the option to be
modified and then call DBAddOption to re-add it with a new definition.

There is also a function to query for the value of an option in an option list, DBGetOption.
Silo User’s Guide 2-201

DBGetOption
DBGetOption—Retrieve the value set for an option in an option list

Synopsis:

void *DBGetOption(DBoptlist *optlist, int optid)

Fortran Equivalent:

None

Arguments:

optlist The optlist to query

optid The option id to query the value for

Returns:

Returns the pointer value set for a given option or NULL if the option is not defined in the given
option list.

Description:

This function can be used to query the contents of an optlist. If the given optlist has an
option of the given optid, then this function will return the pointer associated with the given
optid. Otherwise, it will return NULL indicating the optlist does not contain an option with
the given optid.
2-202 Silo User’s Guide

DBFreeOptlist
DBFreeOptlist—Free memory associated with an option list.

Synopsis:

int DBFreeOptlist (DBoptlist *optlist)

Fortran Equivalent:

integer function dbfreeoptlist(optlist_id)

Arguments:

optlist Pointer to an option list structure containing option/value pairs. This structure is
created with the DBMakeOptlist function.

Returns:

DBFreeOptlist returns a zero on success and -1 on failure.

Description:

The DBFreeOptlist function releases the memory associated with the given option list. The indi-
vidual option values are not freed.

DBFreeOptlist will not fail if a NULL pointer is passed to it.
Silo User’s Guide 2-203

DBClearOptlist
DBClearOptlist—Clear an optlist.

Synopsis:

int DBClearOptlist (DBoptlist *optlist)

Fortran Equivalent:

None

Arguments:

optlist Pointer to an option list structure containing option/value pairs. This structure is
created with the DBMakeOptlist function.

Returns:

DBClearOptlist returns zero on success and -1 on failure.

Description:

The DBClearOptlist function removes all options from the given option list.
2-204 Silo User’s Guide

DBClearOptlist
9 API Section User Defined (Generic) Data and Objects

If you want to create data that other applications (not written by you or someone working closely
with you) can read and understand, these are NOT the right functions to use. That is because the
data that these functions create is not self-describing and inherently non-shareable.

However, if you need to write data that only you (or someone working closely with you) will read
such as for restart purposes, the functions described here may be helpful. The functions described
here allow users to read and write arbitrary arrays of raw data as well as user-defined Silo objects.
These include...

DBWrite . 202
DBWriteSlice . 203
DBReadVar. 205
DBReadVar1. 206
DBReadVarSlice. 207
DBGetVar . 208
DBInqVarExists . 209
DBInqVarType . 210
DBGetVarByteLength . 212
DBGetVarDims. 213
DBGetVarLength . 214
DBGetVarType . 215
DBPutCompoundarray . 216
DBInqCompoundarray . 217
DBGetCompoundarray . 218
DBMakeObject . 219
DBFreeObject . 220
DBChangeObject . 221
DBClearObject . 222
DBAddDblComponent . 223
DBAddFltComponent . 224
DBAddIntComponent . 225
DBAddStrComponent. 226
DBAddVarComponent . 227
DBWriteComponent . 228
DBWriteObject . 229
DBGetObject. 230
DBGetComponent. 231
DBGetComponentType . 232
Silo User’s Guide 2-205

DBWrite
DBWrite—Write a simple variable.

Synopsis:

int DBWrite (DBfile *dbfile, char *varname, void *var, int *dims,
int ndims, int datatype)

Fortran Equivalent:

integer function dbwrite(dbid, varname, lvarname, var, dims,
ndims, datatype

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

var Array defining the values associated with the variable.

dims Array of length ndims which describes the dimensionality of the variable.
Each value in the dims array indicates the number of elements contained in the
variable along that dimension.

ndims Number of dimensions.

datatype Datatype of the variable. One of the predefined Silo data types.

Returns:

DBWrite returns zero on success and -1 on failure.

Description:

The DBWrite function writes a simple variable into a Silo file.
2-206 Silo User’s Guide

DBWriteSlice
DBWriteSlice—Write a (hyper)slab of a simple variable

Synopsis:

int DBWriteSlice (DBfile *dbfile, char *varname, void *var,
int datatype, int *offset, int *length,
int *stride, int *dims, int ndims)

Fortran Equivalent:

integer function dbwriteslice(dbid, varname, lvarname, var,
datatype, offset, length, stride, dims, ndims)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

var Array defining the values associated with the slab.

datatype Datatype of the variable. One of the predefined Silo data types.

offset Array of length ndims of offsets in each dimension of the variable. This is the
0-origin position from which to begin writing the slice.

length Array of length ndims of lengths of data in each dimension to write to the
variable. All lengths must be positive.

stride Array of length ndims of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.

dims Array of length ndims which describes the dimensionality of the entire
variable. Each value in the dims array indicates the number of elements
contained in the entire variable along that dimension.

ndims Number of dimensions.

Returns:

DBWriteSlice returns zero on success and -1 on failure.

Description:

The DBWriteSlice function writes a slab of data to a simple variable from the data provided in the
var pointer. Any hyperslab of data may be written.

The size of the entire variable (after all slabs have been written) must be known when the
DBWriteSlice function is called. The data in the var parameter is written into the entire variable
using the location specified in the offset, length, and stride parameters. The data that
makes up the entire variable may be written with one or more calls to DBWriteSlice.

The minimum length value is 1 and the minimum stride value is one.
Silo User’s Guide 2-207

DBWriteSlice
A one-dimensional array slice:

Figure 0-11: Array slice

Offset = 5 Length = 12

Stride = 1

Offset = 5 Length = 12

Stride = 2
2-208 Silo User’s Guide

DBReadVar
DBReadVar—Read a simple Silo variable.

Synopsis:

int DBReadVar (DBfile *dbfile, char *varname, void *result)

Fortran Equivalent:

integer function dbrdvar(dbid, varname, lvarname, ptr)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

result Pointer to memory into which the variable should be read. It is up to the
application to provide sufficient space in which to read the variable.

Returns:

DBReadVar returns zero on success and -1 on failure.

Description:

The DBReadVar function reads a simple variable into the given space.

Notes:

See DBGetVar for a memory-allocating version of this function.
Silo User’s Guide 2-209

DBReadVar1
DBReadVar1—Read one element from a simple variable.

Synopsis:

int DBReadVar1 (DBfile *dbfile, char *varname, int offset,
void *result)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

offset Offset of one element to read.

result Pointer to memory in which the element should be read. It is up to the
application to provide sufficient space in which to read the element.

Returns:

DBReadVar1 returns zero on success and -1 on failure.

Description:

The DBReadVar1 function reads one element from a simple variable into the provided space.
2-210 Silo User’s Guide

DBReadVarSlice
DBReadVarSlice—Read a (hyper)slab of data from a simple variable.

Synopsis:

int DBReadVarSlice (DBfile *dbfile, char *varname, int *offset,
int *length, int *stride, int ndims,
void *result)

Fortran Equivalent:

integer function dbrdvarslice(dbid, varname, lvarname, offset,
length, stride, ndims, ptr)

Arguments:

dbfile Database file pointer.

varname Name of the simple variable.

offset Array of length ndims of offsets in each dimension of the variable. This is the
0-origin position from which to begin reading the slice.

length Array of length ndims of lengths of data in each dimension to read from the
variable. All lengths must be positive.

stride Array of length ndims of stride steps in each dimension. If no striding is
desired, zeroes should be passed in this array.

ndims Number of dimensions in the variable.

result Pointer to location where the slice is to be written. It is up to the application to
provide sufficient space in which to read the variable.

Returns:

DBReadVarSlice returns zero on success and -1 on failure.

Description:

The DBReadVarSlice function reads a slab of data from a simple variable into a location provided
in the result pointer. Any hyperslab of data may be read.

Note that the minimum length value is 1 and the minimum stride value is one.

A one-dimensional array slice:

Figure 0-12: Array slice

Offset = 5 Length = 12

Stride = 1

Offset = 5 Length = 12

Stride = 2
Silo User’s Guide 2-211

DBGetVar
DBGetVar—Allocate space for, and return, a simple variable.

Synopsis:

void *DBGetVar (DBfile *dbfile, char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Name of the variable

Returns:

DBGetVar returns a pointer to newly allocated space on success and NULL on failure.

Description:

The DBGetVar function allocates space for a simple variable, reads the variable from the Silo data-
base, and returns a pointer to the new space. If an error occurs, NULL is returned. It is up to the
application to cast the returned pointer to the correct data type.

Notes:

See DBReadVar and DBReadVar1 for non-memory allocating versions of this function.
2-212 Silo User’s Guide

DBInqVarExists
DBInqVarExists—Queries variable existence

Synopsis:

int DBInqVarExists (DBfile *dbfile, char *name);

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name Object name.

Returns:

DBInqVarExists returns non-zero if the object exists in the file. Zero otherwise.

Description:

The DBInqVarExists function is used to check for existence of an object in the given file.

If an object was written to a file, but the file has yet to be DBClose’d, the results of this function
querying that variable are undefined.
Silo User’s Guide 2-213

DBInqVarType
DBInqVarType—Return the type of the given object

Synopsis:

DBObjectType DBInqVarType (DBfile *dbfile, char *name);

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

name Object name.

Returns:

DBInqVarType returns the DBObjectType corresponding to the given object.

Description:

The DBInqVarType function returns the DBObjectType of the given object. The value returned is
described in the following table:

Object Type Returned Value

Invalid object or the object was
not found in the file.

DB_INVALID_OBJECT

Quadmesh DB_QUADMESH

Quadvar DB_QUADVAR

UCD mesh DB_UCDMESH

UCD variable DB_UCDVAR

CSG mesh DB_CSGMESH

CSG variable DB_CSGVAR

Multiblock mesh DB_MULTIMESH

Multiblock variable DB_MULTIVAR

Multiblock material DB_MULTIMAT

Multiblock material species DB_MULTIMATSPECIES

Material DB_MATERIAL

Material species DB_MATSPECIES

Facelist DB_FACELIST

Zonelist DB_ZONELIST

Polyhedral-Zonelist DB_PHZONELIST
2-214 Silo User’s Guide

DBInqVarType
The function will signal an error if the given name does not exist in the file.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.

CSG-Zonelist DB_CSGZONELIST

Edgelist DB_EDGELIST

Curve DB_CURVE

Pointmesh DB_POINTMESH

Pointvar DB_POINTVAR

Defvars DB_DEFVARS

Compound array DB_ARRAY

Directory DB_DIR

Other variable (one written out
using DBWrite.)

DB_VARIABLE

User-defined DB_USERDEF

Object Type Returned Value
Silo User’s Guide 2-215

DBGetVarByteLength
DBGetVarByteLength—Return the byte length of a simple variable.

Synopsis:

int DBGetVarByteLength (DBfile *dbfile, char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Variable name.

Returns:

DBGetVarByteLength returns the length of the given simple variable in bytes on success and -1 on
failure.

Description:

The DBGetVarByteLength function returns the length of the requested simple variable, in bytes.
This is useful for determining how much memory to allocate before reading a simple variable with
DBReadVar. Note that this would not be a concern if one used the DBGetVar function, which allo-
cates space itself.
2-216 Silo User’s Guide

DBGetVarByteLength
DBGetVarDims—Get dimension information of a variable in a Silo file

Synopsis:

int DBGetVarDims(DBfile *file, const char *name, int maxdims,
int *dims)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle.

name The name of the Silo object to obtain dimension information for.

maxdims The maximum size of dims.

dims An array of maxdims integer values to be populated with the dimension
information returned by this call.

Returns:

The number of dimensions on success; -1 on failure

Description:

This function will populate the dims array up to a maximum of maxdims values with dimension
information of the specified Silo variable (object) name. The number of dimensions is returned as
the function’s return value.
Silo User’s Guide 2-217

DBGetVarLength
DBGetVarLength—Return the number of elements in a simple variable.

Synopsis:

int DBGetVarLength (DBfile *dbfile, char *varname)

Fortran Equivalent:

integer function dbinqlen(dbid, varname, lvarname, len)

Arguments:

dbfile Database file pointer.

varname Variable name.

Returns:

DBGetVarLength returns the number of elements in the given simple variable on success and -1 on
failure.

Description:

The DBGetVarLength function returns the length of the requested simple variable, in number of
elements. For example a 16 byte array containing 4 floats has 4 elements.
2-218 Silo User’s Guide

DBGetVarType
DBGetVarType—Return the Silo datatype of a simple variable.

Synopsis:

int DBGetVarType (DBfile *dbfile, char *varname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

varname Variable name.

Returns:

DBGetVarType returns the Silo datatype of the given simple variable on success and -1 on failure.

Description:

The DBGetVarType function returns the Silo datatype of the requested simple variable. For exam-
ple, DB_FLOAT for float variables.

Notes:

This only works for simple Silo variables (those written using DBWrite or DBWriteSlice). To
query the type of other variables, use DBInqVarType instead.
Silo User’s Guide 2-219

DBPutCompoundarray
DBPutCompoundarray—Write a Compound Array object into a Silo file.

Synopsis:

int DBPutCompoundarray (DBfile *dbfile, char *name,
char *elemnames[], int *elemlengths,
int nelems, void *values, int nvalues,
int datatype, DBoptlist *optlist);

Fortran Equivalent:

integer function dbputca(dbid, name, lname, elemnames, lelemnames,
elemlengths, nelems, values, nvalues,
datatype, optlist_id, status)

character*N elemnames (See “dbset2dstrlen” on page 248.)

Arguments:

dbfile Database file pointer

name Name of the compound array structure.

elemnames Array of length nelems containing pointers to the names of the elements.

elemlengths Array of length nelems containing the lengths of the elements.

nelems Number of simple array elements.

values Array whose length is determined by nelems and elemlengths containing
the values of the simple array elements.

nvalues Total length of the values array.

datatype Data type of the values array. One of the predefined Silo types.

optlist Pointer to an option list structure containing additional information to be
included in the compound array object written into the Silo file. Use NULL is
there are no options.

Returns:

DBPutCompoundarray returns zero on success and -1 on failure.

Description:

The DBPutCompoundarray function writes a compound array object into a Silo file. A compound
array is an array whose elements are simple arrays. All of the simple arrays have elements of the
same data type, and each have a name.

Often, an application will partition a block of memory into named pieces, but write the block to a
database as a single entity. Fortran common blocks are used in this way. The compound array
object is an abstraction of this partitioned memory block.
2-220 Silo User’s Guide

DBInqCompoundarray
DBInqCompoundarray—Inquire Compound Array attributes.

Synopsis:

int DBInqCompoundarray (DBfile *dbfile, char *name,
char *elemnames[], int *elemlengths,
int nelems, int nvalues, int datatype)

Fortran Equivalent:

integer function dbinqca(dbid, name, lname, maxwidth, nelems,
nvalues, datatype)

Arguments:

dbfile Database file pointer.

name Name of the compound array.

elemnames Returned array of length nelems containing pointers to the names of the array
elements.

elemlengths Returned array of length nelems containing the lengths of the array elements.

nelems Returned number of array elements.

nvalues Returned number of total values in the compound array.

datatype Datatype of the data values. One of the predefined Silo data types.

Returns:

DBInqCompoundarray returns zero on success and -1 on failure.

Description:

The DBInqCompoundarray function returns information about the compound array. It does not
return the data values themselves; use DBGetCompoundarray instead.
Silo User’s Guide 2-221

DBGetCompoundarray
DBGetCompoundarray—Read a compound array from a Silo database.

Synopsis:

DBcompoundarray *DBGetCompoundarray (DBfile *dbfile,
char *arrayname)

Fortran Equivalent:

integer function dbgetca(dbid, name, lname, lelemnames, elemnames,
elemlengths, nelems, values, nvalues,
datatype)

Arguments:

dbfile Database file pointer.

arrayname Name of the compound array.

Returns:

DBGetCompoundarray returns a pointer to a DBcompoundarray structure on success and NULL
on failure.

Description:

The DBGetCompoundarray function allocates a DBcompoundarray structure, reads a compound
array from the Silo database, and returns a pointer to that structure. If an error occurs, NULL is
returned.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-222 Silo User’s Guide

DBMakeObject
DBMakeObject—Allocate an object of the specified length and initialize it.

Synopsis:

DBobject *DBMakeObject (char *objname, int objtype, int maxcomps)

Fortran Equivalent:

None

Arguments:

objname Name of the object.

objtype Type of object. One of the predefined types: DB_QUADMESH,
DB_QUAD_RECT, DB_QUAD_CURV, DB_DEFVARS, DB_QUADVAR,
DB_UCDMESH, DB_UCDVAR, DB_POINTMESH, DB_POINTVAR,
DB_CSGMESH, DB_CSGVAR, DB_MULTIMESH, DB_MULTIVAR,
DB_MULTIADJ, DB_MATERIAL, DB_MATSPECIES, DB_FACELIST,
DB_ZONELIST, DB_PHZONELIST, DB_EDGELIST, DB_CURVE,
DB_ARRAY, or DB_USERDEF.

maxcomps Maximum number of components needed for this object.

Returns:

DBMakeObject returns a pointer to the newly allocated and initialized object on success and
NULL on failure.

Description:

The DBMakeObject function allocates space for an object of maxcomps components.
Silo User’s Guide 2-223

DBFreeObject
DBFreeObject—Free memory associated with an object.

Synopsis:

int DBFreeObject (DBobject *object)

Fortran Equivalent:

None

Arguments:

object Pointer to the object to be freed. This object is created with the DBMakeObject
function.

Returns:

DBFreeObject returns zero on success and -1 on failure.

Description:

The DBFreeObject function releases the memory associated with the given object. The data asso-
ciated with the object’s components is not released.

DBFreeObject will not fail if a NULL pointer is passed to it.
2-224 Silo User’s Guide

DBFreeObject
DBChangeObject—Overwrite an existing object in a Silo file with a new object

Synopsis:

int DBChangeObject(DBfile *file, DBobject *obj)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle.

obj The new DBobject object (which knows its name) to write to the file.

Returns:

Zero on succes; -1 on failure

Description:

DBChangeObject writes a new DBobject object to a file, replacing the object in the file with the
same name.
Silo User’s Guide 2-225

DBClearObject
DBClearObject—Clear an object.

Synopsis:

int DBClearObject (DBobject *object)

Fortran Equivalent:

None

Arguments:

object Pointer to the object to be cleared. This object is created with the
DBMakeObject function.

Returns:

DBClearObject returns zero on success and -1 on failure.

Description:

The DBClearObject function clears an existing object. The number of components associated with
the object is set to zero.
2-226 Silo User’s Guide

DBAddDblComponent
DBAddDblComponent—Add a double precision floating point component to an object.

Synopsis:

int DBAddDblComponent (DBobject *object, char *compname, double d)

Fortran Equivalent:

None

Arguments:

object Pointer to an object. This object is created with the DBMakeObject function.

compname The component name.

d The value of the double precision floating point component.

Returns:

DBAddDblComponent returns zero on success and -1 on failure.

Description:

The DBAddDblComponent function adds a component of double precision floating point data to
an existing object.
Silo User’s Guide 2-227

DBAddFltComponent
DBAddFltComponent—Add a floating point component to an object.

Synopsis:

int DBAddFltComponent (DBobject *object, char *compname, double f)

Fortran Equivalent:

None

Arguments:

object Pointer to an object. This object is created with the DBMakeObject function.

compname The component name.

f The value of the floating point component.

Returns:

DBAddFltComponent returns zero on success and -1 on failure.

Description:

The DBAddFltComponent function adds a component of floating point data to an existing object.
2-228 Silo User’s Guide

DBAddIntComponent
DBAddIntComponent—Add an integer component to an object.

Synopsis:

int DBAddIntComponent (DBobject *object, char *compname, int i)

Fortran Equivalent:

None

Arguments:

object Pointer to an object. This object is created with the DBMakeObject function.

compname The component name.

i The value of the integer component.

Returns:

DBAddIntComponent returns zero on success and -1 on failure.

Description:

The DBAddIntComponent function adds a component of integer data to an existing object.
Silo User’s Guide 2-229

DBAddStrComponent
DBAddStrComponent—Add a string component to an object.

Synopsis:

int DBAddStrComponent (DBobject *object, char *compname, char *s)

Fortran Equivalent:

None

Arguments:

object Pointer to the object. This object is created with the DBMakeObject function.

compname The component name.

s The value of the string component. Silo copies the contents of the string.

Returns:

DBAddStrComponent returns zero on success and -1 on failure.

Description:

The DBAddStrComponent function adds a component of string data to an existing object.
2-230 Silo User’s Guide

DBAddVarComponent
DBAddVarComponent—Add a variable component to an object.

Synopsis:

int DBAddVarComponent (DBobject *object, char* compname,
char *vardata)

Fortran Equivalent:

None

Arguments:

object Pointer to the object. This object is created with the DBMakeObject function.

compname Component name.

vardata Name of the variable object associated with the component (see Description).

Returns:

DBAddVarComponent returns zero on success and -1 on failure.

Description:

The DBAddVarComponent function adds a component of the variable type to an existing object.

The variable in vardata is stored verbatim into the object. No translation or typing is done on
the variable as it is added to the object.
Silo User’s Guide 2-231

DBWriteComponent
DBWriteComponent—Add a variable component to an object and write the associated
data.

Synopsis:

int DBWriteComponent (DBfile *dbfile, DBobject *object,
char *compname, char *prefix, char *datatype,
void *var, int nd, long *count)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

object Pointer to the object.

compname Component name.

prefix Path name prefix of the object.

datatype Data type of the component’s data. One of: “short”, “integer”, “long”, “float”,
“double”, “char”.

var Pointer to the component’s data.

nd Number of dimensions of the component.

count An array of length nd containing the length of the component in each of its
dimensions.

Returns:

DBWriteComponent returns zero on success and -1 on failure.

Description:

The DBWriteComponent function adds a component to an existing object and also writes the com-
ponent’s data to a Silo file.
2-232 Silo User’s Guide

DBWriteObject
DBWriteObject—Write an object into a Silo file.

Synopsis:

int DBWriteObject (DBfile *dbfile, DBobject *object, int freemem)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

object Object created with DBMakeObject and populated with DBAddFltComponent,
DBAddIntComponent, DBAddStrComponent, and DBAddVarComponent.

freemem If non-zero, then the object will be freed after writing.

Returns:

DBWriteObject returns zero on success and -1 on failure.

Description:

The DBWriteObject function writes an object into a Silo file. This is a user-defined object that
consists of various components. They are used when the basic Silo structures are not sufficient.
Silo User’s Guide 2-233

DBWriteObject
DBGetObject—Read an object from a Silo file as a generic object

Synopsis:

DBobject *DBGetObject(DBfile *file, const char *objname)

Fortran Equivalent:

None

Arguments:

file The Silo database file handle.

objname The name of the object to get.

Returns:

On success, a pointer to a DBobject struct containing the object’s data. NULL on failure.

Description:

Each of the object Silo supports has corresponding methods to both write them to a Silo database
file (DBPut...) and get them from a file (DBGet...).

However, Silo objects can also be accessed as generic objects through the generic object interface.
This is recommended only for objects that were written with DBWriteObject() method.

Notes:

For the details of the data structured returned by this function, see the Silo library header file,
silo.h, also attached to the end of this manual.
2-234 Silo User’s Guide

DBGetComponent
DBGetComponent—Allocate space for, and return, an object component.

Synopsis:

void *DBGetComponent (DBfile *dbfile, char *objname,
char *compname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

objname Object name.

compname Component name.

Returns:

DBGetComponent returns a pointer to newly allocated space containing the component value on
success, and NULL on failure.

Description:

The DBGetComponent function allocates space for one object component, reads the component,
and returns a pointer to that space. If either the object or component does not exist, NULL is
returned. It is up to the application to cast the returned pointer to the appropriate type.
Silo User’s Guide 2-235

DBGetComponentType
DBGetComponentType—Return the type of an object component.

Synopsis:

int DBGetComponentType (DBfile *dbfile, char *objname,
char *compname)

Fortran Equivalent:

None

Arguments:

dbfile Database file pointer.

objname Object name.

compname Component name.

Returns:

The values that are returned depend on the component’s type and how the component was written
into the object. The component types and their corresponding return values are listed in the table
below.

Description:

The DBGetComponentType function reads the component’s type and returns it. If either the object
or component does not exist, DB_NOTYPE is returned. This function allows the application to
process the component without having to know its type in advance.

Component Type Return value

Integer DB_INT

Float DB_FLOAT

Double DB_DOUBLE

String DB_CHAR

Variable DB_VARIABLE

all others DB_NOTYPE
2-236 Silo User’s Guide

DBGetComponentType
10 API Section Previously Undocumented Use Conventions

Silo is a relatively old library. It was originally developed in the early 1990’s. Over the years, a
number of use conventions have emerged and taken root and are now firmly entrenched in a variety
of applications using Silo.

This section of the API manual simply tries to enumerate all these conventions and their meanings.
In a few cases, a long-standing use convention has been subsumed by the recent introduction of
formalized Silo objects or options to implement the convention. These cases are documented and
the user is encouraged to use the formal Silo approach.

Since everything documented in this section of the Silo API is a convention on the use of Silo,
where one would ordinarily see a function call prototype, instead example call(s) to the Silo that
implement the convention are described.

_visit_defvars . 234
_visit_searchpath. 235
_visit_domain_groups. 236
AlphabetizeVariables . 237
ConnectivityIsTimeVarying . 238
MultivarToMultimeshMap_vars. 239
MultivarToMultimeshMap_meshes . 240
Silo User’s Guide 2-237

_visit_defvars
_visit_defvars—convention for derived variable definitions

Synopsis:

int n;
char defs[1024];
sprintf(defs, “foo scalar x+y;bar vector {x,y,z};”
 “gorfo scalar sqrt(x)”;
n = strlen(defs);
DBWrite(dbfile, “_visit_defvars”, defs, &n, 1, DB_CHAR);

Description:

Do not use this convention. Instead See “DBPutDefvars” on page 126.

_visit_defvars is an array of characters. The contents of this array is a semi-colon separated
list of derived variable expressions of the form

<name of derived variable> <space> <name of type> <space> <definition>

If an array of characters by this name exists in a Silo file, its contents will be used to populate the
post-processor’s derived variables. For VisIt, this would mean VisIt’s expression system.

This was also known as the “_meshtv_defvars” convention too.

This named array of characters can be written at any subdirectory in the Silo file.
2-238 Silo User’s Guide

_visit_searchpath
_visit_searchpath—directory order to search when opening a Silo file

Synopsis:

int n;
char dirs[1024];
sprintf(dirs, “nodesets;slides;”);
n = strlen(dirs);
DBWrite(dbfile, “_visit_searchpath”, dirs, &n, 1, DB_CHAR);

Description:

When opening a Silo file, an application is free to traverse directories in whatever order it wishes.
The _visit_searchpath convention is used by the data producer to control how downstream,
post-processing tools traverse a Silo file’s directory hierarchy.

_visit_searchpath is an array of characters representing a semi-colon separated list of
directory names. If a character array of this name is found at any directory in a Silo file, the direc-
tories it lists (which are considered to be relative to the directory in which this array is found
unless the directory names begin with a slash ‘/’) and only those directories are searched in the
order they are specified in the list.
Silo User’s Guide 2-239

_visit_domain_groups
_visit_domain_groups—method for grouping blocks in a multi-block mesh

Synopsis:

int domToGroupMap[16];
int j;
for (j = 0; j < 16; j++) domToGroupMap[j] = j%4;
DBWrite(dbfile, “_visit_domain_groups”, domToGroupMap,

&j, 1, DB_INT);

Description:

Do not use this convention. Instead use Mesh Region Grouping (MRG) trees. See
“DBMakeMrgtree” on page 165.

_visit_domain_groups is an array of integers equal in size to the number of blocks in an
associated multi-block mesh object specifying, for each block, a group the block is a member of.
In the example above, there are 16 blocks assigned to 4 groups.
2-240 Silo User’s Guide

AlphabetizeVariables
AlphabetizeVariables—flag to tell post-processor to alphabetize variable lists

Synopsis:

int doAlpha = 1;
int n = 1;
DBWrite(dbfile, “AlphabetizeVariables”, &doAlpha, &n, 1, DB_INT);

Description:

The AlphabetizeVariables convention is a simple integer value which, if non-zero, indi-
cates that the post-processor should alphabetize its variable lists. In VisIt, this would mean that
various menus in the GUI, for example, are constructed such that variable names placed near the
top of the menus come alphabetically before variable names near the bottom of the menus. Other-
wise, variable names are presented in the order they are encountered in the database which is often
the order they were written to the database by the data producer.
Silo User’s Guide 2-241

ConnectivityIsTimeVarying
ConnectivityIsTimeVarying—flag telling post-processor if connectivity of
meshes in the Silo file is time varying or not

Synopsis:

int isTimeVarying = 1;
int n = 1;
DBWrite(dbfile, “ConnectivityIsTimeVarying”, &isTimeVarying, &n,

1, DB_INT);

Description:

The ConnectivityIsTimeVarying convention is a simple integer flag which, if non-zero,
indicates to post-processing tools that the connectivity for the mesh(s) in the database varies with
time. This has important performance implications and should only be specified if indeed it is nec-
essary as, for instance, in post-processors that assume connectivity is NOT time varying. This is an
assumption made by VisIt and the ConnectivityIsTimeVarying convention is a way to tell
VisIt to NOT make this assumption.
2-242 Silo User’s Guide

MultivarToMultimeshMap_vars
MultivarToMultimeshMap_vars—list of multivars to be associated with
multimeshes

Synopsis:

int len;
char tmpStr[256];
sprintf(tmpStr, "d;p;u;v;w;hist;mat1");
len = strlen(tmpStr);
DBWrite(dbfile, "MultivarToMultimeshMap_vars", tmpStr, &len, 1,

DB_CHAR);

Description:

Do not use this convention. Instead use the DBOPT_MMESH_NAME optlist option for a
DBPutMultivar() call to associate a multimesh with a multivar.

The MultivarToMultimeshMap_vars use convention goes hand-in-hand with the
MultivarToMultimeshMap_meshes use convention. The _vars portion is an array of
characters defining a semi-colon separated list of multivar object names to be associated with
multi-mesh names. The _mesh portion is an array of characters defining a semi-colon separated
list of associated multimesh object names. This convention was introduced to deal with a short-
coming in Silo where multivar objects did not know the multimesh object they were associated
with. This has since been corrected by the DBOPT_MMESH_NAME optlist option for a DBPut-
Multivar() call.
Silo User’s Guide 2-243

MultivarToMultimeshMap_meshes
MultivarToMultimeshMap_meshes—list of multimeshes to be associated with
multivars

Synopsis:

int len;
char tmpStr[256];
sprintf(tmpStr, "mesh1;mesh1;mesh1;mesh1;mesh1;mesh1;mesh1");
len = strlen(tmpStr);
DBWrite(dbfile, "MultivarToMultimeshMap_meshes", tmpStr, &len, 1,

DB_CHAR);

Description:

See “MultivarToMultimeshMap_vars” on page 243.
2-244 Silo User’s Guide

MultivarToMultimeshMap_meshes
11 API Section Silo’s Fortran Interface

The functions described in this section are either unique to the Fortran interface or facilitate the
mixing of C/C++ and Fortran within a single application interacting with a Silo file. The functions
described here are...

dbmkptr . 242
dbrmptr . 243
dbset2dstrlen . 244
dbget2dstrlen. 245
DBFortranAllocPointer. 246
DBFortranAccessPointer . 247
DBFortranRemovePointer . 248
Silo User’s Guide 2-245

dbmkptr
dbmkptr—create a pointer-id from a pointer

Synopsis:

integer function dbmkptr(void p)

Arguments:

p pointer for which a pointer-id is needed

Returns:

the integer pointer id to associate with the pointer

Description:

In cases where the C interface returns to the application a pointer to an abstract Silo object, in the
Fortran interface an integer pointer-id is created and returned instead. In addition, in cases where
the C interface would accept an array of pointers, such as in DBPutCsgvar(), the Fortran inter-
face accepts an array of pointer-ids. This function is used to create a pointer-id from a pointer.

A table of pointers is maintained internally in the Fortran wrapper library. The pointer-id is simply
the index into this table where the associated object’s pointer actually is. The caller can free up
space in this table using dbrmptr()
2-246 Silo User’s Guide

dbrmptr
dbrmptr—remove an old and no longer needed pointer-id

Synopsis:

integer function dbrmptr(ptr_id)

Arguments:

ptr_id the pointer-id to remove

Returns:

always 0
Silo User’s Guide 2-247

dbset2dstrlen
dbset2dstrlen—Set the size of a ‘row’ for pointers to ‘arrays’ of strings

Synopsis:

integer function dbset2dstrlen(int len)

integer len

Arguments:

len The length to set

Returns:

Returns the previously set value.

Description:

A number of functions in the Fortran interface take a char* argument that is really treated inter-
nally in the Fortran interface as a 2D array of characters. Calling this function allows the caller to
specify the length of the rows in this 2D array of characters. If necessary, this setting can be varied
from call to call.

The default value is 32 characters.
2-248 Silo User’s Guide

dbget2dstrlen
dbget2dstrlen—Get the size of a ‘row’ for pointers to ‘arrays’ of character strings

Synopsis:

integer function dbget2dstrlen()

Arguments:

None

Returns:

The current setting for the 2D string length.
Silo User’s Guide 2-249

DBFortranAllocPointer
DBFortranAllocPointer—Facilitates accessing C objects through Fortran

Synopsis:

int DBFortranAllocPointer (void *pointer)

Arguments:

pointer A pointer to a Silo object for which a Fortran identifier is needed

Returns:

DBFortranAllocPointer returns an integer that Fortran code can use to reference the given Silo
object.

Description:

The DBFortranAllocPointer function allows programs written in both C and Fortran to access the
same data structures. Many of the routines in the Fortran interface to Silo use an “object id”, an
integer which refers to a Silo object. DBFortanAllocPointer converts a pointer to a Silo object into
an integer that Fortran code can use. In some ways, this function is the inverse of DBFortranAcces-
sPointer.

The integer that DBFortranAllocPointer returns is used to index a table of Silo object pointers.
When done with the integer, the entry in the table may be freed for use later through the use of
DBFortranRemovePointer.

See “DBFortranAccessPointer” on page 2-251 and “DBFortranRemovePointer” on page 2-252 for
more information about how to use Silo objects in code that uses C and Fortran together.
2-250 Silo User’s Guide

DBFortranAccessPointer
DBFortranAccessPointer—Access Silo objects created through the Fortran Silo
interface.

Synopsis:

void *DBFortranAccessPointer (int value)

Arguments:

value The value returned by a Silo Fortran function, referencing a Silo object.

Returns:

DBFortranAccessPointer returns a pointer to a Silo object (which must be cast to the appropriate
type) on success, and NULL on failure.

Description:

The DBFortranAccessPointer function allows programs written in both C and Fortran to access the
same data structures. Many of the routines in the Fortran interface to Silo return an “object id”, an
integer which refers to a Silo object. DBFortranAccessPointer converts this integer into a C pointer
so that the sections of code written in C can access the Silo object directly.

See “DBFortranAllocPointer” on page 2-250 and “DBFortranRemovePointer” on page 2-252 for
more information about how to use Silo objects in code that uses C and Fortran together.
Silo User’s Guide 2-251

DBFortranRemovePointer
DBFortranRemovePointer—Removes a pointer from the Fortran-C index table

Synopsis:

void DBFortranRemovePointer (int value)

Arguments:

value An integer returned by DBFortranAllocPointer

Returns:

Nothing

Description:

The DBFortranRemovePointer function frees up the storage associated with Silo object pointers as
allocated by DBFortranAllocPointer.

Code that uses both C and Fortran may make use of DBFortranAllocPointer to allocate space in a
translation table so that the same Silo object may be referenced by both languages. DBFortranAc-
cessPointer provides access to this Silo object from the C side. Once the Fortran side of the code is
done referencing the object, the space in the translation table may be freed by calling DBFortran-
RemovePointer.

See “DBFortranAccessPointer” on page 2-251 and “DBFortranAllocPointer” on page 2-250 for
more information about how to use Silo objects in code that uses C and Fortran together.
2-252 Silo User’s Guide

DBFortranRemovePointer
12 API Section Deprecated Functions

The following functions were deprecated from Silo in version 4.6. Attempts to call these methods
in version 4.6 will still succeed. However, deprecation warnings will be generated on stderr (See
“DBSetDeprecateWarnings” on page 31.). There is no guarantee that these methods will exist in
versions of Silo after 4.6.

DBGetComponentNames
DBGetAtt
DBListDir
DBReadAtt
DBGetQuadvar1
DBcontinue
DBPause
DBPutZonelist
DBPutUcdsubmesh
Silo User’s Guide 2-253

DBFortranRemovePointer
2-254 Silo User’s Guide

/*
 * SILO Public header file.
 *
 * This header file defines public constants and public prototypes.
 * Before including this file, the application should define
 * which file formats will be used.
 *
 */
#ifndef SILO_H
#define SILO_H

#ifdef __cplusplus
extern "C" {
#endif

/* Set the base type for datatype'd pointers (that is pointers whose
 ultimate type is deteremined by an additional 'int datatype' function
 argument or struct member) as float (legacy) and void (modern). The
 DB_DTPTR is the base type. The '1' and '2' variants are for singley
 subscripted and doubley subscripted arrays, respectively. If the
 definitions of DB_DTPTR below reference 'float', then this silo.h
 header file was configured with --enable-legacy-datatyped-pointers
 and it represents the legacy (float) pointers that the silo
 library has always had since its original writing. If, instead,
 you see 'void' (the default configuration), then this silo.h header
 file is using the modern (void) pointers. In that case, note also
 that because C compiler's often do not handle correctly nor
 distinguish between a void* and a void**, both the singley and
 doubley subscripted variants will have only a single star. Rest
 assured they are still treated as doubley subscripted in the
 implementation. */
#define DB_DTPTR @SILO_DTYPPTR@ /* NO_FORTRAN_DEFINE */
#define DB_DTPTR1 @SILO_DTYPPTR1@ /* NO_FORTRAN_DEFINE */
#define DB_DTPTR2 @SILO_DTYPPTR2@ /* NO_FORTRAN_DEFINE */

/* Permit client to explicitly require the legacy mode
 for datatyped pointers */
#ifdef DB_USE_LEGACY_DTPTR
#ifdef DB_USE_MODERN_DTPTR
#error cannot specify BOTH legacy and modern datatyped pointers
#endif
#undef DB_DTPTR /* NO_FORTRAN_DEFINE */
#undef DB_DTPTR1 /* NO_FORTRAN_DEFINE */
#undef DB_DTPTR2 /* NO_FORTRAN_DEFINE */
#define DB_DTPTR float /* NO_FORTRAN_DEFINE */
#define DB_DTPTR1 float* /* NO_FORTRAN_DEFINE */
#define DB_DTPTR2 float** /* NO_FORTRAN_DEFINE */
#endif

/* Permit client to explicitly require the modern mode
 for datatyped pointers */
#ifdef DB_USE_MODERN_DTPTR
#undef DB_DTPTR /* NO_FORTRAN_DEFINE */
#undef DB_DTPTR1 /* NO_FORTRAN_DEFINE */
#undef DB_DTPTR2 /* NO_FORTRAN_DEFINE */
#define DB_DTPTR void /* NO_FORTRAN_DEFINE */
#define DB_DTPTR1 void* /* NO_FORTRAN_DEFINE */
#define DB_DTPTR2 void* /* NO_FORTRAN_DEFINE */
#endif
3-1

#include <stdio.h>

#ifndef FALSE
#define FALSE 0
#endif
#ifndef TRUE
#define TRUE 1
#endif

/* In the definitions for different parts of the version number, below,
 we use leading '0x0' to deal with possible blank minor and/or patch
 version number but still allow base-10, numeric comparison in the GE
 macro. */

/* Major release number of silo library. */
#define SILO_VERS_MAJ @SILO_VERS_MAJ@

/* Minor release number of silo library. Can be empty. */
#define SILO_VERS_MIN 0x0@SILO_VERS_MIN@

/* Patch release number of silo library. Can be empty. */
#define SILO_VERS_PAT 0x0@SILO_VERS_PAT@

/* Pre-release release number of silo library. Can be empty. */
#define SILO_VERS_PRE @SILO_VERS_PRE@

/* The symbol Silo uses to enforce link-time
 header/object version compatibility */
#define SILO_VERS_TAG @SILO_VERS_TAG@

/* Useful macro for comparing Silo versions (and DB_ alias) */
#define SILO_VERSION_GE(Maj,Min,Pat) \
 (((SILO_VERS_MAJ==Maj) && (SILO_VERS_MIN==0x0 ## Min) && (SILO_VERS_PAT>=0x0
Pat)) || \
 ((SILO_VERS_MAJ==Maj) && (SILO_VERS_MIN>0x0 ## Min)) || \
 (SILO_VERS_MAJ>Maj))
#define DB_VERSION_GE(Maj,Min,Pat) SILO_VERSION_GE(Maj,Min,Pat)

/*---
 * Drivers. This is a list of every driver that a user could use. Not all of
 * them are necessarily compiled into the library. However, users are free
 * to try without getting compilation errors. They are listed here so that
 * silo.h doesn't have to be generated every time the library is recompiled.
 --/
#define DB_NETCDF 0
#define DB_PDB 2
#define DB_TAURUS 3
#define DB_UNKNOWN 5
#define DB_DEBUG 6
#define DB_HDF5 7 /* equivalent to DB_HDF5_SEC2 */

/* special driver ids to affect which Virtual File Driver HDF5 uses */
#define DB_HDF5_SEC2 256 /* section 2 I/O (open/read/write/close) */
#define DB_HDF5_STDIO 512 /* stdio (fopen/fread/fwrite/fclose) */
#define DB_HDF5_CORE 768 /* file in memory. MSbits specify alloc. inc. */
#define DB_HDF5_MPIO 1024 /* use MPI-IO on MPI_COMM_SELF */
#define DB_HDF5_MPIOP 1280 /* use MPI for any messaging, sec 2 for I/O */
3-2

/*---
 * Other library-wide constants.
 ---/
#define DB_NFILES 256 /*Max simultaneously open files */
#define DB_NFILTERS 32 /*Number of filters defined */

/*---
 * Constants. All of these constants are always defined in the application.
 * Each group of constants defined here are small integers used as an index
 * into an array. Many of the groups have a total count of items in the
 * group that will be used for array allocation and error checking--don't
 * forget to increment the value when adding a new item to a constant group.
 *---
 */

/* The following identifiers are for use with the DBDataReadMask() call. They
 * specify what portions of the data beyond the metadata is allocated
 * and read. Note that since these values are only necessary when reading
 * and since the Fortran interface is primarily a write interface, it is not
 * necessary for these symbols to appear in the silo.inc file. However, the
 * reason they DO NOT APPEAR there inspite of the fact that DO NOT HAVE the
 * 'NO_FORTRAN_DEFINE' text appearing on each line is that the mkinc script
 * requires an underscore in the symbol name for it to appear in silo.inc. */
#define DBAll 0xffffffff
#define DBNone 0x00000000
#define DBCalc 0x00000001
#define DBMatMatnos 0x00000002
#define DBMatMatlist 0x00000004
#define DBMatMixList 0x00000008
#define DBCurveArrays 0x00000010
#define DBPMCoords 0x00000020
#define DBPVData 0x00000040
#define DBQMCoords 0x00000080
#define DBQVData 0x00000100
#define DBUMCoords 0x00000200
#define DBUMFacelist 0x00000400
#define DBUMZonelist 0x00000800
#define DBUVData 0x00001000
#define DBFacelistInfo 0x00002000
#define DBZonelistInfo 0x00004000
#define DBMatMatnames 0x00008000
#define DBUMGlobNodeNo 0x00010000
#define DBZonelistGlobZoneNo 0x00020000
#define DBMatMatcolors 0x00040000
#define DBCSGMBoundaryInfo 0x00080000
#define DBCSGMZonelist 0x00100000
#define DBCSGMBoundaryNames 0x00200000
#define DBCSGVData 0x00400000
#define DBCSGZonelistZoneNames 0x00800000
#define DBCSGZonelistRegNames 0x01000000
#define DBMMADJNodelists 0x02000000
#define DBMMADJZonelists 0x04000000
#define DBPMGlobNodeNo 0x08000000

/* Definitions for COORD_TYPE */
/* Placed before DBObjectType enum because the
 DB_QUAD_CURV and DB_QUAD_RECT symbols are
 sometimes used as DBObjectType */
3-3

#define DB_COLLINEAR 130
#define DB_NONCOLLINEAR 131
#define DB_QUAD_RECT DB_COLLINEAR
#define DB_QUAD_CURV DB_NONCOLLINEAR

/* Objects that can be stored in a data file */
typedef enum {
 DB_INVALID_OBJECT= -1, /*causes enum to be signed, do not remove,
 space before minus sign necessary for lint*/
 DB_QUADRECT = DB_QUAD_RECT,
 DB_QUADCURV = DB_QUAD_CURV,
 DB_QUADMESH=500,
 DB_QUADVAR=501,
 DB_UCDMESH=510,
 DB_UCDVAR=511,
 DB_MULTIMESH=520,
 DB_MULTIVAR=521,
 DB_MULTIMAT=522,
 DB_MULTIMATSPECIES=523,
 DB_MULTIBLOCKMESH=DB_MULTIMESH,
 DB_MULTIBLOCKVAR=DB_MULTIVAR,
 DB_MULTIMESHADJ=524,
 DB_MATERIAL=530,
 DB_MATSPECIES=531,
 DB_FACELIST=550,
 DB_ZONELIST=551,
 DB_EDGELIST=552,
 DB_PHZONELIST=553,
 DB_CSGZONELIST=554,
 DB_CSGMESH=555,
 DB_CSGVAR=556,
 DB_CURVE=560,
 DB_DEFVARS=565,
 DB_POINTMESH=570,
 DB_POINTVAR=571,
 DB_ARRAY=580,
 DB_DIR=600,
 DB_VARIABLE=610,
 DB_MRGTREE=611,
 DB_GROUPELMAP=612,
 DB_MRGVAR=613,
 DB_USERDEF=700
} DBObjectType;

/* Data types */
typedef enum {
 DB_INT=16,
 DB_SHORT=17,
 DB_LONG=18,
 DB_FLOAT=19,
 DB_DOUBLE=20,
 DB_CHAR=21,
 DB_LONG_LONG=22,
 DB_NOTYPE=25 /*unknown type */
} DBdatatype;

/* Flags for DBCreate */
#define DB_CLOBBER 0
#define DB_NOCLOBBER 1
3-4

/* Flags for DBOpen */
#define DB_READ 1
#define DB_APPEND 2

/* Target machine for DBCreate */
#define DB_LOCAL 0
#define DB_SUN3 10
#define DB_SUN4 11
#define DB_SGI 12
#define DB_RS6000 13
#define DB_CRAY 14
#define DB_INTEL 15

/* Options */
#define DBOPT_ALIGN 260
#define DBOPT_COORDSYS 262
#define DBOPT_CYCLE 263
#define DBOPT_FACETYPE 264
#define DBOPT_HI_OFFSET 265
#define DBOPT_LO_OFFSET 266
#define DBOPT_LABEL 267
#define DBOPT_XLABEL 268
#define DBOPT_YLABEL 269
#define DBOPT_ZLABEL 270
#define DBOPT_MAJORORDER 271
#define DBOPT_NSPACE 272
#define DBOPT_ORIGIN 273
#define DBOPT_PLANAR 274
#define DBOPT_TIME 275
#define DBOPT_UNITS 276
#define DBOPT_XUNITS 277
#define DBOPT_YUNITS 278
#define DBOPT_ZUNITS 279
#define DBOPT_DTIME 280
#define DBOPT_USESPECMF 281
#define DBOPT_XVARNAME 282
#define DBOPT_YVARNAME 283
#define DBOPT_ZVARNAME 284
#define DBOPT_ASCII_LABEL 285
#define DBOPT_MATNOS 286
#define DBOPT_NMATNOS 287
#define DBOPT_MATNAME 288
#define DBOPT_NMAT 289
#define DBOPT_NMATSPEC 290
#define DBOPT_BASEINDEX 291 /* quad meshes for node and zone */
#define DBOPT_ZONENUM 292 /* ucd meshes for zone */
#define DBOPT_NODENUM 293 /* ucd/point meshes for node */
#define DBOPT_BLOCKORIGIN 294
#define DBOPT_GROUPNUM 295
#define DBOPT_GROUPORIGIN 296
#define DBOPT_NGROUPS 297
#define DBOPT_MATNAMES 298
#define DBOPT_EXTENTS_SIZE 299
#define DBOPT_EXTENTS 300
#define DBOPT_MATCOUNTS 301
#define DBOPT_MATLISTS 302
#define DBOPT_MIXLENS 303
#define DBOPT_ZONECOUNTS 304
3-5

#define DBOPT_HAS_EXTERNAL_ZONES 305
#define DBOPT_PHZONELIST 306
#define DBOPT_MATCOLORS 307
#define DBOPT_BNDNAMES 308
#define DBOPT_REGNAMES 309
#define DBOPT_ZONENAMES 310
#define DBOPT_HIDE_FROM_GUI 311
#define DBOPT_TOPO_DIM 312 /* TOPOlogical DIMension */
#define DBOPT_REFERENCE 313 /* reference object */
#define DBOPT_GROUPINGS_SIZE 314 /* size of grouping array */
#define DBOPT_GROUPINGS 315 /* groupings array */
#define DBOPT_GROUPINGNAMES 316 /* array of size determined by
 number of groups of names of groups. */
#define DBOPT_ALLOWMAT0 317 /* Turn off material numer "0" warnings*/
#define DBOPT_MRGTREE_NAME 318
#define DBOPT_REGION_PNAMES 319
#define DBOPT_TENSOR_RANK 320
#define DBOPT_MMESH_NAME 321
#define DBOPT_TV_CONNECTIVITY 322
#define DBOPT_DISJOINT_MODE 323
#define DBOPT_MRGV_ONAMES 324
#define DBOPT_MRGV_RNAMES 325
#define DBOPT_SPECNAMES 326
#define DBOPT_SPECCOLORS 327
#define DBOPT_LLONGNZNUM 328
#define DBOPT_CONSERVED 329
#define DBOPT_EXTENSIVE 330

/* Error trapping method */
#define DB_TOP 0 /*default--API traps */
#define DB_NONE 1 /*no errors trapped */
#define DB_ALL 2 /*all levels trap (traceback) */
#define DB_ABORT 3 /*abort() is called */
#define DB_SUSPEND 4 /*suspend error reporting temporarily */
#define DB_RESUME 5 /*resume normal error reporting */

/* Errors */
#define E_NOERROR 0 /*No error */
#define E_BADFTYPE 1 /*Bad file type */
#define E_NOTIMP 2 /*Callback not implemented */
#define E_NOFILE 3 /*No data file specified */
#define E_INTERNAL 5 /*Internal error */
#define E_NOMEM 6 /*Not enough memory */
#define E_BADARGS 7 /*Bad argument to function */
#define E_CALLFAIL 8 /*Low-level function failure */
#define E_NOTFOUND 9 /*Object not found */
#define E_TAURSTATE 10 /*Taurus: database state error */
#define E_MSERVER 11 /*SDX: too many connections */
#define E_PROTO 12 /*SDX: protocol error */
#define E_NOTDIR 13 /*Not a directory */
#define E_MAXOPEN 14 /*Too many open files */
#define E_NOTFILTER 15 /*Filter(s) not found */
#define E_MAXFILTERS 16 /*Too many filters */
#define E_FEXIST 17 /*File already exists */
#define E_FILEISDIR 18 /*File is actually a directory */
#define E_FILENOREAD 19 /*File lacks read permission. */
#define E_SYSTEMERR 20 /*System level error occured. */
#define E_FILENOWRITE 21 /*File lacks write permission. */
#define E_INVALIDNAME 22 /* Variable name is invalid */
3-6

#define E_NOOVERWRITE 23 /*Overwrite not permitted */
#define E_CHECKSUM 24 /*Checksum failed */
#define E_COMPRESSION 25 /*Compression failed */
#define E_GRABBED 26 /*Low level driver enabled */
#define E_NOTREG 27 /*The dbfile pointer is not resitered. */
#define E_CONCURRENT 28 /*File is opened multiply and not all read-only. */
#define E_DRVRCANTOPEN 29 /*Driver cannot open the file. */
#define E_NERRORS 50

/* Definitions for MAJOR_ORDER */
#define DB_ROWMAJOR 0
#define DB_COLMAJOR 1

/* Definitions for CENTERING */
#define DB_NOTCENT 0
#define DB_NODECENT 110
#define DB_ZONECENT 111
#define DB_FACECENT 112
#define DB_BNDCENT 113 /* for CSG meshes only */
#define DB_EDGECENT 114
#define DB_BLOCKCENT 115 /* for 'block-centered' data on multimeshs */

/* Definitions for COORD_SYSTEM */
#define DB_CARTESIAN 120
#define DB_CYLINDRICAL 121
#define DB_SPHERICAL 122
#define DB_NUMERICAL 123
#define DB_OTHER 124

/* Definitions for ZONE FACE_TYPE */
#define DB_RECTILINEAR 100
#define DB_CURVILINEAR 101

/* Definitions for PLANAR */
#define DB_AREA 140
#define DB_VOLUME 141

/* Definitions for flag values */
#define DB_ON 1000
#define DB_OFF -1000

/* Definitions for disjoint flag */
#define DB_ABUTTING 142
#define DB_FLOATING 143

/* Definitions for derived variable types */
#define DB_VARTYPE_SCALAR 200
#define DB_VARTYPE_VECTOR 201
#define DB_VARTYPE_TENSOR 202
#define DB_VARTYPE_SYMTENSOR 203
#define DB_VARTYPE_ARRAY 204
#define DB_VARTYPE_MATERIAL 205
#define DB_VARTYPE_SPECIES 206
#define DB_VARTYPE_LABEL 207

/* Definitions for CSG boundary types
 Designed so low-order 16 bits are unused.

 The last few characters of the symbol are intended
3-7

 to indicate the representational form of the surface type

 G = generalized form (n values, depends on surface type)
 P = point (3 values, x,y,z in 3D, 2 values in 2D x,y)
 N = normal (3 values, Nx,Ny,Nz in 3D, 2 values in 2D Nx,Ny)
 R = radius (1 value)
 A = angle (1 value in degrees)
 L = length (1 value)
 X = x-intercept (1 value)
 Y = y-intercept (1 value)
 Z = z-intercept (1 value)
 K = arbitrary integer
 F = planar face defined by point-normal pair (6 values)
 */
#define DBCSG_QUADRIC_G 0x01000000
#define DBCSG_SPHERE_PR 0x02010000
#define DBCSG_ELLIPSOID_PRRR 0x02020000
#define DBCSG_PLANE_G 0x03000000
#define DBCSG_PLANE_X 0x03010000
#define DBCSG_PLANE_Y 0x03020000
#define DBCSG_PLANE_Z 0x03030000
#define DBCSG_PLANE_PN 0x03040000
#define DBCSG_PLANE_PPP 0x03050000
#define DBCSG_CYLINDER_PNLR 0x04000000
#define DBCSG_CYLINDER_PPR 0x04010000
#define DBCSG_BOX_XYZXYZ 0x05000000
#define DBCSG_CONE_PNLA 0x06000000
#define DBCSG_CONE_PPA 0x06010000
#define DBCSG_POLYHEDRON_KF 0x07000000
#define DBCSG_HEX_6F 0x07010000
#define DBCSG_TET_4F 0x07020000
#define DBCSG_PYRAMID_5F 0x07030000
#define DBCSG_PRISM_5F 0x07040000

/* Definitions for 2D CSG boundary types */
#define DBCSG_QUADRATIC_G 0x08000000
#define DBCSG_CIRCLE_PR 0x09000000
#define DBCSG_ELLIPSE_PRR 0x09010000
#define DBCSG_LINE_G 0x0A000000
#define DBCSG_LINE_X 0x0A010000
#define DBCSG_LINE_Y 0x0A020000
#define DBCSG_LINE_PN 0x0A030000
#define DBCSG_LINE_PP 0x0A040000
#define DBCSG_BOX_XYXY 0x0B000000
#define DBCSG_ANGLE_PNLA 0x0C000000
#define DBCSG_ANGLE_PPA 0x0C010000
#define DBCSG_POLYGON_KP 0x0D000000
#define DBCSG_TRI_3P 0x0D010000
#define DBCSG_QUAD_4P 0x0D020000

/* Definitions for CSG Region operators */
#define DBCSG_INNER 0x7F000000
#define DBCSG_OUTER 0x7F010000
#define DBCSG_ON 0x7F020000
#define DBCSG_UNION 0x7F030000
#define DBCSG_INTERSECT 0x7F040000
#define DBCSG_DIFF 0x7F050000
#define DBCSG_COMPLIMENT 0x7F060000
#define DBCSG_XFORM 0x7F070000
3-8

#define DBCSG_SWEEP 0x7F080000

/* definitions for MRG Tree traversal flags */
#define DB_PREORDER 0x00000001
#define DB_POSTORDER 0x00000002
#define DB_FROMCWR 0x00000004

/* Miscellaneous constants */
#define DB_F77NULL (-99) /*Fortran NULL pointer */
#define DB_F77NULLSTRING "NULLSTRING" /* FORTRAN STRING */

/*---
 * Index selection macros
 *---
 */
#define I4D(s,i,j,k,l) (l)*s[3]+(k)*s[2]+(j)*s[1]+(i)*s[0]
#define I3D(s,i,j,k) (k)*s[2]+(j)*s[1]+(i)*s[0]
#define I2D(s,i,j) (j)*s[1]+(i)*s[0]

/*---
 * Structures (just the public parts).
 *---
 */

/*
 * Database table of contents for the current directory only.
 */
typedef struct DBtoc_ {

 char **curve_names;
 int ncurve;

 char **multimesh_names;
 int nmultimesh;

 char **multimeshadj_names;
 int nmultimeshadj;

 char **multivar_names;
 int nmultivar;

 char **multimat_names;
 int nmultimat;

 char **multimatspecies_names;
 int nmultimatspecies;

 char **csgmesh_names;
 int ncsgmesh;

 char **csgvar_names;
 int ncsgvar;

 char **defvars_names;
 int ndefvars;

 char **qmesh_names;
 int nqmesh;
3-9

 char **qvar_names;
 int nqvar;

 char **ucdmesh_names;
 int nucdmesh;

 char **ucdvar_names;
 int nucdvar;

 char **ptmesh_names;
 int nptmesh;

 char **ptvar_names;
 int nptvar;

 char **mat_names;
 int nmat;

 char **matspecies_names;
 int nmatspecies;

 char **var_names;
 int nvar;

 char **obj_names;
 int nobj;

 char **dir_names;
 int ndir;

 char **array_names;
 int narrays;

 char **mrgtree_names;
 int nmrgtrees;

 char **groupelmap_names;
 int ngroupelmaps;

 char **mrgvar_names;
 int nmrgvars;

} DBtoc;

/*--
 * Database Curve Object
 *--
 */
typedef struct DBcurve_ {
/*----------- X vs. Y (Curve) Data -----------*/
 int id; /* Identifier for this object */
 int datatype; /* Datatype for x and y (float, double) */
 int origin; /* '0' or '1' */
 char *title; /* Title for curve */
 char *xvarname; /* Name of domain (x) variable */
 char *yvarname; /* Name of range (y) variable */
 char *xlabel; /* Label for x-axis */
 char *ylabel; /* Label for y-axis */
 char *xunits; /* Units for domain */
3-10

 char *yunits; /* Units for range */
 DB_DTPTR *x; /* Domain values for curve */
 DB_DTPTR *y; /* Range values for curve */
 int npts; /* Number of points in curve */
 int guihide; /* Flag to hide from post-processor's GUI */
 char *reference; /* Label to reference object */
} DBcurve;

typedef struct DBdefvars_ {
 int ndefs; /* number of definitions */
 char **names; /* [ndefs] derived variable names */
 int *types; /* [ndefs] derived variable types */
 char **defns; /* [ndefs] derived variable definitions */
 int *guihides; /* [ndefs] flags to hide from
 post-processor's GUI */
} DBdefvars;

typedef struct DBpointmesh_ {
/*----------- Point Mesh -----------*/
 int id; /* Identifier for this object */
 int block_no; /* Block number for this mesh */
 int group_no; /* Block group number for this mesh */
 char *name; /* Name associated with this mesh */
 int cycle; /* Problem cycle number */
 char *units[3]; /* Units for each axis */
 char *labels[3]; /* Labels for each axis */
 char *title; /* Title for curve */

 DB_DTPTR *coords[3]; /* Coordinate values */
 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
 /*
 * The following two fields really only contain 3 elements. However, silo
 * contains a bug in PJ_ReadVariable() as called by DBGetPointmesh() which
 * can cause three doubles to be stored there instead of three floats.
 */
 float min_extents[6]; /* Min mesh extents [ndims] */
 float max_extents[6]; /* Max mesh extents [ndims] */

 int datatype; /* Datatype for coords (float, double) */
 int ndims; /* Number of computational dimensions */
 int nels; /* Number of elements in mesh */
 int origin; /* '0' or '1' */
 int guihide; /* Flag to hide from post-processor's GUI */
 void *gnodeno; /* global node ids */
 char *mrgtree_name; /* optional name of assoc. mrgtree object */
 int gnznodtype; /* datatype for global node/zone ids */
} DBpointmesh;

/*--
 * Multi-Block Mesh Object
 *--
 */
typedef struct DBmultimesh_ {
/*----------- Multi-Block Mesh -----------*/
 int id; /* Identifier for this object */
 int nblocks; /* Number of blocks in mesh */
 int ngroups; /* Number of block groups in mesh */
 int *meshids; /* Array of mesh-ids which comprise mesh */
3-11

 char **meshnames; /* Array of mesh-names for meshids */
 int *meshtypes; /* Array of mesh-type indicators [nblocks] */
 int *dirids; /* Array of directory ID's which contain blk */
 int blockorigin; /* Origin (0 or 1) of block numbers */
 int grouporigin; /* Origin (0 or 1) of group numbers */
 int extentssize; /* size of each extent tuple */
 double *extents; /* min/max extents of coords of each block */
 int *zonecounts; /* array of zone counts for each block */
 int *has_external_zones; /* external flags for each block */
 int guihide; /* Flag to hide from post-processor's GUI */
 int lgroupings; /* size of groupings array */
 int *groupings; /* Array of mesh-ids, group-ids, and counts */
 char **groupnames; /* Array of group-names for groupings */
 char *mrgtree_name;/* optional name of assoc. mrgtree object */
 int tv_connectivity;
 int disjoint_mode;
 int topo_dim; /* Topological dimension; max of all blocks. */
} DBmultimesh;

/*--
 * Multi-Block Mesh Adjacency Object
 *--
 */
typedef struct DBmultimeshadj_ {
/*----------- Multi-Block Mesh Adjacency -----------*/
 int nblocks; /* Number of blocks in mesh */
 int blockorigin; /* Origin (0 or 1) of block numbers */
 int *meshtypes; /* Array of mesh-type indicators [nblocks] */
 int *nneighbors; /* Array [nblocks] neighbor counts */

 int lneighbors;
 int *neighbors; /* Array [lneighbors] neighbor block numbers */
 int *back; /* Array [lneighbors] neighbor block back */

 int totlnodelists;
 int *lnodelists; /* Array [lneighbors] of node counts shared */
 int **nodelists; /* Array [lneighbors] nodelists shared */

 int totlzonelists;
 int *lzonelists; /* Array [lneighbors] of zone counts adjacent */
 int **zonelists; /* Array [lneighbors] zonelists adjacent */
} DBmultimeshadj;

/*--
 * Multi-Block Variable Object
 *--
 */
typedef struct DBmultivar_ {
/*----------- Multi-Block Variable -----------*/
 int id; /* Identifier for this object */
 int nvars; /* Number of variables */
 int ngroups; /* Number of block groups in mesh */
 char **varnames; /* Variable names */
 int *vartypes; /* variable types */
 int blockorigin; /* Origin (0 or 1) of block numbers */
 int grouporigin; /* Origin (0 or 1) of group numbers */
 int extentssize; /* size of each extent tuple */
 double *extents; /* min/max extents of each block */
 int guihide; /* Flag to hide from post-processor's GUI */
3-12

 char **region_pnames;
 char *mmesh_name;
 int tensor_rank; /* DB_VARTYPE_XXX */
 int conserved; /* indicates if the variable should be conserved
 under various operations such as interp. */
 int extensive; /* indicates if the variable reprsents an extensiv
 physical property (as opposed to intensive) */
} DBmultivar;

/*---
 * Multi-material
 *---
 */
typedef struct DBmultimat_ {
 int id; /* Identifier for this object */
 int nmats; /* Number of materials */
 int ngroups; /* Number of block groups in mesh */
 char **matnames; /* names of constiuent DBmaterial objects */
 int blockorigin; /* Origin (0 or 1) of block numbers */
 int grouporigin; /* Origin (0 or 1) of group numbers */
 int *mixlens; /* array of mixlen values in each mat */
 int *matcounts; /* counts of unique materials in each block */
 int *matlists; /* list of materials in each block */
 int guihide; /* Flag to hide from post-processor's GUI */
 int nmatnos; /* global number of materials over all pieces */
 int *matnos; /* global list of material numbers */
 char **matcolors; /* optional colors for materials */
 char **material_names; /* optional names of the materials */
 int allowmat0; /* Flag to allow material "0" */
 char *mmesh_name;
} DBmultimat;

/*---
 * Multi-species
 *---
 */
typedef struct DBmultimatspecies_ {
 int id; /* Identifier for this object */
 int nspec; /* Number of species */
 int ngroups; /* Number of block groups in mesh */
 char **specnames; /* Species object names */
 int blockorigin; /* Origin (0 or 1) of block numbers */
 int grouporigin; /* Origin (0 or 1) of group numbers */
 int guihide; /* Flag to hide from post-processor's GUI */
 int nmat; /* equiv. to nmatnos of a DBmultimat */
 int *nmatspec; /* equiv. to matnos of a DBmultimat */
 char **species_names; /* optional names of the species */
 char **speccolors; /* optional colors for species */
} DBmultimatspecies;

/*--
 * Definitions for the FaceList, ZoneList, and EdgeList structures
 * used for describing UCD meshes.
 *--
 */

#define DB_ZONETYPE_BEAM 10

#define DB_ZONETYPE_POLYGON 20
3-13

#define DB_ZONETYPE_TRIANGLE 23
#define DB_ZONETYPE_QUAD 24

#define DB_ZONETYPE_POLYHEDRON 30
#define DB_ZONETYPE_TET 34
#define DB_ZONETYPE_PYRAMID 35
#define DB_ZONETYPE_PRISM 36
#define DB_ZONETYPE_HEX 38

typedef struct DBzonelist_ {
 int ndims; /* Number of dimensions (2,3) */
 int nzones; /* Number of zones in list */
 int nshapes; /* Number of zone shapes */
 int *shapecnt; /* [nshapes] occurences of each shape */
 int *shapesize; /* [nshapes] Number of nodes per shape */
 int *shapetype; /* [nshapes] Type of shape */
 int *nodelist; /* Sequent lst of nodes which comprise zones */
 int lnodelist; /* Number of nodes in nodelist */
 int origin; /* '0' or '1' */
 int min_index; /* Index of first real zone */
 int max_index; /* Index of last real zone */

/*--------- Optional zone attributes ---------*/
 int *zoneno; /* [nzones] zone number of each zone */
 void *gzoneno; /* [nzones] global zone number of each zone */
 int gnznodtype; /* datatype for global node/zone ids */
} DBzonelist;

typedef struct DBphzonelist_ {
 int nfaces; /* Number of faces in facelist (aka "facetable") */
 int *nodecnt; /* Count of nodes in each face */
 int lnodelist; /* Length of nodelist used to construct faces */
 int *nodelist; /* List of nodes used in all faces */
 char *extface; /* boolean flag indicating if a face is external */
 int nzones; /* Number of zones in this zonelist */
 int *facecnt; /* Count of faces in each zone */
 int lfacelist; /* Length of facelist used to construct zones */
 int *facelist; /* List of faces used in all zones */
 int origin; /* '0' or '1' */
 int lo_offset; /* Index of first non-ghost zone */
 int hi_offset; /* Index of last non-ghost zone */

/*--------- Optional zone attributes ---------*/
 int *zoneno; /* [nzones] zone number of each zone */
 void *gzoneno; /* [nzones] global zone number of each zone */
 int gnznodtype; /* datatype for global node/zone ids */
} DBphzonelist;

typedef struct DBfacelist_ {
/*----------- Required components ------------*/
 int ndims; /* Number of dimensions (2,3) */
 int nfaces; /* Number of faces in list */
 int origin; /* '0' or '1' */
 int *nodelist; /* Sequent list of nodes comprise faces */
 int lnodelist; /* Number of nodes in nodelist */

/*----------- 3D components ------------------*/
 int nshapes; /* Number of face shapes */
 int *shapecnt; /* [nshapes] Num of occurences of each shape */
3-14

 int *shapesize; /* [nshapes] Number of nodes per shape */

/*----------- Optional type component---------*/
 int ntypes; /* Number of face types */
 int *typelist; /* [ntypes] Type ID for each type */
 int *types; /* [nfaces] Type info for each face */

/*--------- Optional node attributes ---------*/
 int *nodeno; /* [lnodelist] node number of each node */

/*----------- Optional zone-reference component---------*/
 int *zoneno; /* [nfaces] Zone number for each face */
} DBfacelist;

typedef struct DBedgelist_ {
 int ndims; /* Number of dimensions (2,3) */
 int nedges; /* Number of edges */
 int *edge_beg; /* [nedges] */
 int *edge_end; /* [nedges] */
 int origin; /* '0' or '1' */
} DBedgelist;

typedef struct DBquadmesh_ {
/*----------- Quad Mesh -----------*/
 int id; /* Identifier for this object */
 int block_no; /* Block number for this mesh */
 int group_no; /* Block group number for this mesh */
 char *name; /* Name associated with mesh */
 int cycle; /* Problem cycle number */
 int coord_sys; /* Cartesian, cylindrical, spherical */
 int major_order; /* 1 indicates row-major for multi-d arrays */
 int stride[3]; /* Offsets to adjacent elements */
 int coordtype; /* Coord array type: collinear,
 * non-collinear */
 int facetype; /* Zone face type: rect, curv */
 int planar; /* Sentinel: zones represent area or volume? */

 DB_DTPTR *coords[3]; /* Mesh node coordinate ptrs [ndims] */
 int datatype; /* Type of coordinate arrays (double,float) */
 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
 /*
 * The following two fields really only contain 3 elements. However, silo
 * contains a bug in PJ_ReadVariable() as called by DBGetQuadmesh() which
 * can cause three doubles to be stored there instead of three floats.
 */
 float min_extents[6]; /* Min mesh extents [ndims] */
 float max_extents[6]; /* Max mesh extents [ndims] */

 char *labels[3]; /* Label associated with each dimension */
 char *units[3]; /* Units for variable, e.g, 'mm/ms' */
 int ndims; /* Number of computational dimensions */
 int nspace; /* Number of physical dimensions */
 int nnodes; /* Total number of nodes */

 int dims[3]; /* Number of nodes per dimension */
 int origin; /* '0' or '1' */
 int min_index[3]; /* Index in each dimension of 1st
 * non-phoney */
3-15

 int max_index[3]; /* Index in each dimension of last
 * non-phoney */
 int base_index[3]; /* Lowest real i,j,k value for this block */
 int start_index[3]; /* i,j,k values corresponding to original
 * mesh */
 int size_index[3]; /* Number of nodes per dimension for
 * original mesh */
 int guihide; /* Flag to hide from post-processor's GUI */
 char *mrgtree_name; /* optional name of assoc. mrgtree object */
} DBquadmesh;

typedef struct DBucdmesh_ {
/*----------- Unstructured Cell Data (UCD) Mesh -----------*/
 int id; /* Identifier for this object */
 int block_no; /* Block number for this mesh */
 int group_no; /* Block group number for this mesh */
 char *name; /* Name associated with mesh */
 int cycle; /* Problem cycle number */
 int coord_sys; /* Coordinate system */
 int topo_dim; /* Topological dimension. */
 char *units[3]; /* Units for variable, e.g, 'mm/ms' */
 char *labels[3]; /* Label associated with each dimension */

 DB_DTPTR *coords[3]; /* Mesh node coordinates */
 int datatype; /* Type of coordinate arrays (double,float) */
 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
 /*
 * The following two fields really only contain 3 elements. However, silo
 * contains a bug in PJ_ReadVariable() as called by DBGetUcdmesh() which
 * can cause three doubles to be stored there instead of three floats.
 */
 float min_extents[6]; /* Min mesh extents [ndims] */
 float max_extents[6]; /* Max mesh extents [ndims] */

 int ndims; /* Number of computational dimensions */
 int nnodes; /* Total number of nodes */
 int origin; /* '0' or '1' */

 DBfacelist *faces; /* Data structure describing mesh faces */
 DBzonelist *zones; /* Data structure describing mesh zones */
 DBedgelist *edges; /* Data struct describing mesh edges
 * (option) */

/*--------- Optional node attributes ---------*/
 void *gnodeno; /* [nnodes] global node number of each node */

/*--------- Optional zone attributes ---------*/
 int *nodeno; /* [nnodes] node number of each node */

/*--------- Optional polyhedral zonelist ---------*/
 DBphzonelist *phzones; /* Data structure describing mesh zones */

 int guihide; /* Flag to hide from post-processor's GUI */
 char *mrgtree_name; /* optional name of assoc. mrgtree object */
 int tv_connectivity;
 int disjoint_mode;
 int gnznodtype; /* datatype for global node/zone ids */
} DBucdmesh;
3-16

/*--
 * Database Mesh-Variable Object
 *---
 */
typedef struct DBquadvar_ {
/*----------- Quad Variable -----------*/
 int id; /* Identifier for this object */
 char *name; /* Name of variable */
 char *units; /* Units for variable, e.g, 'mm/ms' */
 char *label; /* Label (perhaps for editing purposes) */
 int cycle; /* Problem cycle number */
 int meshid; /* Identifier for associated mesh (Deprecated Sep2005)
*/

 DB_DTPTR **vals; /* Array of pointers to data arrays */
 int datatype; /* Type of data pointed to by 'val' */
 int nels; /* Number of elements in each array */
 int nvals; /* Number of arrays pointed to by 'vals' */
 int ndims; /* Rank of variable */
 int dims[3]; /* Number of elements in each dimension */

 int major_order; /* 1 indicates row-major for multi-d arrays */
 int stride[3]; /* Offsets to adjacent elements */
 int min_index[3]; /* Index in each dimension of 1st
 * non-phoney */
 int max_index[3]; /* Index in each dimension of last
 * non-phoney */
 int origin; /* '0' or '1' */
 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
 /*
 * The following field really only contains 3 elements. However, silo
 * contains a bug in PJ_ReadVariable() as called by DBGetQuadvar() which
 * can cause three doubles to be stored there instead of three floats.
 */
 float align[6]; /* Centering and alignment per dimension */

 DB_DTPTR **mixvals; /* nvals ptrs to data arrays for mixed zones */
 int mixlen; /* Num of elmts in each mixed zone data
 * array */

 int use_specmf; /* Flag indicating whether to apply species
 * mass fractions to the variable. */

 int ascii_labels;/* Treat variable values as ASCII values
 by rounding to the nearest integer in
 the range [0, 255] */
 char *meshname; /* Name of associated mesh */
 int guihide; /* Flag to hide from post-processor's GUI */
 char **region_pnames;
 int conserved; /* indicates if the variable should be conserved
 under various operations such as interp. */
 int extensive; /* indicates if the variable reprsents an extensiv
 physical property (as opposed to intensive) */
 int centering; /* explicit centering knowledge; should agree
 with alignment. */
} DBquadvar;
3-17

typedef struct DBucdvar_ {
/*----------- Unstructured Cell Data (UCD) Variable -----------*/
 int id; /* Identifier for this object */
 char *name; /* Name of variable */
 int cycle; /* Problem cycle number */
 char *units; /* Units for variable, e.g, 'mm/ms' */
 char *label; /* Label (perhaps for editing purposes) */
 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
 int meshid; /* Identifier for associated mesh (Deprecated Sep2005)
*/

 DB_DTPTR **vals; /* Array of pointers to data arrays */
 int datatype; /* Type of data pointed to by 'vals' */
 int nels; /* Number of elements in each array */
 int nvals; /* Number of arrays pointed to by 'vals' */
 int ndims; /* Rank of variable */
 int origin; /* '0' or '1' */

 int centering; /* Centering within mesh (nodal or zonal) */
 DB_DTPTR **mixvals; /* nvals ptrs to data arrays for mixed zones */
 int mixlen; /* Num of elmts in each mixed zone data
 * array */

 int use_specmf; /* Flag indicating whether to apply species
 * mass fractions to the variable. */
 int ascii_labels;/* Treat variable values as ASCII values
 by rounding to the nearest integer in
 the range [0, 255] */
 char *meshname; /* Name of associated mesh */
 int guihide; /* Flag to hide from post-processor's GUI */
 char **region_pnames;
 int conserved; /* indicates if the variable should be conserved
 under various operations such as interp. */
 int extensive; /* indicates if the variable reprsents an extensiv
 physical property (as opposed to intensive) */
} DBucdvar;

typedef struct DBmeshvar_ {
/*----------- Generic Mesh-Data Variable -----------*/
 int id; /* Identifier for this object */
 char *name; /* Name of variable */
 char *units; /* Units for variable, e.g, 'mm/ms' */
 char *label; /* Label (perhaps for editing purposes) */
 int cycle; /* Problem cycle number */
 int meshid; /* Identifier for associated mesh (Deprecated Sep2005)
*/

 DB_DTPTR **vals; /* Array of pointers to data arrays */
 int datatype; /* Type of data pointed to by 'val' */
 int nels; /* Number of elements in each array */
 int nvals; /* Number of arrays pointed to by 'vals' */
 int nspace; /* Spatial rank of variable */
 int ndims; /* Rank of 'vals' array(s) (computatnl rank) */

 int origin; /* '0' or '1' */
 int centering; /* Centering within mesh (nodal,zonal,other) */
 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
3-18

 /*
 * The following field really only contains 3 elements. However, silo
 * contains a bug in PJ_ReadVariable() as called by DBGetPointvar() which
 * can cause three doubles to be stored there instead of three floats.
 */
 float align[6]; /* Alignmnt per dimension if
 * centering==other */

 /* Stuff for multi-dimensional arrays (ndims > 1) */
 int dims[3]; /* Number of elements in each dimension */
 int major_order; /* 1 indicates row-major for multi-d arrays */
 int stride[3]; /* Offsets to adjacent elements */
 /*
 * The following two fields really only contain 3 elements. However, silo
 * contains a bug in PJ_ReadVariable() as called by DBGetUcdmesh() which
 * can cause three doubles to be stored there instead of three floats.
 */
 int min_index[6]; /* Index in each dimension of 1st
 * non-phoney */
 int max_index[6]; /* Index in each dimension of last
 non-phoney */

 int ascii_labels;/* Treat variable values as ASCII values
 by rounding to the nearest integer in
 the range [0, 255] */
 char *meshname; /* Name of associated mesh */
 int guihide; /* Flag to hide from post-processor's GUI */
 char **region_pnames;
 int conserved; /* indicates if the variable should be conserved
 under various operations such as interp. */
 int extensive; /* indicates if the variable reprsents an extensiv
 physical property (as opposed to intensive) */
} DBmeshvar;

typedef struct DBmaterial_ {
/*----------- Material Information -----------*/
 int id; /* Identifier */
 char *name; /* Name of this material information block */
 int ndims; /* Rank of 'matlist' variable */
 int origin; /* '0' or '1' */
 int dims[3]; /* Number of elements in each dimension */
 int major_order; /* 1 indicates row-major for multi-d arrays */
 int stride[3]; /* Offsets to adjacent elements in matlist */

 int nmat; /* Number of materials */
 int *matnos; /* Array [nmat] of valid material numbers */
 char **matnames; /* Array of material names */
 int *matlist; /* Array[nzone] w/ mat. number or mix index */
 int mixlen; /* Length of mixed data arrays (mix_xxx) */
 int datatype; /* Type of volume-fractions (double,float) */
 DB_DTPTR *mix_vf; /* Array [mixlen] of volume fractions */
 int *mix_next; /* Array [mixlen] of mixed data indeces */
 int *mix_mat; /* Array [mixlen] of material numbers */
 int *mix_zone; /* Array [mixlen] of back pointers to mesh */

 char **matcolors; /* Array of material colors */
 char *meshname; /* Name of associated mesh */
 int allowmat0; /* Flag to allow material "0" */
 int guihide; /* Flag to hide from post-processor's GUI */
3-19

} DBmaterial;

typedef struct DBmatspecies_ {
/*----------- Species Information -----------*/
 int id; /* Identifier */
 char *name; /* Name of this matspecies information block */
 char *matname; /* Name of material object with which the
 * material species object is associated. */
 int nmat; /* Number of materials */
 int *nmatspec; /* Array of lngth nmat of the num of material
 * species associated with each material. */
 int ndims; /* Rank of 'speclist' variable */
 int dims[3]; /* Number of elements in each dimension of the
 * 'speclist' variable. */
 int major_order; /* 1 indicates row-major for multi-d arrays */
 int stride[3]; /* Offsts to adjacent elmts in 'speclist' */

 int nspecies_mf; /* Total number of species mass fractions. */
 DB_DTPTR *species_mf; /* Array of length nspecies_mf of mass
 * frations of the material species. */
 int *speclist; /* Zone array of dimensions described by ndims
 * and dims. Each element of the array is an
 * index into one of the species mass fraction
 * arrays. A positive value is the index in
 * the species_mf array of the mass fractions
 * of the clean zone's material species:
 * species_mf[speclist[i]] is the mass fraction
 * of the first species of material matlist[i]
 * in zone i. A negative value means that the
 * zone is a mixed zone and that the array
 * mix_speclist contains the index to the
 * species mas fractions: -speclist[i] is the
 * index in the 'mix_speclist' array for zone
 * i. */
 int mixlen; /* Length of 'mix_speclist' array. */
 int *mix_speclist; /* Array of lgth mixlen of 1-orig indices
 * into the 'species_mf' array.
 * species_mf[mix_speclist[j]] is the index
 * in array species_mf' of the first of the
 * mass fractions for material
 * mix_mat[j]. */

 int datatype; /* Datatype of mass fraction data. */
 int guihide; /* Flag to hide from post-processor's GUI */
 char **specnames; /* Array of species names; length is sum of nmatspec
*/
 char **speccolors; /* Array of species colors; length is sum of nmatspec
*/
} DBmatspecies;

typedef struct DBcsgzonelist_ {
/*----------- CSG Zonelist -----------*/
 int nregs; /* Number of regions in regionlist */
 int origin; /* '0' or '1' */

 int *typeflags; /* [nregs] type info about each region */
 int *leftids; /* [nregs] left operand region refs */
 int *rightids; /* [nregs] right operand region refs */
 void *xform; /* [lxforms] transformation coefficients */
3-20

 int lxform; /* length of xforms array */
 int datatype; /* type of data in xforms array */

 int nzones; /* number of zones */
 int *zonelist; /* [nzones] region ids (complete regions) */
 int min_index; /* Index of first real zone */
 int max_index; /* Index of last real zone */

/*--------- Optional zone attributes ---------*/
 char **regnames; /* [nregs] names of each region */
 char **zonenames; /* [nzones] names of each zone */
} DBcsgzonelist;

typedef struct DBcsgmesh_ {
/*----------- CSG Mesh -----------*/
 int block_no; /* Block number for this mesh */
 int group_no; /* Block group number for this mesh */
 char *name; /* Name associated with mesh */
 int cycle; /* Problem cycle number */
 char *units[3]; /* Units for variable, e.g, 'mm/ms' */
 char *labels[3]; /* Label associated with each dimension */

 int nbounds; /* Total number of boundaries */
 int *typeflags; /* nbounds boundary type info flags */
 int *bndids; /* optional, nbounds explicit ids */

 void *coeffs; /* coefficients in the representation of
 each boundary */
 int lcoeffs; /* length of coeffs array */
 int *coeffidx; /* array of nbounds offsets into coeffs
 for each boundary's coefficients */
 int datatype; /* data type of coeffs data */

 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
 double min_extents[3]; /* Min mesh extents [ndims] */
 double max_extents[3]; /* Max mesh extents [ndims] */

 int ndims; /* Number of spatial & topological dimensions */
 int origin; /* '0' or '1' */

 DBcsgzonelist *zones; /* Data structure describing mesh zones */

/*--------- Optional boundary attributes ---------*/
 char **bndnames; /* [nbounds] boundary names */
 int guihide; /* Flag to hide from post-processor's GUI */
 char *mrgtree_name; /* optional name of assoc. mrgtree object */
 int tv_connectivity;
 int disjoint_mode;
} DBcsgmesh;

typedef struct DBcsgvar_ {
/*----------- CSG Variable -----------*/
 char *name; /* Name of variable */
 int cycle; /* Problem cycle number */
 char *units; /* Units for variable, e.g, 'mm/ms' */
 char *label; /* Label (perhaps for editing purposes) */
 float time; /* Problem time */
 double dtime; /* Problem time, double data type */
3-21

 void **vals; /* Array of pointers to data arrays */
 int datatype; /* Type of data pointed to by 'vals' */
 int nels; /* Number of elements in each array */
 int nvals; /* Number of arrays pointed to by 'vals' */

 int centering; /* Centering within mesh (nodal or zonal) */

 int use_specmf; /* Flag indicating whether to apply species
 * mass fractions to the variable. */
 int ascii_labels;/* Treat variable values as ASCII values
 by rounding to the nearest integer in
 the range [0, 255] */
 char *meshname; /* Name of associated mesh */
 int guihide; /* Flag to hide from post-processor's GUI */
 char **region_pnames;
 int conserved; /* indicates if the variable should be conserved
 under various operations such as interp. */
 int extensive; /* indicates if the variable reprsents an extensiv
 physical property (as opposed to intensive) */
} DBcsgvar;

/*---
 * A compound array is an array whose elements are simple arrays. A simple
 * array is an array whose elements are all of the same primitive data
 * type: float, double, integer, long... All of the simple arrays of
 * a compound array have elements of the same data type.
 *---
 */
typedef struct DBcompoundarray_ {
 int id; /*identifier of the compound array */
 char *name; /*name of te compound array */
 char **elemnames; /*names of the simple array elements */
 int *elemlengths; /*lengths of the simple arrays */
 int nelems; /*number of simple arrays */
 void *values; /*simple array values */
 int nvalues; /*sum reduction of `elemlengths' vector */
 int datatype; /*simple array element data type */
} DBcompoundarray;
3-22

	Chapter 1 Introduction to Silo
	Chapter 2 C and Fortran Functions
	1 API Section Error Handling and Other Global Library Behavior
	DBErrFunc
	DBErrno
	DBErrString
	DBShowErrors
	DBVariableNameValid
	DBVersion
	DBVersionGE
	DBFileVersion
	DBFileVersionGE
	DBSetAllowOverwrites
	DBGetAllowOverwrites
	DBForceSingle
	DBSetDataReadMask
	DBGetDataReadMask
	DBSetEnableChecksums
	DBGetEnableChecksums
	DBSetCompression
	DBGetCompression
	DBSetFriendlyHDF5Names
	DBGetFriendlyHDF5Names
	DBSetDeprecateWarnings
	DBGetDeprecateWarnings
	DB_VERSION_GE

	2 API Section Files and File Structure
	DBCreate
	DBOpen
	DBClose
	DBGetToc
	DBMkDir
	DBSetDir
	DBGetDir
	DBCpDir
	DBGrabDriver
	DBUngrabDriver
	DBGetDriverType
	DBGetDriverTypeFromPath
	DBInqFile
	_silolibinfo
	_hdf5libinfo
	_was_grabbed

	3 API Section Meshes, Variables and Materials
	DBPutCurve
	DBGetCurve
	DBPutPointmesh
	DBGetPointmesh
	DBPutPointvar
	DBPutPointvar1
	DBGetPointvar
	DBPutQuadmesh
	DBGetQuadmesh
	DBPutQuadvar
	DBPutQuadvar1
	DBGetQuadvar
	DBPutUcdmesh
	DBPutUcdsubmesh
	DBGetUcdmesh
	DBPutZonelist
	DBPutZonelist2
	DBPutPHZonelist
	DBGetPHZonelist
	DBPutFacelist
	DBPutUcdvar
	DBPutUcdvar1
	DBGetUcdvar
	DBPutCsgmesh
	DBGetCsgmesh
	DBPutCSGZonelist
	DBGetCSGZonelist
	DBPutCsgvar
	DBGetCsgvar
	DBPutMaterial
	DBGetMaterial
	DBPutMatspecies
	DBGetMatspecies
	DBPutDefvars
	DBGetDefvars
	DBInqMeshname
	DBInqMeshtype

	4 API Section Multi-Block Objects, Parallelism and Poor-Man’s Parallel I/O
	DBPutMultimesh
	DBGetMultimesh
	DBPutMultimeshadj
	DBGetMultimeshadj
	DBPutMultivar
	DBGetMultivar
	DBPutMultimat
	DBGetMultimat
	DBPutMultimatspecies
	DBGetMultimatspecies
	PMPIO_Init
	PMPIO_CreateFileCallBack
	PMPIO_OpenFileCallBack
	PMPIO_CloseFileCallBack
	PMPIO_WaitForBaton
	PMPIO_HandOffBaton
	PMPIO_Finish
	PMPIO_GroupRank
	PMPIO_RankInGroup

	5 API Section Part Assemblies, AMR, Slide Surfaces, Nodesets and Other Arbitrary Mesh Subsets
	DBMakeMrgtree
	DBAddRegion
	DBAddRegionArray
	DBSetCwr
	DBGetCwr
	DBPutMrgtree
	DBGetMrgtree
	DBFreeMrgtree
	DBMakeNamescheme
	DBGetName
	DBPutMrgvar
	DBGetMrgvar
	DBPutGroupelmap
	DBGetGroupelmap
	DBFreeGroupelmap
	DBOPT_REGION_PNAMES

	6 API Section Object Allocation and Free
	DBFree… 188DBAlloc…
	DBFree…

	7 API Section Calculational
	DBCalcExternalFacelist
	DBCalcExternalFacelist2

	8 API Section Optlists
	DBMakeOptlist
	DBAddOption
	DBClearOption
	DBGetOption
	DBFreeOptlist
	DBClearOptlist

	9 API Section User Defined (Generic) Data and Objects
	DBWrite
	DBWriteSlice
	DBReadVar
	DBReadVar1
	DBReadVarSlice
	DBGetVar
	DBInqVarExists
	DBInqVarType
	DBGetVarByteLength
	DBGetVarDims
	DBGetVarLength
	DBGetVarType
	DBPutCompoundarray
	DBInqCompoundarray
	DBGetCompoundarray
	DBMakeObject
	DBFreeObject
	DBChangeObject
	DBClearObject
	DBAddDblComponent
	DBAddFltComponent
	DBAddIntComponent
	DBAddStrComponent
	DBAddVarComponent
	DBWriteComponent
	DBWriteObject
	DBGetObject
	DBGetComponent
	DBGetComponentType

	10 API Section Previously Undocumented Use Conventions
	_visit_defvars
	_visit_searchpath
	_visit_domain_groups
	AlphabetizeVariables
	ConnectivityIsTimeVarying
	MultivarToMultimeshMap_vars
	MultivarToMultimeshMap_meshes

	11 API Section Silo’s Fortran Interface
	dbmkptr
	dbrmptr
	dbset2dstrlen
	dbget2dstrlen
	DBFortranAllocPointer
	DBFortranAccessPointer
	DBFortranRemovePointer

	12 API Section Deprecated Functions

