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Know Your Space 
Inlier and Outlier Construction for Calibrating Medical OOD Detectors

Synthetic Data Generation to Enable Open-Set Recognition without Hurting ID Accuracy
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Open-Set Recognition

Synthesize inliers in the latent space

Synthesize outliers in the pixel space

Results

Outlier Synthesis

Inlier Synthesis
SoTA OOD calibration methods fail on 
medical open-set recognition!
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Sample low-likelihood regions from class-specific 
feature distributions

Highly diverse set of outliers to ensure the OOD 
subspace does not overlap with the ID subspace 

Train energy-based OOD detector
Margin-based losses to calibrate the OOD detector 
to accept synthetic inliers and reject outliers

Push the tail samples closer to the 
class-specific prototypes

High-severity compositional image 
manipulations

(e.g., Augmix, RandConv) 
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Across a large suite of benchmarks, we achieve 15%-25% AUROC 
improvement over SoTA methods. 
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