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What is a Super Method?

• Look!  Up in the sky! It’s a bird! It’s a ….
• OOP languages provide a way of calling 

overwritten super class methods.
• ‘Super Class Method’ = ‘Super Method.’
• In Java, the syntax is:

– super.foo()



Motivation

• Super methods allow code reuse.

• Provides a way of accessing parent data.  

• It was sitting around half completed.



How is it done?

• Supers may only be called from the Impls.

• Every binding is different.

• The IOR already has super tables and data.

• An IOR function gives us the vtable for just the 
first super class.  

• We call on that vtable with the current object.

• We only generate OVERWRITTEN methods.



How is it done? (example)

Class C inherits from B, which inherits from A.

A defines method a, B defines method b.

C defines method c, and overwrites method a.
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How to call supers in C

• If we want to call super.a() from C_Impl.c (as 
shown in our example) we would:

• Prefix ‘super_’ to the super method:

char* impl_C_a(C self) {
/* DO-NOT-DELETE splicer.begin(C.a) */
  char* ret = super_a(self);
  return ret;
/* DO-NOT-DELETE splicer.end(C.a) */



How to call supers in Cxx/UCxx

• Prefix ‘super.’ to the super method:

::std::string C_impl::a () throw () {
  // DO-NOT-DELETE splicer.begin(C.a)
  ::std::string ret = super.a();
  return ret;
  // DO-NOT-DELETE splicer.end(C.a)
}



How to call supers in Fortran 77

Fully qualify the super method with: class_super_name_f()

 subroutine C_a_fi(self, retval)
        implicit none
C       in C self
        integer*8 self
C       out string retval
        character*(*) retval

C       DO-NOT-DELETE splicer.begin(C.a)
        call C_super_a_f(self, retval)
C       DO-NOT-DELETE splicer.end(C.a)
end



How to call supers in Fortran 90

• Prefix ‘super_’ to the super method:

recursive subroutine C_a_mi(self, retval)
  use C
  use C_impl
  implicit none
  type(C_t) :: self ! in
  character (len=*) :: retval ! out

! DO-NOT-DELETE splicer.begin(C.a)
  call super_a(self, retval)
! DO-NOT-DELETE splicer.end(C.a)
end subroutine C_a_mi



How to call supers in Java

• Prefix ‘super_’ to the super method:

 public java.lang.String a_Impl () 
  {
    // DO-NOT-DELETE splicer.begin(C.a)
    java.lang.String ret = super_a();
    return ret;
    // DO-NOT-DELETE splicer.end(C.a)
  }



Conclusion

• Supers should ease working with Babel 
when Impls contain data.

• Make Babel more OOP!

• Unfortunately, Python does not yet work.  
(delayed)


