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What's the big deal?

● Arrays appear more “natural” in C, C++, 
Fortran 90 and particularly Fortran 77

● Developers need less or no code to 
translate between their array data 
structures to SIDL's data structure

● SIDL generated APIs can match 
signatures from well known legacy APIs

● Less performance overhead due to 
avoiding a malloc & free calls
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What's the catch?

● Only in & inout modes supported

● R-arrays must be contiguous and 
column-major ordered

● No NULL r-arrays

● Implementation cannot reshape or 
replace an inout r-array

● R-arrays are limited to int, long, float 
and double

● Lower index is always 0
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How is this possible?

● Changing the semantics of inout makes 
it possible

● Normal SIDL arrays have identical 
semantics to SIDL objects
►ability to deleteRef and replace the array 

severely constrains how arrays must be 
passed

● inout for r-arrays means the data is 
passed from caller to callee and back
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How can I get one?

● Download and install Babel 0.10.0 (or 
later)

●Modify your SIDL files to use the new r-
array syntax

● Regenerate your client and server code 
to use the new API

● Edit your client code and impls
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New r-array SIDL syntax
● in rarray<type[, dimension]> arg(indices)

inout rarray<type[, dimension]> arg(indices)

● The SIDL declaration also must include the 
declarations of the index variables

● Example:
void solve(in rarray<double, 2> A(m,n),
                   inout rarray<double> x(n),
                   in rarray<double> b(m),
                   in int m,
                   in int n);
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Additional notes on r-array 
syntax

● Number of index variables must match 
the dimension of the array

● Index variables can be reused for other 
arguments

● Index arguments can appear anywhere 
in the argument list

● Values of index variables determine size 
of array
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Yes, but what's my code 
going to look like?

●Watch out, A is in column-major order

● C client-side signature for solve

●Macros for column-major are available
/** C client-side API for solve method */
void num_Linsol_solve(/*in*/ num_Linsol self,
                      /*in*/ double* A,
                      /*inout*/ double* x,
                      /*in*/ double* b,
                      /*in*/ int32_t m,
                      /*in*/ int32_t n);
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C server-side signature

void
impl_num_Linsol_solve(/*in*/ num_Linsol self, 
                      /*in*/ double* A, /*inout*/ double* x,
                      /*in*/ double* b, 
                      /*in*/ int32_t m, /*in*/ int32_t n)
{
  /* DO-NOT-DELETE splicer.begin(num.Linsol.solve) */
  /* Insert the implementation of the solve method here... */
  /* DO-NOT-DELETE splicer.end(num.Linsol.solve) */
}
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C++ client-side signature

    void solve (/*in*/    double* A,
                /*inout*/ double* x,
                /*in*/    double* b,
                /*in*/    int32_t m,
                /*in*/    int32_t n) throw ();

    void solve (/*in*/    ::sidl::array<double> A,
                /*inout*/ ::sidl::array<double>& x,
                /*in*/    ::sidl::array<double> b)
                throw();

● C++ provides overloaded stub methods

● Note m & n don't appear in 2nd method
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Fortran 77 client-side 
binding!

● Note array lower index is 0
        subroutine num_Linsol_solve_f(self, 
      $  A, x, b, m, n)
        implicit none
C       in num.Linsol self
        integer*8 self
        integer*4 m, n
C       in rarray<double,2> A(m,n)
        double precision A(0:m-1, 0:n-1)
C       inout rarray<double> x(n)
        double precision x(0:n-1)
C       in rarray<double> b(m)
        double precision b(0:m-1)
        end
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Fortran 77 server-side 
signature!

        subroutine num_Linsol_solve_fi(self, A, x, b, m, n)
        implicit none
C       in num.Linsol self
        integer*8 self
C       in int m
        integer*4 m
C       in int n
        integer*4 n
C       in rarray<double,2> A(m,n)
        double precision A(0:m-1, 0:n-1)
C       inout rarray<double> x(n)
        double precision x(0:n-1)
C       in rarray<double> b(m)
        double precision b(0:m-1)

C       DO-NOT-DELETE splicer.begin(num.Linsol.solve)
C       Insert the implementation here...
C       DO-NOT-DELETE splicer.end(num.Linsol.solve)
        end
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Fortran 90 client-side 
signature (1/2)

● Like C++, F90 provides an overloaded 
client-side signature (no m & n args)

  private :: solve_1s, solve_2s
  interface solve
    module procedure solve_1s, solve_2s
  end interface

  recursive subroutine solve_1s(self, A, x, b)
    implicit none
    type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
    ! in array<double,2,column-major> A
    type(sidl_double_2d) , intent(in) :: A
    ! inout array<double,column-major> x
    type(sidl_double_1d) , intent(inout) :: x
    ! in array<double,column-major> b
    type(sidl_double_1d) , intent(in) :: b
    ! details deleted
  end subroutine solve_1s
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Fortran 90 client-side 
signature (2/2)

● Here is the one that takes native Fortran 
90 as arguments (m & n don't appear)

  recursive subroutine solve_2s(self, A, x, b)
    implicit none
    type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
    ! in rarray<double,2> A(m,n)
    real (selected_real_kind(15, 307)) , intent(in), dimension(:, :) :: A
    ! inout rarray<double> x(n)
    real (selected_real_kind(15, 307)) , intent(inout), dimension(:) :: x
    ! in rarray<double> b(m)
    real (selected_real_kind(15, 307)) , intent(in), dimension(:) :: b
    ! details deleted
  end subroutine solve_2s
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Fortran 90 server-side 
signature

recursive subroutine num_Linsol_solve_mi(self, A, x, b, m, n)
  use num_Linsol
  use sidl_double_array
  use num_Linsol_impl
  ! DO-NOT-DELETE splicer.begin(num.Linsol.solve.use)
  ! DO-NOT-DELETE splicer.end(num.Linsol.solve.use)
  implicit none
  type(num_Linsol_t) :: self ! in
  integer (selected_int_kind(9)) :: m ! in
  integer (selected_int_kind(9)) :: n ! in
  real (selected_real_kind(15, 307)), dimension(0:m-1, 0:n-1) :: A ! in
  real (selected_real_kind(15, 307)), dimension(0:n-1) :: x ! inout
  real (selected_real_kind(15, 307)), dimension(0:m-1) :: b ! in

! DO-NOT-DELETE splicer.begin(num.Linsol.solve)
! Insert the implementation here...
! DO-NOT-DELETE splicer.end(num.Linsol.solve)
end subroutine num_Linsol_solve_mi
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R-arrays for other languages

● In Java and Python, r-arrays are treated 
just like normal SIDL arrays
►the index variables do not appear
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How did this go from an idea 
to reality in 1.5 months?

● Babel users complained about having to 
wrap simple arrays as borrowed arrays

● LAPACK/Victor wanted simpler arrays

● Jeff Keasler (LLNL) suggested changing 
the array rules

● I flushed out the idea

● Gary came up with explicit variable 
declarations

● Jim and I coded it up


