
BABELBABEL

The New, Fantastic R-Array

Tom Epperly, Gary Kumfert & Jim Leek

Center for Applied Scientific Computing

January 27, 2005

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES-209156

BABELBABEL

Outline

●What's the big deal?

●What's the catch?

● How is this possible?

● How can I get one?

● Yes, but what's my code going to look
like?

● How did this go from an idea to reality in
1.5 months?

BABELBABEL

What's the big deal?

● Arrays appear more “natural” in C, C++,
Fortran 90 and particularly Fortran 77

● Developers need less or no code to
translate between their array data
structures to SIDL's data structure

● SIDL generated APIs can match
signatures from well known legacy APIs

● Less performance overhead due to
avoiding a malloc & free calls

BABELBABEL

What's the catch?

● Only in & inout modes supported

● R-arrays must be contiguous and
column-major ordered

● No NULL r-arrays

● Implementation cannot reshape or
replace an inout r-array

● R-arrays are limited to int, long, float
and double

● Lower index is always 0

BABELBABEL

How is this possible?

● Changing the semantics of inout makes
it possible

● Normal SIDL arrays have identical
semantics to SIDL objects
►ability to deleteRef and replace the array

severely constrains how arrays must be
passed

● inout for r-arrays means the data is
passed from caller to callee and back

BABELBABEL

How can I get one?

● Download and install Babel 0.10.0 (or
later)

●Modify your SIDL files to use the new r-
array syntax

● Regenerate your client and server code
to use the new API

● Edit your client code and impls

BABELBABEL

New r-array SIDL syntax
● in rarray<type[, dimension]> arg(indices)

inout rarray<type[, dimension]> arg(indices)

● The SIDL declaration also must include the
declarations of the index variables

● Example:
void solve(in rarray<double, 2> A(m,n),
 inout rarray<double> x(n),
 in rarray<double> b(m),
 in int m,
 in int n);

BABELBABEL

Additional notes on r-array
syntax

● Number of index variables must match
the dimension of the array

● Index variables can be reused for other
arguments

● Index arguments can appear anywhere
in the argument list

● Values of index variables determine size
of array

BABELBABEL

Yes, but what's my code
going to look like?

●Watch out, A is in column-major order

● C client-side signature for solve

●Macros for column-major are available
/** C client-side API for solve method */
void num_Linsol_solve(/*in*/ num_Linsol self,
 /*in*/ double* A,
 /*inout*/ double* x,
 /*in*/ double* b,
 /*in*/ int32_t m,
 /*in*/ int32_t n);

BABELBABEL

C server-side signature

void
impl_num_Linsol_solve(/*in*/ num_Linsol self,
 /*in*/ double* A, /*inout*/ double* x,
 /*in*/ double* b,
 /*in*/ int32_t m, /*in*/ int32_t n)
{
 /* DO-NOT-DELETE splicer.begin(num.Linsol.solve) */
 /* Insert the implementation of the solve method here... */
 /* DO-NOT-DELETE splicer.end(num.Linsol.solve) */
}

BABELBABEL

C++ client-side signature

 void solve (/*in*/ double* A,
 /*inout*/ double* x,
 /*in*/ double* b,
 /*in*/ int32_t m,
 /*in*/ int32_t n) throw ();

 void solve (/*in*/ ::sidl::array<double> A,
 /*inout*/ ::sidl::array<double>& x,
 /*in*/ ::sidl::array<double> b)
 throw();

● C++ provides overloaded stub methods

● Note m & n don't appear in 2nd method

BABELBABEL

Fortran 77 client-side
binding!

● Note array lower index is 0
 subroutine num_Linsol_solve_f(self,
 $ A, x, b, m, n)
 implicit none
C in num.Linsol self
 integer*8 self
 integer*4 m, n
C in rarray<double,2> A(m,n)
 double precision A(0:m-1, 0:n-1)
C inout rarray<double> x(n)
 double precision x(0:n-1)
C in rarray<double> b(m)
 double precision b(0:m-1)
 end

BABELBABEL

Fortran 77 server-side
signature!

 subroutine num_Linsol_solve_fi(self, A, x, b, m, n)
 implicit none
C in num.Linsol self
 integer*8 self
C in int m
 integer*4 m
C in int n
 integer*4 n
C in rarray<double,2> A(m,n)
 double precision A(0:m-1, 0:n-1)
C inout rarray<double> x(n)
 double precision x(0:n-1)
C in rarray<double> b(m)
 double precision b(0:m-1)

C DO-NOT-DELETE splicer.begin(num.Linsol.solve)
C Insert the implementation here...
C DO-NOT-DELETE splicer.end(num.Linsol.solve)
 end

BABELBABEL

Fortran 90 client-side
signature (1/2)

● Like C++, F90 provides an overloaded
client-side signature (no m & n args)

 private :: solve_1s, solve_2s
 interface solve
 module procedure solve_1s, solve_2s
 end interface

 recursive subroutine solve_1s(self, A, x, b)
 implicit none
 type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
 ! in array<double,2,column-major> A
 type(sidl_double_2d) , intent(in) :: A
 ! inout array<double,column-major> x
 type(sidl_double_1d) , intent(inout) :: x
 ! in array<double,column-major> b
 type(sidl_double_1d) , intent(in) :: b
 ! details deleted
 end subroutine solve_1s

BABELBABEL

Fortran 90 client-side
signature (2/2)

● Here is the one that takes native Fortran
90 as arguments (m & n don't appear)

 recursive subroutine solve_2s(self, A, x, b)
 implicit none
 type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
 ! in rarray<double,2> A(m,n)
 real (selected_real_kind(15, 307)) , intent(in), dimension(:, :) :: A
 ! inout rarray<double> x(n)
 real (selected_real_kind(15, 307)) , intent(inout), dimension(:) :: x
 ! in rarray<double> b(m)
 real (selected_real_kind(15, 307)) , intent(in), dimension(:) :: b
 ! details deleted
 end subroutine solve_2s

BABELBABEL

Fortran 90 server-side
signature

recursive subroutine num_Linsol_solve_mi(self, A, x, b, m, n)
 use num_Linsol
 use sidl_double_array
 use num_Linsol_impl
 ! DO-NOT-DELETE splicer.begin(num.Linsol.solve.use)
 ! DO-NOT-DELETE splicer.end(num.Linsol.solve.use)
 implicit none
 type(num_Linsol_t) :: self ! in
 integer (selected_int_kind(9)) :: m ! in
 integer (selected_int_kind(9)) :: n ! in
 real (selected_real_kind(15, 307)), dimension(0:m-1, 0:n-1) :: A ! in
 real (selected_real_kind(15, 307)), dimension(0:n-1) :: x ! inout
 real (selected_real_kind(15, 307)), dimension(0:m-1) :: b ! in

! DO-NOT-DELETE splicer.begin(num.Linsol.solve)
! Insert the implementation here...
! DO-NOT-DELETE splicer.end(num.Linsol.solve)
end subroutine num_Linsol_solve_mi

BABELBABEL

R-arrays for other languages

● In Java and Python, r-arrays are treated
just like normal SIDL arrays
►the index variables do not appear

BABELBABEL

How did this go from an idea
to reality in 1.5 months?

● Babel users complained about having to
wrap simple arrays as borrowed arrays

● LAPACK/Victor wanted simpler arrays

● Jeff Keasler (LLNL) suggested changing
the array rules

● I flushed out the idea

● Gary came up with explicit variable
declarations

● Jim and I coded it up

