
Tammy Dahlgren, Tom Epperly, and
Gary Kumfert

Center for Applied Scientific Computing

 Common Component Architecture Working Group
April 10, 2003

Babel 0.8.4 Release

This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES-152685

TGWE 2CASC

�

Completed Fortran 90 phase II

� A major improvement in look-and-feel

�

Improved documentation

�

Changed FORTRAN 77 cast function

�

--comment-local-only option

What's new in 0.8.2 (26 March 2003)

TGWE 3CASC

�

Fixed F90 name mangling bug in 0.8.2

�

Configuration improvements

�

Doc comments for enumerated types

�

C++ array binding changes

�

More regression tests

Wait there's more in 0.8.4 (7 April 2003)

TGWE 4CASC

�

Before 0.8.2, object & array references were
integer*8's

�

Now object & array references are F90 derived types

�

Examples
use gov_cca_Port
use SIDL_BaseException
use gov_cca_Port_array
type(gov_cca_Port_t) :: port
type(SIDL_BaseException_t) :: excpt
type(gov_cca_Port_a) :: portArray

Fortran 90 Phase II

TGWE 5CASC

Generated F90 files

Vector.sidl

Vector_IOR.c

Vector_IOR.h

Vector_fSkel.c

Vector_Mod.F90

Vector_Impl.F90Vector_fStub.c

Vector_fAbbrev.h

Vector_array.F90

Vector.F90

Vector_type.F90

TGWE 6CASC

Dependencies among F90 files

Vector_type.F90

Vector_array.F90Vector.F90

Vector_Impl.F90

Vector_Mod.F90

TGWE 7CASC

F90 files & modules

File Module Description Edited
Vector_Impl.F90 None Developer writes functions here

�

Vector_Mod.F90 Vector_impl Private data defined here

�

Vector_array.F90 Vector_array Array methods
Vector.F90 Vector Object/interface methods
Vector_type.F90 Vector_type Object & array derived types

TGWE 8CASC

Impact of derived types on coding

�

Distinct derived type for each class/interface enables

� Fortran 90 overloading

�Short method names distinguished by type
 call deleteRef(obj)
 call new(obj)

� Simple cast methods

�

Every allowable cast operation can be done in
one call
 call cast(port, intPort)

�

Similar benefits for arrays

�

Everything looks like a native F90 module

TGWE 9CASC

Private data pointer is a derived type

�

F90 private data is a pointer to a derived type

� Adding state data is relatively natural

� Wrapper derived type holds pointer

type tutorial_Driver_private
 sequence
 ! DO-NOT-DELETE splicer.begin(tutorial.Driver.private_data)
 type(gov_cca_Services_t) :: d_services
 ! DO-NOT-DELETE splicer.end(tutorial.Driver.private_data)
end type tutorial_Driver_private

type tutorial_Driver_wrap
 sequence
 type(tutorial_Driver_private), pointer :: d_private_data
end type tutorial_Driver_wrap

TGWE 10CASC

What's left to do with Fortran 90?

�

Incorporate feedback from CCA & Babel users

�

Use native F90 array descriptors for simple numeric
types (int, long, float, double, fcomplex, dcomplex)

�

Resolve name collisions with intrinsic functions

� Example:
size the SIDL method
size the Fortran 90 intrinsic

� Sun's F90 treats collisions between module
functions and intrinsic functions as errors

TGWE 11CASC

Fortran 77 cast change

�

Old
x_y_z__cast_f(obj, newtype, newobj)
integer*8 obj, newobj
character*(*) newtype
obj was of type x.y.z, and it would cast it to newtype.

�

New
x_y_z__cast_f(obj, newobj)
integer*8 obj, newobj
obj is any object/interface. It will be cast into type
x.y.z (if possible). The result is returned in newobj.
x_y_z__cast2_f(obj, newtype, newobj)
does what old _cast did.

�

Similar to C and Python bindings

TGWE 12CASC

Miscellaneous improvements

�

Reorganized and enhanced user documentation

�

--comment-local-only for Doxygen

�

Configuration improvements

� No need for jar -u anymore

� Support kaffe VM -addclasspath

� Jar files stored in architecture-independent dir

� babel-config script reveals configure info

�

Now available in Debian unstable

TGWE 13CASC

�

Doc comments for type and values preserved

�

Added to XML representation

�

Stub documentation

 // user defined values
 enum car {
 /**
 * A sports car.
 */
 porsche = 911,
 /**
 * A family car.
 */
 ford = 150,
 /**
 * A luxury car.
 */
 mercedes = 550
 };

enum enums_car__enum {
 /**
 * A sports car.
 */
 enums_car_porsche = 911,

 /**
 * A family car.
 */
 enums_car_ford = 150,

 /**
 * A luxury car.
 */
 enums_car_mercedes = 550

};

SIDL

C Stub

Doc comments for enumerated types

TGWE 14CASC

C++ array binding change

C++ binding C++ binding
SIDL type

�

 0.8.2

�

 0.8.4
array<int> SIDL::array<int> SIDL::array<int32_t>
array<long> SIDL::array<long> SIDL::array<int64_t>

	 Similarity between array and value type was judged
more important than similarity to SIDL type

TGWE 15CASC

Testing changes

�

Added SIDL & XML backend testing

�

Add F90 driver for CCA example

�

Total tests: 9981

TGWE 16CASC

What to expect in the future

�

Assertion checking in SIDL

�

Fortran 90 Phase III (or incremental improvements)

�

RMI/Integration

