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�

Completed Fortran 90 phase II

� A major improvement in look-and-feel

�

Improved documentation

�

Changed FORTRAN 77 cast function

�

--comment-local-only option

What's new in 0.8.2 (26 March 2003)
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�

Fixed F90 name mangling bug in 0.8.2

�

Configuration improvements

�

Doc comments for enumerated types

�

C++ array binding changes

�

More regression tests

Wait there's more in 0.8.4 (7 April 2003)
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�

Before 0.8.2, object & array references were 
integer*8's

�

Now object & array references are F90 derived types

�

Examples
use gov_cca_Port
use SIDL_BaseException
use gov_cca_Port_array
type(gov_cca_Port_t) :: port
type(SIDL_BaseException_t) :: excpt
type(gov_cca_Port_a) :: portArray

Fortran 90 Phase II
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Generated F90 files

Vector.sidl

Vector_IOR.c

Vector_IOR.h

Vector_fSkel.c

Vector_Mod.F90

Vector_Impl.F90Vector_fStub.c

Vector_fAbbrev.h

Vector_array.F90

Vector.F90

Vector_type.F90
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Dependencies among F90 files

Vector_type.F90

Vector_array.F90Vector.F90

Vector_Impl.F90

Vector_Mod.F90
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F90 files & modules

File Module Description Edited
Vector_Impl.F90 None Developer writes functions here

�

Vector_Mod.F90 Vector_impl Private data defined here

�

Vector_array.F90 Vector_array Array methods
Vector.F90 Vector Object/interface methods
Vector_type.F90 Vector_type Object & array derived types
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Impact of derived types on coding

�

Distinct derived type for each class/interface enables

� Fortran 90 overloading

�Short method names distinguished by type
 call deleteRef(obj)
 call new(obj)

� Simple cast methods

�

Every allowable cast operation can be done in 
one call
 call cast(port, intPort)

�

Similar benefits for arrays

�

Everything looks like a native F90 module
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Private data pointer is a derived type

�

F90 private data is a pointer to a derived type

� Adding state data is relatively natural

� Wrapper derived type holds pointer

type tutorial_Driver_private
  sequence
  ! DO-NOT-DELETE splicer.begin(tutorial.Driver.private_data)
  type(gov_cca_Services_t) :: d_services
  ! DO-NOT-DELETE splicer.end(tutorial.Driver.private_data)
end type tutorial_Driver_private
 
type tutorial_Driver_wrap
  sequence
  type(tutorial_Driver_private), pointer :: d_private_data
end type tutorial_Driver_wrap
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What's left to do with Fortran 90?

�

Incorporate feedback from CCA & Babel users

�

Use native F90 array descriptors for simple numeric 
types (int, long, float, double, fcomplex, dcomplex)

�

Resolve name collisions with intrinsic functions

� Example:
size the SIDL method
size the Fortran 90 intrinsic

� Sun's F90 treats collisions between module 
functions and intrinsic functions as errors
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Fortran 77 cast change

�

Old
x_y_z__cast_f(obj, newtype, newobj)
integer*8 obj, newobj
character*(*) newtype
obj was of type x.y.z, and it would cast it to newtype.

�

New
x_y_z__cast_f(obj, newobj)
integer*8 obj, newobj
obj is any object/interface. It will be cast into type 
x.y.z (if possible). The result is returned in newobj.
x_y_z__cast2_f(obj, newtype, newobj)
does what old _cast did.

�

Similar to C and Python bindings
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Miscellaneous improvements

�

Reorganized and enhanced user documentation

�

--comment-local-only for Doxygen

�

Configuration improvements

� No need for jar -u anymore

� Support kaffe VM -addclasspath

� Jar files stored in architecture-independent dir

� babel-config script reveals configure info

�

Now available in Debian unstable
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�

Doc comments for type and values preserved

�

Added to XML representation

�

Stub documentation

  // user defined values
  enum car {
    /**
     * A sports car.
     */
    porsche = 911,
    /**
     * A family car.
     */
    ford = 150,
    /**
     * A luxury car.
     */
    mercedes = 550
  };

enum enums_car__enum {
  /**
   * A sports car.
   */
  enums_car_porsche  = 911,
 
  /**
   * A family car.
   */
  enums_car_ford     = 150,
 
  /**
   * A luxury car.
   */
  enums_car_mercedes = 550
 
};

SIDL

C Stub

Doc comments for enumerated types
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C++ array binding change

C++ binding C++ binding
SIDL type

�

 0.8.2

�

 0.8.4
array<int> SIDL::array<int> SIDL::array<int32_t>
array<long> SIDL::array<long> SIDL::array<int64_t>

	 Similarity between array and value type was judged 
more important than similarity to SIDL type
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Testing changes

�

Added SIDL & XML backend testing

�

Add F90 driver for CCA example

�

Total tests: 9981
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What to expect in the future

�

Assertion checking in SIDL

�

Fortran 90 Phase III (or incremental improvements)

�

RMI/Integration


