Babel 0.8.4 Release

Tammy Dahigren, Tom Epperly, and
Gary Kumfert
Center for Applied Scientific Computing

Common Component Architecture Working Group
April 10, 2003

— This work was performed under the auspices of the U.S. Department of Energy by the University
of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

UCRL-PRES-152685

IIL-

i

What's new in 0.8.2 (26 March 2003)

® Completed Fortran 90 phase Il
- A major improvement in look-and-feel

® Improved documentation

® Changed FORTRAN 77 cast function
® - -comment-local-only option

CASC TGWE 2

Wait there's more in 0.8.4 (7 April 2003)

® Fixed F90 name mangling bug in 0.8.2
® Configuration improvements

® Doc comments for enumerated types
® C++ array binding changes

® More regression tests

CASC TGWE 3

Fortran 90 Phase Il

® Before 0.8.2, object & array references were
integer*8's

® Now object & array references are F90 derived types

® Examples
use gov_cca_Port

use SIDIL BaseException
use gov_cca Port array

type(gov_cca Port t) :: port
type (SIDL. BaseException t) :: excpt
type (gov_cca Port a) :: portArray

CASC TGWE 4

Generated F90 files

Vector_fStubN E /Mr_lmpl.F%
Vector.sid

——

(] - ~
VectoEOR.h Vector Mod.F90

VeCtOFR-C Vector_array.F90

Vector fSkel.c
Vector.F90

Vector fAbbrev.h Vector type.F90
CASC rGWE 5

Dependencies among F90 files

Vector Impl.F90
‘/i\A

VectQr.F90 Vector array.F90 Vector_Mod.F90

v

CASC Vector_type.F90 o

FI0 files & modules

File Module Description Edited
Vector_Impl.FO0 None Developer writes functions here v
Vector Mod.F90 Vector_impl Private data defined here v
Vector_array.F90 Vector_array Array methods

Vector.F90 Vector Object/interface methods

Vector_type.FO0 Vector_type Object & array derived types

CASC TGWE 7

Impact of derived types on coding

® Distinct derived type for each class/interface enables
- Fortran 90 overloading

>Short method names distinguished by type
call deleteRef (obj)
call new (obj)

- Simple cast methods

>Every allowable cast operation can be done In
one call
call cast (port, intPort)

® Similar benefits for arrays
® Everything looks like a native F90 module

CASC TGWE 8

Private data pointer is a derived type

® F90 private data is a pointer to a derived type
- Adding state data is relatively natural
- Wrapper derived type holds pointer

type tutorial Driver private

sequence
! DO-NOT-DELETE splicer.begin(tutorial.Driver.private data)
type (gov_cca_ Services t) :: d_services

! DO-NOT-DELETE splicer.end(tutorial.Driver.private_ data)
end type tutorial Driver private

type tutorial Driver wrap

sequence

type (tutorial Driver private), pointer :: d _private_data
end type tutorial Driver_ wrap

CASC TGWE 9

What's left to do with Fortran 90?

® Incorporate feedback from CCA & Babel users

® Use native F90 array descriptors for simple numeric
types (int, long, float, double, fcomplex, dcomplex)

® Resolve name collisions with intrinsic functions

- Example:
size the SIDL method
size the Fortran 90 intrinsic

- Sun's F90 treats collisions between module
functions and intrinsic functions as errors

CASC TGWE 10

Fortran 77 cast change

® Old

X v z cast f(obj, newtype, newobj)
integer*8 obj, newobj

character* (*) newtype

obj was of type x.y.z, and it would cast it to newtype.

New

X v z cast _f(obj, newobj)

integer*8 obj, newobj

obj is any object/interface. It will be cast into type
x.y.z (if possible). The result is returned in newobj.
X v z cast2 f(obj, newtype, newobj)
does what old cast did.

® Similar to C and Python bindings

CASC TGWE 11

Miscellaneous improvements

® Reorganized and enhanced user documentation
® - -comment-local-only for Doxygen

® Configuration improvements
- No need for jar -uanymore

- Support kaffe VM -addclasspath

- Jar files stored in architecture-independent dir
- babel-config script reveals configure info

® Now available in Debian unstable

CASC TGWE 12

Doc comments for enumerated types

® Doc comments for type and values preserved
® Added to XML representation

: C Stub
® Stub documentation
enum enums_car__ enum {
E;I[)L. /**
// user defined values * A sports car.
enum car { */
] ** enums_car_porsche = 911,
* A sports car.
*/ /**
porsche = 911, * A family car.
/** */
* A family car. enums_car_ford = 150,
*/
ford = 150, /**
] ** * A luxury car.
* A luxury car. */
x / enums_car_mercedes = 550
mercedes = 550

CASC ¥ TGWE 13

C++ array binding change

C++ binding C++ binding
SIDL type <0.8.2 >20.8.4
array<int> SIDL::array<int> SIDL::array<int32_t>

array<long> SIDL::array<long> SIDL:array<int64 t>

oSimilarity between array and value type was judged
more important than similarity to SIDL type

CASC TGWE 14

Testing changes

® Added SIDL & XML backend testing
® Add F90 driver for CCA example
® Total tests: 9981

CASC TGWE 15

What to expect in the future

® Assertion checking in SIDL

® Fortran 90 Phase lll (or incremental improvements)
® RMl/Integration

CASC

TGWE 16

