Babel
Users’ Guide

TAMARA DAHLGREN THOMAS EPPERLY
GARY KUMFERT JAMES LEEK

ii

Disclaimer

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.

This document was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.

Release Information

Babel Users’ Guide (this document) UCRL-SM-205559
Babel Source Code (associated software) UCRL-CODE-2002-054

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Babel
Users’ Guide

TAMARA DAHLGREN THOMAS EPPERLY
GARY KUMFERT JAMES LEEK

Center For Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808
Livermore, California, USA

September 8, 2004

iv

babel-0.9.6 Doc Last Modified September 8, 2004

9:11 a.m.

Preface

This document applies to Babel 0.9.6. It, like the software it documents, is a work in progress.
— The Babel Development Team

Babel in a Nutshell

Babel is a tool that enables software written in different languages to communicate. It accomplishes this task by
using an Interface Definition Language (IDL) similar to COM and CORBA. Babel relies on the Scientific Interface
Definition Language (SIDL) that is specifically tuned for scientific applications. By expressing software interfaces, or
APIs', in SIDL the appropriate glue code stubs and skeletons can be generated to facilitate language interoperability.
Features unique to SIDL are:

e Dynamic multi-dimensional arrays
e Complex numbers (e.g. 2 + 37)

e In-process optimizations

Special directives for large-scale parallel distributed programming (future)

Syntax for specifying interface behavior (future)

Babel enables true object-oriented techniques even in non object-oriented languages. The object model that SIDL
supports is similar to Java and Objective C where a class can extend at most one class, but implement many interfaces.
In C++ speak, an interface is simply a class of all pure-virtual methods. Furthermore, if library developers want
object-oriented features but are required to be 100% ANSI C compliant, Babel can meet those constraints. Although
the Babel code generator is implemented in Java, the runtime libraries and generated files for C bindings are 100%
ANSI C compliant.

Babel can be used as the basis for a component framework, but it is not a complete framework by itself. We’ve
added a tiny CCA-compliant framework, called Decaf, in our examples/ directory. Decaf demonstrates how Babel can
be used to implement a component framework.

SIDL is also a useful communications tool for code development teams since it only expresses the public API.
That is, implementation details, which often prove distracting during collaborative design, can be safely avoided by
restricting discussions to the interfaces described in SIDL. Furthermore, since SIDL is simple and clean it can be used
by Computer Scientists, Math Programmers, and Application Scientists to debate APIs even using only email.

Scope of this Manual

This document is intended as an introduction and tutorial on the use of Babel tools for the generation and use of
component software. The Babel tools were designed specifically for scientific applications, therefore most of the
examples and exercises here also deal with scientific applications.

This manual assumes the reader is a programmer who is proficient in two or more of the following languages: C,
C++, FORTRAN 77, FORTRAN 90, Java, or Python. Furthermore, this manual assumes the reader is familiar with the

! Application Programming Interfaces

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

vi

Preface

SPMD? programming model that pervades the scientific computing community. Knowledge of and experience with
MPI programming is helpful, but not strictly required.

Getting the Software

Babel source is available free of charge on the web. Developed by the Components Project at the Lawrence Livermore
National Laboratory Center for Applied Scientific Computing (CASC), it is licensed under the Lesser GNU Public
License (LGPL). See the source distribution for details.

The homepage for the Components Project is

http://www.lInl.gov/CASC/components

Conventions
The following typographic conventions are used throughout this manual.

Italic is used for file and command names. It is also used to highlight com-
ments in examples and to define terms the first time they appear in a
document.

Cxstatt Width is used in examples to show the text that is generated, and in regular
text to show operators, variables, and the output from commands or
programs.

Crnstart Slatsd s used for displaying for SIDL source code. We use a separate font to
distinguish SIDL code from generated code.

Cxstatr BRid is used to show user’s modifications to generated code and in examples
to show user’s actual input at a terminal.

Sans Serif Slanted is used in examples to show variables for which a context-specific sub-
stitution should be made. The variable filename, for example, would
be replaced by the actual filename.

Additionally, we may use specific blocks of text as sidebars to call the readers attention to particular information.
Here’s one kind.

Rationale: Often when listing restrictions or requirements, we find it helpful to also explain and document the
rationale behind a design decision. In time, the context in which the rationale was based may become irrelevant,
making the rationale blocks very useful for understanding when to change a decision.

We Appreciate Your Feedback

We have tested and verified the information in this manual. Nonetheless, features may have changed or oversights may
exist. Please contact us with any issues, corrections, or suggestions for future versions of this manual through snail
mail at:

Components Project

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L-365

Livermore, CA 94551

2Single Program Multiple Data

babel-0.9.6 Doc Last Modified September 8, 2004

vii

or through email to:

copoatsdlinl.gov

To find out more about Babel, feel free to subscribe to one or more of the associated distribution lists given below.

o Ael-anmourcdlInl .gov is a moderated email forum to which anyone can subscribe (though no-one
can post). This is a low-volume alternative for people who want to know about releases and major announce-
ments.

o Iael-dadlInl.qov is an open discussion forum about Babel for serious babel users who want to talk
about the internal workings of the tools. Anyone can subscribe or send email to this list.

o IEelusarddlInl.qov is an open discussion forum about Babel for users. Anyone can subscribe or send
email to this list.

To subscribe, simply send email to mejadarddlists. 1Inl.gov with the appropriate line(s):
skecrite bdbel-aroxxe [email-address]
siscrite bebel-dev [email-address]
sikecribe bebel-users [email-address]

where you can explicitly state your email address in email-address or, if you leave email-address blank, majordomo
will use your email ReplyTo: field.
Acknowledgments

Project Alumni: Nathan Dykman, Scott Kohn, and Brent Smolinski
Interns: Melvina Blackgoat, Kirk Kelsey, Sarah Knoop, and Nija Shi
Alpha Testers: Andy Cleary, Jeff Painter, Cal Ribbens

Contributors (Ideas, Bug Reports, Patches, & Code): Rob Armstrong, Ben Allan, Wael Elwasif, Matt Knepley,
Boyana Norris, Barry Smith, Jody Winston, and many more.

Sponsors: Babel development originally started as a Strategic Initiative (SI) in the LDRD (Lab Directed R&D)
portfolio of Lawrence Livermore National Laboratory.

Current funding is from the DOE/Office of Science SciDAC program as part of the Common Component Technol-
ogy for Terascale Scientific Simulation (CCTTSS). Also known as the Common Component Architecture.

Software Notices
Babel depends on a great deal of third-party software.

e JavaCC is used to generate the SIDL Parser. This is a java.net community project. JavaCC is available under a

BSD-style license here: httyes://Javacc.dev. java.ret/).

e gnu.getopt is an implementation of GNU Getopt in Java and is distributed with Babel as a JAR file. It can be
downloaded (along with sourcecode) from either the GNU website

itz / Awiw.gri.arg/software/ Java/ackece s.htrril
or the author’s website
hitge: /v udearnoghi le. cany/arerm/hecking /ol ced.ht il

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

viii Preface

The following is the copyright notice for gnu.getopt:

/* Gt jpm — Jam poxt of QU gt from glibe 2.0.6

/* Cprdt (c) 1987197 Free Sofvare Fordation, Tre.
/* Jam Rxt CQprddt (¢) 1998 Ly farm M. Ran (ararfudeanghile.can)

/* This pogram is free software; you aan redistrihite it ad/ar modify
/* it uder te tams o the QU Lilvary Goeral Rblic Licase as pdilised
/* by the Free Softvare Fardation; either vasion 2 of e License o
/* (at yor ooda) ay later version.

/* This progran is distdbaed in the hgee tet it will be wseful, bt
/* WITHOT AY WERANY; withot een the Inplied wamaty of

/* MERGENIERIITY a FIINESS KR A PRIIZAR BRECEE. Se the

/* QU lilvary Goeral Rblic licse for moe details.

/* You doid e remived a apy of the QU Lilbvary Gaeral BRiblic Licase
/* dlag with this pogay s the file CPYINGLIB. If rot, wdte to
/* the Free Softvare Fordation Tre., 59 Taple Plae - Suite 33,

/* Bostan, M 21111307 URA

The text for the GNU Library GPL is available at httgo: //www.gnu.arg/copyleft/lilxar y.hm L

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Contents

Preface
1 Introduction
1.1 Babel Facilitates Language Interoperability
1.2 Scientific Interface Definition Language (SIDL)
1.3 Benefits to CuStomers o oL e e e e e e e e e
1.4 BeyondBabel’s Scope
L5 Summary L e
1.6 Organization. e e e
I Foundations
2 Installation
2.1 Simple Installation oL
2.2 External Software Requirements L
3 Basic Babel Code Generation
3.1 BabelisaCompiler L e
32 CommandLine Options o e e
4 Hello World Tutorial
4.1 Introduction e
42 Writingthe SIDLFile
4.3 Writing the Implementation L e
4.4 Writingthe Client L.
45 FinalRemarks L e
5 SIDL Basics
5.1 Introduction L e e
52 SIDLEIES o o
5.3 Fundamental Types o L e e
54 ATITayS ... e
5.5 SIDLRuntime. oot e
5.6 ODJeCts o e
5.7 XML Repositories e e e e e e
II Supported Language Bindings
6 C Bindings
6.1 Introduction e
6.2 BasicTypes e

babel-0.9.6 Doc Last Modified September 8, 2004

DWW W= -

CONTENTS

6.3 Headerfiles 63
6.4 Mapping for classes, interfaces and arrays L. Lo 64
6.5 Calling SIDL methodsfrom C 65
6.6 Catching and Throwing ExceptionsinC 65
6.7 Implicitly defined methods L 67
6.8 Invoking Babel to generate C bindings L 68
6.9 Invoking Babel to generate C implementations e e 68
7 C++ Bindings 69
7.1 Introduction e e 69
7.2 BasicTypes e 69
7.3 SIDL C4++Header Suffix e 69
74 SIDDs MainC++HeaderFile 70
7.5 Calling Methods from C4++ o e 70
7.6 Catching and Throwing Exceptionsin C++ 71
7.7 Invoking Babel to generate C++stubso 72
7.8 Implementing SIDL Classes in C++ e 72
7.9 Accessing SIDL Arrays From C++ 73
8 FORTRAN 77 Bindings 77
8.1 Introduction e e 77
82 BasicTypes e 77
8.3 Calling Methods From FORTRAN 77 e . 78
8.4 Catching and Throwing Exceptions in FORTRAN 77 79
8.5 Invoking Babel to generate FORTRAN 77 Stubs 80
8.6 Implementing Classes in FORTRAN 77 81
8.7 Accessing SIDL Arrays From FORTRAN 77 i e 82
8.8 FORTRAN 77 objects with state e 83
9 FORTRAN 90 Bindings 85
9.1 Introduction e e 85
0.2 BasicTYPes o o o o e e 85
9.3 Calling Methods From FORTRAN 90 e 86
9.4 Catching and Throwing Exceptionsin Fortran90 88
9.5 Invoking Babel to Generate FO0 Stubs 89
9.6 Implementing Classes in FORTRANOO 90
9.7 Accessing SIDL Arrays From FORTRAN 90 92
10 Java Bindings 93
10.1 Introduction L 93
10.2 Basic Types o o o e e e 93
10.3 Client Side: Using SIDL Classes and Methods 93
10.4 Server Side: Writing SIDL classesinJava L o 94
10.5 Casting ObJects o o v i i e e e e 95
10.6 Outand Inout arguments it e e e e e 95
10.7 Using SIDL arrays with Java o L 95
10.8 Interfaces and Abstract Classes o o i i e e e e 96
109 EXCeptions. L e 97
TI0.I0ENUMETrations o v v vt i i e e e e e e e e e e e e e e e e e e 98
10.11Invoking Babel to generate Java bindings o Lo oL 98
10.12Invoking Babel to generate Java implementations oL L. 99
10.13Environment Variables L e e e 99
11 Python Bindings 101
11.1 How to Create a SIDL Objectin Python 101

babel-0.9.6 Doc Last Modified September 8, 2004

CONTENTS

xi

11.2 How to Cast SIDL ObjectsinPython 101
11.3 How to Call Methods from Python, 102
11.4 Catching and Throwing Exceptionsin Python 102
11.5 Building Python Extension Modules L 103
11.6 SettinguptoRunPython 103
T1.7 NOtES . . . o 103
11.8 How to Implement SIDL Objectsin Python 104
12 SIDL Backend 107
12.1 Introduction L 107
122 PUrpoSe e e 107
12.3 Generated versus Original SIDL files 107
12.4 XML File Comparison ottt v ittt e e e e e e 109
12.5 Babel Command Line Options e 109
13 XML Backend 111
13.1 Introduction L L 111
132 PUrpose e e 111
13.3 Basic Structure L e e e 111
13.4 Command Line Options i e 117
III Advanced Topics 119
14 Building Portable Polyglot Software 121
14.1 Layoutof Generated Files e 121
14.2 Grouping compiled assets into Libraries L o oL 122
14.3 Dynamic vs. Static Linking L 123
14.4 SIDL Library Issues o o o e e e e e e 125
14.5 SCL Files for Dynamic Loading 125
14.6 Deployment of Babel Enabled Libraries 126
15 Troubleshooting 127
I5.1 Introduction o i e e e e e e e e e e 127
152 Common Errors L 127
153 Common Warnings e e e e e 127
16 Lessons Learned 129
16.1 Introduction L e 129
16.2 Compilation ConsistencyisKey 129
IV Appendices 131
A Reserved Words 133
Al Introduction e e 133
A2 Reserved Words L L e e 133
A.3 Suggested Things To Avoid 133
B SIDL Grammar 137
B.1 Introduction e e e e 137
B.2 Backus-NaurForm 137
C Extensible Markup Language (XML) 145

C.1 Introduction

babel-0.9.6 Doc Last Modified September 8, 2004

xii CONTENTS
C.2 SIDL Document Type Declaration (DTD) i 145

D Glossary 151
Bibliography 163

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 1

Introduction

Contents
1.1 Babel Facilitates Language Interoperability 1
1.2 Scientific Interface Definition Language (SIDL) 3
1.3 Benefitsto Customerso v vttt ittt ottt eeeonnnas 3
1.4 Beyond Babel’sScope e 3
15 Summary v v v i vttt e e e e e e e e e e e e e e e e 4
1.6 Organization 0 vt it it i e e e e e 4

1.1 Babel Facilitates Language Interoperability

Babel was conceived, designed, and built to solve a problem; namely, to make scientific software libraries equally
accessible from all of the standard languages. Hence, its goal is language interoperability. The vision goes far beyond
calling BLAS' implemented in FORTRAN 77 from a C program. At its heart, Babel lets programmers use their tool
of choice in developing complete applications using components implemented in one or more distinct programming
languages.

For instance, let us say that an application scientist is running a sophisticated C++ code from a Python scripting
environment. This can already be easily accomplished with technologies like SWIG. Now let’s say that the simulation
is showing some erratic behavior and the application scientist wants to extend the Carvercacak class to also
report some information to a log file. Let’s also assume that this application scientist doesn’t want to write a new C++
class much less rewrite the current application. What this individual wants to do is derive and utilize a new class in
Python from the C++ QTI\EE(ﬁ‘Ce’J’Bd{ class. Thus, the C++ simulation code will now have to invoke a method
on a class implemented in Python, which then dispatches back to the C++ base class after doing its additional logging.
This cannot be done in SWIG because SWIG does not support calls from C++ to Python, only from Python to C++.
This is an example of a capability that Babel provides that is outside the scope of SWIG.

Figure 1.1 lists many of the primary languages that are of interest to scientific simulation software developers and
users. The good news is that there is a path from each language to every other; meaning that calling from one to another
is possible. However, the technologies to get from one language to another vary widely, are fraught with pitfalls, and
may require calling through a completely different language.

Babel works by providing the technology to define and support the multi-language interoperation of a common
subset of functionality through programming language-neutral interface specifications. See Fig. 1.2 to see a graphical
representation of the supported languages. It is important to note that this common functionality subset is far from a
lowest common denominator solution in that Babel actually adds functionality when it is lacking in the host language.

IBLAS: Basic Linear Algebra Subroutines

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Introduction

JNI
Native
SWIG

/ f77 V\Piatform Dependent

C f90

C-I:I-:ﬁ/v Python

Java

Figure 1.1: Language Interoperability Using Current Technology.

Java

Figure 1.2: Language Interoperability Using Babel.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m. I

1.2 Scientific Interface Definition Language (SIDL)

1.2 Scientific Interface Definition Language (SIDL)

In order to support multi-language interoperability, Babel relies on the specification of interfaces in the Scientific
Interface Definition Language (SIDL) (pronounced “SIGH-dull”’). SIDL is similar to COM and CORBA IDLs, but was
designed with an emphasis on scientific computing. Specifically, SIDL currently supports dynamic multi-dimensional
arrays and has built-in complex numbers. It will acquire a set of directives to aid in the description of massively
parallel distributed objects and additional syntax for specifying interface behavior.

When it comes to deciding what programming idioms to support across all languages and which ones to reject,
SIDL strikes a careful balance between minimalism and completeness. It is not a lowest common denominator solu-
tion. SIDL is minimal to keep the learning curve as low as possible. It is complete so developers do not feel constrained
in how to express their solutions.

SIDL is object-oriented. Its object model closely resembles that of Java and Objective C. In this model there is
single inheritance of implementation and multiple inheritance of interfaces. It supports the typical notions of virtual,
static, and final methods. SIDL also provides a basic set of features by defining and implementing the basic types for
interfaces, classes and exceptions. All types implicitly inherit from these basic types.

The most important concept to grasp about SIDL is that SIDL only defines a public interface that other programs
may use to access your code. As a result, all methods defined as part of a SIDL file are public, if you do not want
a method to be globally useable, simply do not define it in your SIDL file. Furthermore, all object and class data is
implicitly private. There is no way to declare or define data in a SIDL file. Instead, any data required for your code
should be declared in the implementation language files. This way, the languages that use your code through Babel
may create your objects and pass them around just like any normal piece of data, but they may only access the data
through the provided interface.

SIDL also has a complete set of fundamental data types, from booleans to double precision complex numbers. It
also supports more sophisticated types such as enumerations, strings, objects, and dynamic multi-dimensional arrays.

SIDL is still a work in progress. Of particular research interest are directives that will be added for parallel
distributed object interaction and features to specify behavioral semantics associated with the interfaces.

1.3 Benefits to Customers

Babel has two types of customers: developer and user. The developer implements a library that will be used by one
or more users. Since one goal of the developer is to increase their customer base, the developer writes a SIDL file that
effectively publishes the interface to their software in a platform and language neutral manner. The user, on the other
hand, may not care or even know that they are interacting with a library through Babel.

Babel provides some features that benefits user and developer alike. The most important aspect to note here is that
all Babel objects are reference counted. This feature is critical to encapsulate the memory allocation library (e.g. C’s
malloc/free or C++’s new/delete) used in the implementation of the object. Users never need concern themselves with
when to free up a resource, they only declare when they’re done with their reference to that resource. Developers are
free to use different memory allocation subsystems in different parts of their code if need be.

1.4 Beyond Babel’s Scope

The language interoperability problem is a large one, and though the Babel tools address much of it, there is still a lot
that is beyond the scope of our tool. Babel is at its heart a code generator and a runtime library. Consequently, the
following features are currently limitations of the Babel tool kit:

Reverse engineering is not supported. That is, there is no support for inspecting or modifying compiled code. In
addition, scanning existing software to generate SIDL wrappers is not supported. There are other groups who
are pursuing a C++ to SIDL converter. Since SIDL contains different information than what is in a C++ header
file, however, such a converter cannot be fully automated without additional help.

Library compatibility is limited. Since Python and Java dynamically load libraries into their virtual machines, using
these languages requires the ability to build shared libraries. In general, building shared libraries (particularly
from C++) is difficult and error prone. This is compounded by the fact that compiler vendors have no standard

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Introduction

way of doing this, and many tools that help building shared libraries don’t support C++. One can build a
legitimate shared library that still won’t work because there are unresolved symbols, or the library was loaded
in the wrong mode.

Compiler compatibility is limited. Since the C++ standard does not specify a binary interface and uses a lot of
hashing in their symbol tables, there have been no attempts to get libraries from dissimilar C++ compilers to
work together. Similarly, although we support FORTRAN 77 and FORTRAN 90, all libraries of Fortran code
must be compiled with the same compiler. .. again because of the lack of a standard binary interface.

Despite the aforementioned limitations, Babel does facilitate the development of language interoperable software.
However, issues of robust packaging, building, and deployment of language interoperable software still loom on the
horizon.

1.5 Summary

Babel consists of a set of tools that are intended to be used for facilitating language interoperability in the scien-
tific computing community. Using interfaces for libraries or components specified in Scientific Interface Definition
Language (SIDL) files, Babel can generate corresponding XML representations as well as the source code for the
corresponding stubs, intermediate object representations, and implementation skeletons. The generated source code
then becomes the foundation for the glue code that is used for language interoperability between callers of libraries
and components.

In addition to providing generated code that automatically handles mapping fundamental data type parameters asso-
ciated with calls between different languages, Babel has built-in support for complex numbers and multi- dimensional
arrays. Additional benefits include object reference counting to facilitate memory management.

Finally, Babel’s primary goal is to facilitate the development of language interoperable libraries and components.
Hence, support for reverse engineering is not provided. Given that Babel has been developed by a research team,
there are also limitations associated with shared library and programming language-specific compiler interoperability
support that have been looked into but probably will not be addressed in the foreseeable future. Regardless, Babel
has proven to be useful to its stakeholders to the point that it is becoming an integral part of the Common Component
Architecture (CCA). Refer to papers and presentations on our web site for more information.

1.6 Organization

The remainder of this document is separated into two parts; namely, foundations and supported language bindings.
Part I is devoted to describing the SIDL and the Babel tools. It starts with a tutorial to gently introduce the reader
to the development of glue code from both the implementation (or server) and user (or client) sides. The following
chapter introduces SIDL and Babel basics. Finally, a chapter on advanced topics, such as linking options, is provided.

Part II describes the language bindings currently supported by Babel. At this point, most of the bindings are
programming languages. In which case, most have both client- and server-side bindings. However, Babel also supports
textual language backends. At this time, Extensible Markup Language (XML) and Scientific Interface Definition
Language (SIDL) are the only to textual backends that are supported.

Appendices are included to provide more information on topics such as acronyms, the SIDL. Grammar, and SIDL
XML. In addition, sections are included that provide advice and tips on troubleshooting.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Part 1

Foundations

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 2

Installation

Ideally, Babel will configure and make “out-of-the-box” on most Unix-like machines. If the configuration process
detects that certain resources are unavailable, it will correctly disable support for languages or features needing
those resources. If this instance of correct behavior is not the intended behavior, then the installer is left to install
the external resources and then re-configure, make, and install Babel. This chapter is intended to provide help and
reassurance that Babel is indeed configured and installed correctly.

Contents
2.1 SimpleInstallation i i i e e e e e 7
2.1.1 Configure e e e 8
212 Make 8
2.1.3 Make Check (Optional) 9
214 MakelInstall L 9
2.1.5 Make Installcheck (Optional) 9
2.2 External Software Requirements, 9
2.2.1 Required & Included 9
2.2.2 Requiredbut Separate 9
223 Recommended 10
224 Optional 10

2.1 Simple Installation

These instructions assume you have a “tarball” (e.g. *.tar.gz file). We have volunteers who put together and manage
RedHat RPMs and Debian *.deb distributions of Babel. If you have one of these distros, read their documentation first
as it may have details that supersede our own.

A typical build is a simple sequence of

% ./axnfigwe
of stiff

Fatran/! edbled.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Installation

% meke
lots moe stuff
ot o mch stuff

There are many circumstances where the configuration step will properly terminate with an error, but if the config-
uration works, the build and installation shouldn’t terminate abnormally.

2.1.1 Configure

There are two main choices to be made at configure time: “Where does the software get built?” and “Where does the
software get installed?”. The mechanisms for effecting these choices are quite different.

If you want to build software in a separate directory from where the tarball was untarred, this is called a “VPATH
build”. VPATH builds are useful if you want to build Babel multiple times with various compilers, flags, or you have
a shared filesystem across multiple platforms. It separates the code you generate from things that you were given.
The downside is that its more complex to remember where to edit what since original sources will be in the source
directory tree and the generated sources and compiled assets will be in the build directory tree.

If you run configure in the directory it appears, (i.e. you typed ./axnfigme) you are performing an “non-
VPATH build”. To do a VPATH build, simply cd to the directory you want to be the build directory root, then launch
configure from there. The following sequence demonstrates a vpath build

tar zwf bebel=xxxtar.gz
nkdir bkebel-linwxhbidld
ad bbel-linrsbald

. ./eelx x x/axnfigre

o\ ol oo o°

Note that the directory where you build Babel should be different from the directory where you install Babel. The
default install directory is /ust/local, but can be set to any directory that you have read/write access to. To change
the install directory, run configure with the —ffix option. Since many people do not have root access on their
machine (or prefer to install in a local directory when dealing with unfamiliar software), this option is probably the
second most heavily used option for configure (first being —help , which is a good one to try also.)

At the time of this writing (0.9.3), there are two configure scripts in Babel, about 40K lines of shell script each.
These configure scripts will then propagate the information they acquire to Makefiles by perform approximately
190 sed substitutions (per Makefile), to the source code by setting approximately 170 preprocessor macros in ba-
bel_config.h, and various bits of shell script in the build that do not get propagated to the install directory. The
configure script does not modify any source code in Babel’s runtime system or code generator. This means that source
code generated by a different Babel installation is usable as long as it gets compiled against the local babel config.h
and linked with the local Babel runtime libraries.

2.1.2 Make

The makefiles are generated by the configure script from Makefile.in templates. The configure script is generated by
a tool called autoconf. The Makefile.in’s are generated from Makefile.am files by a separate, but related tool called
automake. We also use a tool called libtool to help with libraries. Libtool is written in shell, automake in perl, and
autoconf in m4.

After a successful configuration step, if your build fails it is most likely that there is a bug in Babel, autoconf,
libtool, or a library of m4 macros from any of the above. It is less likely to be an issue with automake, but possible.
Perl and m4 themselves are no longer involved in the process after the configure script is produced, so while there may
be a nascent bug in the files they generated, it is unlikely.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

2.2 External Software Requirements 9

2.1.3 Make Check (Optional)

re This is an exhaustive check that can take hours on an average workstation. The number of actual tests run depends
on the number of languages that are enabled. In general a driver and an implementation of each test is generated in
each enabled language. Then each combination of driver and implementation are run (both statically linked libraries
and dynamically loaded libraries, as appropriate) and tested. A test script can actually launch multiple tests, and tests
can have multiple parts. At the time of this writing (babel-0.9.3) there are over 13,000 parts tested when all languages
are enabled.

2.1.4 Make Install

This transfers built software to the final installation directory. Examples and tests are not installed, nor are Makefiles or
dozens of other types of files. Make install also builds javadoc documentation for Babel’s code generator. Since some
libraries are built with install paths in mind, libtool uses a lot of scripts to make things work in their build directory
with binaries actually hidden in .lib subdirectories. Make install strips this extra scaffolding away as well.

2.1.5 Make Installcheck (Optional)

This is the same test suite as with make check. The only difference is that it is run against the code in the install
directories, not the build directories.

2.2 External Software Requirements

Babel builds on a lot of available software; some optional, some required. Some we ship in our tarball, some we
require users to install separately.

2.2.1 Required & Included

e Java GetOpt: This is a Java rewrite of GNU GetOpt available at http://www.urbanophile.com/arenn/hacking/download.html.
The Babel code generator uses this to parse command line arguments. The JAR file, download information, and
licensing details are in the lib/ subdirectory of the Babel distribution.

o Xerces-J: Xerces-J is a Java implementation of SAX and DOM XML parsers available from the Apache Soft-
ware Foundation at http://www.apache.org. The Babel code generator uses this for XML I/O. The JAR file,
download information, and licensing details are in the lib/ subdirectory of the Babel distribution.

2.2.2 Required but Separate

e Unix shell & bintools: On early 64bit Linux boxes, we found it necessary to rebuild even these basic tools with
all 64bit options enabled. Apparently they were originally installed with less attention to detail than necessary.
Bintools includes things like cp and mv.

e C/C++ compiler: The Babel runtime library and much of the code generated by the Babel code generator will
be ANSI C. So that must be available. The C++ compiler should be optional, but at the time of this writing the
configure and makefiles didn’t reliably support disabling C++.

e Java: The Babel code generator is implemented in Java. One can disable the support for Java language bindings,
but a working Java would still be needed for just about everything else. We generally stick with Sun’s java
developer kits (available at http://java.sun.com). Others have run Babel with Kaffe and GJC.

e libxml2: This is the Gnome C library for parsing XML files (see http://xmlsoft.org). The Babel runtime library
needs version 2.4 or above to parse SCL files for dynamic loading.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

10

Installation

2.2.3 Recommended

Python: Needed for the python language binding (obviously) and for the testing harness. Since the Linux kernel
is often configured with a Python-based tool, its hard to find a Linux without python already installed. Python
can be downloaded from http://www.python.org.

One important gotcha is a special case where non-python applications create Babel objects implemented in
python. In this case, the Babel runtime needs to dynamically load the python virtual machine (libpython.so).
Unfortunately, python does not always build a dynamically loadable version of this library by default. If the
Babel configure script cannot find a libpython.so, it will disable server-side Python support.

At the time of this writing, Python cannot be coerced to build a libpython.so on AIX.

Numeric Python (NumPy): This is a scientific array python extension module. It provides native C arrays (and
the ability to manipulate very big arrays) similar to python lists. Babel’s python language binding requires this
extension module available at http://www.pfdubois.com/numpy.

Python Meta Widgets (Pmw): This is a library of GUI widgets built on top of Python’s native tcl/tk interface
(tkinter). Its available on SourceForge http://pmw.sourceforge.net Pmw is only needed by the GUI in the babel-
life supercomputing demo. This Babel implementation of Conway’s Game of Life is a separate tarball found in
the contrib/ directory of the Babel distro. There is no test for Pmw in Babel’s configuration script.

Chasm: Babel uses the Fortran array descriptor library available in Chasm (see http://chasm-interop.sourceforge.net).

Chasm is a language interoperability tool in its own right, but as of version 1.0.1, only the array library is con-
sidered complete. Without Chasm, the configuration script will disable Fortran 90 support.

pthreads: Needed for Java language binding.

2.2.4 Optional

These packages are used by Babel maintainers in the course of normal development. You’ll need these only if you
start rewriting code in Babel’s distribution.

Automake: Part of GNU Autotools (see http://www.gnu.org/software/automake). Check the configure.ac file
to determine exactly which version we use. The configure script will disable autoconf if it detects the slightest
variation from the version we prescribe.

Autoconf: Part of GNU Autotoolssee http://www.gnu.org/software/automake). Check the configure.ac file to
determine exactly which version we use. The configure script will disable autoconf if it detects the slightest
variation from the version we prescribe.

Libtool: Part of GNU Autotools (see http://www.gnu.org/software/libtool). Note that we often find need to
make minor tweeks to ltmain.sh so a fresh download may generate slightly worse results on some platforms.

m4: Contact us for a patched version that we use (we overflow buffers in the distributed version).

JavaCC: This Java Compiler Compiler is what we use to generate the SIDL parser in Babel. If you are interested
in experimenting with changing the SIDL grammar, then edit the compiler/gov/lInl/babel/parsers/sidl/sidl.jj file
and rebuilt the parser with this tool. Information available at https://javacc.dev.java.net.

LaTeX2HTML: This is used to generate HTML the HTML version of our manuals.

perl: Needed by automake, LaTeX2HTML and other bits and pieces.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 3

Basic Babel Code Generation

This chapter describes the Babel code generator and its command line options.
Contents

31 BabelisaCompiler.o 11
32 CommandLineOptions 0 i v i i it ittt ittt ettt e 11

3.1 Babel is a Compiler

Babel is a compiler. It takes symbols and their interfaces as input and generates either code or a given textual repre-
sentation. These interfaces may be specified in either Scientific Interface Definition Language (SIDL) or Extensible
Markup Language (XML). The form the output takes depends upon the options specified on the command line. Refer
to the Section 3.2 for details on command line options. More information on the supported bindings can be found in
Part II of this document.

3.2 Command Line Options

The entire Babel code generator is written in Java and compiled into a jar file. For convenience, a small script called
bebel s provided that should set the appropriate environment variables and invoke the Java Virtual Machine on the
jar file. To test that the script and jar file are working together properly, simply type kebel —help .

Using Babel

Babel requires exactly one of the following mutually exclusive arguments on the command line.
e —help : Printoptions to stdout.
e —vE&Xsin : Print version of Babel.
e —test= form : Generate text equivalent (”sidl” or ”xml”) of associated package(s).
e —cliak= Jang : Generate client, or proxy, classes to access library.
e —sarver= lang : Generate the server and client classes to implement the library.

o —parsedexk : Check the SIDL file only.
o —gEerate-sidl-stdlib : Regenerate the Babel runtime library.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

12

Basic Babel Code Generation

By far, the three most common uses of Babel will be to generate the Client-side proxies, Server-side implementations,
and XML associated with the SIDL file. The last option is essentially used internally when the Babel runtime library
is being developed.

Additionally, there are a few supplemental arguments that complete the picture.

—agpt-diracton~= dir : Specifies the root directory associated with the generated files. The default
setting is the current working directory.

—gEerate-shdirs . Generates files in a directory tree matching the packaging scope of the SIDL
file. This is on by default for languages that have this requirement, such as Java and Python, but off by default
for languages that have no such requirement. Hence, code generation for only the latter languages (e.g. C, C++,
F77, F90) is effected by this option.

—shart-filerare : When the —generate-subdirs and —short-file-names options are used simultane-
ously, the generated file names will not include package names, just the class or interface symbol. Thus, either
long or short names must be used in all clients or servers that have interdependencies; mixing short and long
names will result in compile and/or runtime errors.

— repositary-pathe path : Specifies a semicolon separated list of directories, or URLs' to search for
XML Type descriptions. The need for these XML types is to resolve references in the SIDL file. This option can
be used multiple times on the same command line. If appropriate, the Babel script adds the default repository
path to the command line before dispatching to the Java Virtual Machine.

—ro-defailt-repositary : Prohibits the use of the default repository in resolving symbols.

— sugaess-tinestanp : Suppresses the insertion of meta-information that could result in generated
files that would otherwise not differ from prior executions on the same, unchanged input file. Typically Babel
inserts meta-information such as creation time into files it generates. Although this information is useful, it does
result in the creation of excessive changes when using version control systems.

—exchre= regex : This options can be used multiple times. Each time you add a regular expression
that will be used to exclude symbols from code generation. No code or XML will be generated for any symbol
matching the user provided regular expression. This command line option requires version 1.4.0 or later of the
Java runtime environment.

— camai-loal-aily . This option reduces the amount of comments in stub C header files. It will
only include the doc comments for locally defined method. It will not include doc comments for inherited
methods.

—hideghe : This option causes all non-impl files to be generated in a glie/ subdirectory. This reduces
the “clutter” in the current directory.

—lageape-sibdir : This options causes all generated files to be stored in a language-dependent
subdirectory; if the —gEnexate-addirs option is also used, the language directory will be at the bottom
of the hierarchy.

—echre-edemal : This option causes code to be generated only for the symbols specified on the
command line. No code is generated for symbols on which the users symbols depend.

Long and Short Forms

So far, we’ve shown described the long forms of command line arguments, starting with two hyphens “—7. There are
also short forms for many of the more frequently used commands. See Table 3.1 for details.

T'URLS have colons in them, so this path has to be semi-colon separated, even though UNIX paths are traditionally colon separated.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

3.2 Command Line Options

13

Table 3.1: Command Line Arguments.

SHORT FORM | LONG FORM NOTES
-h —help Print options to stdout.
-v —version Print version of Babel.
-tform —text=form Generate text.
-clang —client=/ang Generate client classes.
-slang —server=lang Generate server and client classes.
-p —parse-check Only check parsing of the SIDL file.
—generate-sidl-stdlib Regenerate the Babel runtime library.
-odlir —output-directory=dir Root directory to contain generated files.
-g —generate-subdirs Generate sources in directory tree matching
SIDL packaging.
-Rpath —output-directory=path | Use specified XML repository(ies) to resolve
symbols.
-eregex —exclude=regex Do not generate output for matching symbol(s).
—no-default-repository | Do not use the default repository to resolve
symbols.
—suppress-timestamp Suppress time-related metadata generation.
—comment-local-only Reduce doc comments in C stub header.
-E —exclude-external Do not generate code for dependencies.
-u —hide-glue Put glue code in a subdirectory.
-1 —language-subdir Put code in a language dependent directory.
Examples

To create a new XML version of a SIDL file, use the following command:

% bebel ML -andgpot mystuff.sidl

To exclude code generation for types whose name begins with “MPL.”, use the following command:

S bebel -<CH —echoe? WI \./ myshoff.sidl

Now suppose a developer wants to implement a library in C++ that corresponds to these types in the SIDL file.

% bebel -<CH mystuff.sidl

Alternatively, the developer could also create C++ implementation files based on the XML repository. In this case, a
list of symbols to be implemented would need to be specified. Assuming that all of the types are in a package called
“mystuff”, the following command can be issued:

% bebel -CH -Budgpct mystuff

Now suppose a second developer wants to extend this software. A second SIDL file is created then the implemen-
tation files in FORTRAN 90 are generated with the following command:

% bebel -sf0 -Radgpot rewshuff.sidl

A user now can download both SIDL files and create their Python bindings to use both libraries with the following
command:

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

14

Basic Babel Code Generation

% bebel -yt -Ribp://localhost ystuff mdepat;
hitp: /. ctherhost .cany/newstuff mystuff newstuff

Finally, to generate SIDL files for each package based on the XML stored in the repository, the following command
is used:

% bebel ~STL —ntqo//lomlmstmysu:ffmychpct
Ittp//wwcﬁ'ainstcnn/rasu.ﬁ rewstufft

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 4

Hello World Tutorial

Contents
41 Introduction i ittt it i ittt ittt e 15
4.2 WritingtheSIDLFile e, 15
4.3 Writing the Implementation 0ttt 16
44 WritingtheClient it i it i ittt ittt 17
45 FinalRemarks 0 it i ittt it it e e e 18

4.1 Introduction

This tutorial guides you through the process of writing the classic “Hello World!” example using the Babel tools. In the
process, it attempts to teach you how to write a Scientific Interface Definition Language (SIDL) interface description
file, generate the library implementation in C++, and write a C main program to call the library. It also illustrates the
process for writing a Makefile to compile and link the library and program.

4.2 Writing the SIDL File

The “Hello World!” program will be written in a directory called hello/ and place the client library in a subdirectory
hello/lib/:

nkdir hello

ad hello

nkdir lib

o0 o o

The first step is to write a SIDL file. Recall that SIDL is an interface definition language (IDL) that describes the
calling interface for a scientific library. It is used by the Babel tools to generate glue code that hooks together different
programming languages. A complete description of SIDL can be found in Chapter 5.

For this particular application, we will write a SIDL file that contains a class World in a package Hello. Method
getMsg() in class World returns a string containing the traditional computer greeting. Using your favorite text editor,
create a file called hello.sidl in the hello/ directory containing the following:

rdar [Elo vasian 1.0 {
class herld {
} strirng - gy ();

}

The package statement provides a scope (or namespace) for class World, which contains only one method, getMsg().
The version clause of the statement identifies this as version 1.0 of the Hello package.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

16

Hello World Tutorial

4.3 Writing the Implementation

We will write the implementation in the 1ib/ subdirectory of hello/. The first step is to run the Babel shell script to
generate the library implementation code for the SIDL file. We will implement the library in C++. The simplified
command to generate the Babel library code (assuming Babel is in your PATH) is !:

% bbel -sCH -dlib ../Aello.sidl

In this Babel command, the “~SCH ” flag, or its long form “—server=CH+ 7, indicates that we wish to generate
C++ bindings for an implementation®. The “~Qlib ” flag, or its long form “—ougai-dir=lib ”, defines the root
directory of where the generated code should be placed.

This command will generate a large number of C and C++ header and source files. It is often surprising to
newcomers just how much code is generated by Babel. Rest assured, each file has a purpose and there is a lot of
important things being done as efficiently as possible under the hood.

Files are named after the fully-qualified class-name. For instance, a package F2110 and class World would have
a fully qualified name (in SIDL) as Fello.WbrId . This corresponds to file names beginning with Hello Warld 3.
For each class, there will be files with _IR, _skel , _stio, or _inpl appended after the fully qualified name. IOR
files are always in ANSI C (source and headers), containing Babel’s Intermediate Object Representation. Impl files
contain the actual implementation, and can be in any language that Babel supports, in this case, they’re C++ files.
Impl files are the only files that a developer need look at or touch after generating code from the SIDL source. Skel
files perform translations between the IORs and the Impls. In some cases (like Fortran) the Skels are split into a few
files: some in C, some in the Impl language. In the case of C++, the Skels are pure C++ code wrapped in extem
"C" {} declarations. If the file is neither an IOR, Skel, nor Impl, then it is likely a Stub. Stubs are the proxy classes
of Babel, performing translations between the caller language and the IOR. Finally, the file babel.make is a Makefile
fragment that will simplify writing the Makefile necessary to compile the library. You may ignore the babel.make file
if you wish.

The only files that should be modified by the developer (that’s you since you’re implementing Hello World) are
the “Impls”, which are in this case files ending with _Tnpl.th or _Inpl.ac Babel generates these implementa-
tion files as a starting point for developers. These files will contain the implementation of the Hello library. Every
implementation file contains many pairs of comment “splicer” lines such as the following:

std: :strirng
Hello: :Waxrld dmpl = :oetVey()
Ehto/v ()
// DONOMHEEE solicer.begin(HelloWrld.getivey)
// Insert axke here...
// IONOHHFEE — solicer.ed(Felloorld.oetvey)
}

Any modifications between these splicer lines will be saved after subsequent invocations of the Babel tool. Any
changes outside the splicer lines will be lost. This splicer feature was developed to make it easy to do incremental
development using Babel. By keeping your edits within the splicer blocks, you can add new methods to the hello.sidl
file and rerun Babel without the loss of your previous method implementations. You shouldn’t ever need to edit the
file outside the splicer blocks.

For our hello application, the implementation is trivial. Add the following return statement between the splicer

lines in the lib/Hello Wourld _Tnpl.cc file:

std: :string
Fello: SWerld dnpl : :etivegy()
?KGN ()

For information on additional command line options, refer to Section 3.2.
2You can also try the “—help ” flag to list all of the Babel command-line options.
3Note: dots are converted to underscores for file naming.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

4.4 Writing the Client

17

// TOANOHEE splicer begin(Eellorld.getMey)

rem stdistring(ello Wddd!™);

// TOAUHHEE splicer.ed(fellorld.oetVey)
}

To keep the Makefile simple, we will use some GNU Make features. This Makefile may not work with other
make implementations. The GNU gcc and g++ compilers are used in this example. The following Makefile in the lib/
subdirectory will compile the library files and create a shared library named 1ildell0.50

.0t
gH —PIC —IS(HME) /el /irchuoe < X
.C.0:
gr —fFIC -IS(HME) /el /irchice < X

ichce el eke
BB = S${IVERCS:.a=.0} S{IRKCS: .c=.0} \
S{KELRCS: .az=.0} S{SIBRCS: .az=.0}

lidello.so: S{BIS}
g+ —dered -0 R @S}

clean:
SR *.0 lidello.s

You do not necessarily need to create a shared library for this example; you may generate a standard static library
(e.g., libhello.a). However, in general, you must generate a shared library if you will be calling your library from
Python or Java. To create the shared library archive libhello.so, simply execute make as follows:

o liy
meke likello.so

o o\°

4.4 Writing the Client

We will write the client in the main hello/ subdirectory. The main program will be written in C. File hello.c is as
follows:

#Hichoe <stdioh>

#irchoe "Hello World.h"

int mein(int arge, dar™ argv)

{
HElloWrld h = HlloWxld create();
der* mey = Hello Wrld cgetveg(h);
it ("s\n", me);
Hello World celeteRef (h) ;

} free(msy);

This code creates the Hello_World object, calls the getMsg() method, prints the ubiquitous saying, decrements the
reference count for the object, and frees the message string.

There are a few details worth noting here. The C bindings generate function names by combining packages, classes,
and method names with underscores (e.g. Hello Wxld oetMsy() . Whenever you see double underscores in
Babel generated symbols, they indicate something built-in to (and sometimes specific to) the language binding. The
_Cregte() method is built-in to every instantiatable class defined in SIDL, triggering the creation of Babel internal
data structures as well as the constructor of the actual object implementation.

To generate the C glue code necessary to call the library, we run the Babel tool again, this time specifying C as the
target language:

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Hello World Tutorial

% bbel —client=C hello.sidl

or simply

% bbel —C hello.sidl

The “—C” flag, or its equivalent long-form “—client=C 7, tells the Babel code generator to create only the C
stub calling code, not the entire library implementation. The library libhello.so already contains the necessary IOR,
skeleton, and implementation object files. We compile the hello program using the following GNU Make Makefile:

.C.0:
g -IS(HME)/fekel/irchoke -Mib < &

ichcde el eke
@IS = hello.o S{SIBRCS:.c=.0}

rello: S${BIS}
gc S$S{@S o W@\
Rlib -dlib -Ikello \
RS(HME) /el /1ib IS(HME) fetel /1ib —1sidl

clemn:
SR *.0 Hello

Note that the “-R” flags tell the dynamic library loader where to find the hello and sidl shared libraries. You
could achieve the same behavior through environment variables such as ID_LIBRFRY ERTH . On some machines

and compilers (notably linux-gcc-3.0) the -R flag is no longer supported, so you will have to modify the appropriate
environment variable to find the shared library.

Finally, we make the executable and run it:

meke hello
./hello
Fello Warld

oo o

4.5 Final Remarks

Congratulations! You are now ready to develop a parallel scalable linear solver package.
The preceding process may seem to be the most complicated way to write the world’s simplest program but, of
course, the same process will also work for significantly more complex applications. “Hello World” is small enough to

experiment with in the language of your choice. Parallel, multithreaded, scientific simulation codes are another matter
entirely.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 5

SIDL. Basics

Contents
S50 Introduction o v i i it it it i e e e e 19
52 SIDLFleS. . . . v v v vttt et et et et e e e et et e 19
5.3 Fundamental Types ¢ . vt i it i it ittt ittt e nnenans 23
L N 25
55 SIDLRuntime ittt it ittt ittt et neeeeeenns 49
56 ODbjJects . . v v v i i i it e 57
57 XML Repositories v v v v i i it e e e e e e e e e e 59

5.1 Introduction

This chapter describes the basics of the Scientific Interface Definition Language (SIDL). The goal is to provide suf-
ficient information to enable most library and component developers to begin using SIDL to wrap their software. It
begins with an overview of SIDL files followed by an introduction to the fundamental data types. More complex topics
such as the object arrays, exceptions, objects, and the XML repository are then addressed.

5.2 SIDL Files

SIDL files are human-readable, language- and platform- independent interface specifications for objects and their
methods. SIDL allows you to specify classes, interfaces, and the methods therein. All methods defined in SIDL are
public, since the developer is writing them as part of an interface description. Any data you wish a SIDL object to
hold is not declared in the SIDL file, and is private. Data should be placed in the implementation skeleton files, and
cannot be publicly exported.

Babel reads the SIDL files to generate the appropriate programming language bindings. These bindings, in the form
of stub, intermediate object representation (IOR), and implementation skeleton sources, provide the basis for language
interoperable software using Babel. In addition, SIDL files are used to populate the XML symbol repository that can
serve as an alternate source of interface specifications during the generation of programming language bindings.

Basic Structure
The basic structure of a SIDL file is illustrated below.

pdae <ddatifier> [vasio <versiar]

{

interface <idatifier> [<irheritarce>]
{

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

20

SIDL Basics

<] <idatifier ([Sarareters>]) [dros <ecgdiar];
<] <idatifier ([Sarareters>]) [Hros <ecgdiar];
class <idatifier> [<inreritances>]

<] <idatifier (Searareters>) [Hros <eogdiar];

<] <idatifier ([<arareters>]) [Hros <ecgdiar];

The main elements are packages, interfaces, classes, methods, and types. For a more detailed description, refer to
Appendix B.

Packages provide a mechanism for specifying name space hierarchies. That is, it enables grouping sets of interface

and/or class descriptions as well as nested packages. Identified by the package keyword, packages have a scoped
name that consists of one or more identifiers, or name strings, separated by a period (”.”). A package can contain
multiple interfaces, classes and nested packages. By default, packages are now re-entrant. In order to make them

non-re-entrant, they must be declared as firal .

Interfaces define a set of methods that a caller can invoke on an object of a class that implements the methods.

Multiple inheritance of interfaces is supported, which means an interface or a class can be derived from one or
more interfaces.

Classes also define a set of methods that a caller can invoke on an object. A class can extend only one other class

but it can implement multiple interfaces. So we have single inheritance of classes and multiple inheritance of
interfaces.

Methods define services that are available for invocation by a caller. The signature of the method consists of the

return type, identifier, arguments, and exceptions. Each parameter has a type and a mode. The mode indicates
whether the value of the specified fype is passed from caller to callee (in), from callee to caller (out), or both
(inout). Each exception that a method can throw when it detects an error must be listed. These exceptions can be
either interfaces or classes so long as they inherit from s1dl.BasaFxcaatian . For a default implementation
of the exception interfaces, the exception classes should extend sidl.SIDIFXE0EIN .

Types are used to constrain the the values of parameters, exceptions, and return values associated with methods. SIDL

supports basic types such as 11t , baol , and Iy as well as strings, complex numbers, and arrays.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.2 SIDL Files 21

Comments and Doc-Comments

SIDL has the same commenting style as C++/Java and even has a special documentation comment (so called doc-
comment) similar to those used in Javadoc. One can embed comments anywhere in their SIDL file. Documentation
comments should immediately precede the class, interface, or method with which they are associated. Babel replicates
documentation comments in the files it generates. It does not replicate plain comments.

/*
* 1. This 1is a nulti-linre comgt.

*

*/
/2. This comat fits atirly o a sigle lire.
/% 3. This comat cn fill less ten a lire. %/

/% 4, This 1s a doanmatarin amat. ¥

* 5. Doamatation amats an g

* miltiple lines withot the begiming
* Sae-asterisk-soae anbiratias

* Hting 1n the wy.

*/

Consider the above SIDL file fragment.

1. This comment is a regular multi-line comment that is delimited by a slash-star , star-slash (“/*”, “*/”) pair.
2. This is a single-line comment that starts with a double slash “//* and continues to the end of the line.

3. This comment is the same as # 1 except that it is completely contained on a single line. It can be embedded in
the middle of a line anywhere a space naturally occurs.

4. This is a documentation comment. In keeping with Javadoc, Doc++, and other tools, it is delimited by slash-star-
star and star-slash (“/** , “*/”) combinations. Documentation comments are important because their contents
are preserved by Babel in the corresponding generated files. Doc-comments must directly precede the interface,
class, or method that they document.

5. This is a multi-line variant of a doc-comment. Note that initial asterisks on a line are assumed to be for human
readers only and are discarded by Babel when it reads in the text. The multi-line doc-comment is the preferred
way of documenting SIDL.

Packages and Versions

SIDL has both a packaging and versioning mechanism built in. Packages are essentially named scopes, serving a
similar function as Java packages or C++ namespaces. Versions are decimal separated integer values where it is
assumed larger numbers imply more recent versions. All classes and interfaces in that package get that same version
number. If subpackages are specified, they can have their own version number assigned. If a package is declared
without a version, it can only contain other packages. If a package declares interfaces or classes, a version number for
that package is required.

poae mpg o |
}

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

22 SIDL Basics

This SIDL file represents the minimum needed for each and every SIDL file. The package statement defines a scope
where all classes within the package must reside. Since no version clause is included, the version number defaults to
0.

Packages can be nested. This is shown in the example below. The version numbers assigned to all the types is
determined by the package, or subpackage, in which it resides. In the design of the SIDL file, remember that some
languages get very long function names from excessively nested packages or excessively long package names.

mpky versiar 1.0 {
[}Hﬁ@eﬂﬂsm%aﬂﬂag’aj@d\ém {

rdar this wewsicn 0.6 {
poae is |
rpoae a {
moae mally |
pdar dply vasin 0.4 {
dar mested |
rdar pdaar vasian 0.1 {

External types can be expressed in one of two ways. The fully scoped external type can be used anywhere in the
class description. Alternatively, an Inport statement can be used to put the type in the local package-space. Inport
statements can request a specific version of the package, if that version is not found, Babel will print an error. If no
version is specified, Babel will take whatever version it is being run on. Babel can not be run on two versions of a
given package at the same time, even if you only import or require one of them.

Another way to restrict the package version you use is the restrict statement. restrict does not import the
package, but if you do later import the package or refer to something in that package by it’s fully scoped name, Babel
will guarantee that the correct version of the package will be used. Also note that all restrict statements must come
before the first import statement.

Below is a sample SIDL file, that should help bring all of these concepts together.

rqire k€ version 2.0; // restric g€ to vasian 2.0, ot inported

nport pkA version 1.0; /) restrice pkA varsion 1.0, Tchioks class pkAA

nport pB; // import kB regardless of versian, Ichrks class pkB.B
dar mpokg vesiar 2.0 {
class foo {

SA(A); /) impoated fron gk mst ke pRAAVLO

stB(B); // inpated fran pkgB mst ke kBB o vasion restriction
stC(pot.C); // mst be pkeC.C32.0

sD(pep.D); // o varsion restriction

Re-entrant Packages

By default, SIDL packages are re-entrant. This means that Babel allows sub-packages to be broken into separate files,
but you’d still have to run Babel on all the files at the same time. Here’s how it works.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.3 Fundamental Types

23

Table 5.1: SIDL Types

SIDL TYPE SIZE (BITS)
baol 1
dar 8
int 32
lay 64
flcat 32
chle 64

famplex 64
dooplex 128

qege 64
strirg varies
aim 32
Iinterface varies
class varies
array < Bpg,Dim > varies

First define the outermost package in a file.

pdar mpkg vesiar 2.0 {
}

Then define a sub-package in a second file.
poar mpkg.sipkg vesiar 2.0 o
}

Note that both files begin with the identical version statement. Now as long as you run Babel on both SIDL files at
the same time (with the outermost one first on the commandline), all is fine.

This works because the package statement takes a scoped identifier as an argument. As long as Babel knows that
a package IMyKg exists, it can handle a new package called sufky . (This would also work if SUgaky were a
class. Version statements require an identifier for the outermost package. Since packages cannot have dots “.” in their
names, the only dots in version statements should appear at the numbers, not the package names.

Running the second file without the first will (and should) generate an error since the enclosing package was
not declared. Re-entrance should be used judiciously. This feature may be disabled by labeling a given package as

fmal .

5.3 Fundamental Types

Table 5.1 briefly shows the different data types that are supported in Babel. Refer to each chapter for the lan-
guage specific bindings for each SIDL type. The “S” in SIDL stands for “Scientific.” This emphasis is reflected in
the fundamental support for complex numbers (famplex and danplex) and dynamic multidimensional arrays
(arrzy <Tpe,Dim >).

C++ developers looking at the SIDL syntax for arrays, might think that SIDL is a templated IDL, but this is not
so. Although the syntax for SIDL arrays looks like a template, it is specific only to the array type. Developers cannot
create templated classes or methods in SIDL.

Rationale: Although C++ templates are a very powerful programming mechanism, they apply only to C++. For
Babel to implement similar hashing routines, method names in languages other than C++ would become prohibitively
(thousands of characters) long. Moreover, this C++ template hashing mechanism is compiler specific so while C++
is very good at hiding the expanded template names (unless there is an error to report) we would have to add babel
C++ bindings on a compiler by compiler basis.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

24

SIDL Basics

Discussion of the various types is broken up into sections. Numeric types such as baol , dar, irt, layg,
float , chble , famplex , donplex , string s, as well as information about enumerated types and the
opaque type are all covered in this Subsection 5.3.

Information about extended types such as Interfaces and Classes (Section 5.6) and Arrays (Section 5.4) follow
thereafter.

Numeric Types
The SIDL types bl , dar, irt, lay, flaat , dable |, fanplex |, and doaplex are the smallest and

easiest data types to transfer between languages transparently. They all have a fixed size and can just as reasonably be
copied as passed by reference.

Most languages natively support all of these data types (though perhaps less so with complex types). There are a
few notable exceptions that may be of interest.

ANSI C does not define the size of int and 1ay , only that the latter be at least as big as the former. As of the
C99 standard, there are types Int32 _tand intt4 _t that are signed integers that explicitly support a fixed number
of bits. Most compilers already have these symbols defined appropriately in Sys/types.n (pre C99 standard) or
inttyges.h .

Python defines its it and 1ag to be equivalent to C, and therefore suffers the same platform dependent integer
size problem with less flexibility for a workaround. It is not uncommon for regression tests involving longs and Python
to fail on certain platforms. Python 2.2 has a patch to make SIDL long support better.

Strings

Strings are an interesting datatype because they are fundamental to many pieces of software, but represented dif-
ferently by practically every single programming language. Strings can have a high overhead to support language
interoperability because there is invariably so much copying involved.

FORTRAN 77 and 90 support for strings is limited to a predetermined buffer size. Since the results of a string
assignment into that buffer in FORTRAN does not propagate the length of the string, trailing whitespace is always
trimmed for any string begin passed out from a FORTRAN implementation.

Opaque

The gaaqe type is dangerous, and rarely useful. However, there are particular times when an opaque type is the only
way to solve a problem. When a SIDL file uses an a3 e type, Babel guarantees only bits will be relayed exactly
between caller and callee. If there is a need to pass more information than an opaque provides, than the developer can
simply pass a pointer to that information.

Use of a qaage carries a heavy penalty. When Babel matures enough to support distributed computing, any
method calls with @aag e in the argument list (or return type) will be restricted to in-process calls only.

Rationale: Since gaqe is typically used for a pointer to memory, this sequence of bits has no meaning outside
of its own process space.

Enumerations

An enumeration is typically used in programming languages to specify a limited range of states to enable dealing with
them by names instead of hard-coded values. For language interoperability purposes — especially to support this
concept on languages with no native support — we’ve had to create specific rules for the integer values associated
with enumerated types.

pdar autaple vasiaa 1.0 {
// urkfined Integer vales

agium @lar |
}raiomge,yeﬂmgreazbhe,wolet

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays

// capletely dbfined integer valies
aum ar {

/**

* A goats ar.

911,

// partially cefired integer valle

gium nnter o
mtiero,// This mnde acmar will ot ke retainsd
s,
zaro),
arx=l,
m_ll
othNey

¥

}

Above is a sample of enumerations taken directly from our regression tests. It defines a package g1ntaple
that contains three enumerations. C/C++ developers will find the syntax very familiar. When defining an enumeration,
the actual integer values assigned can be undefined, completely defined, or partially defined.

SIDL defines the following rules for adding integer values to enumerated states that don’t have a value explicitly
defined.

1. Error if two states are explicitly assigned the same value
2. Assign all explicit values to their named state.
3. Assign smallest unused non-negative value to first unassigned state in enumeration.

4. Repeat 3 until all states have assigned (unique) values.

To verify the application of these rules, the g1nGaple.nnter enumeration will have the following values
assigned to its states: NotZero =2, NtQe =3, zzro =0; ae=I1, rade =-1, gy =4.

5.4 Arrays

One of the features that separates SIDL and BABEL from Microsoft’s COM/DCOM and the OMG’s CORBA is
support for multi-dimensional arrays. SIDL is designed to serve the high performance computing community, so we
anticipate that both SIDL object developers and object clients may require direct access to the underlying array data
structure to try to optimize instruction pipelining or cache performance. The purpose of this document is to describe
the functional API to the SIDL array data structure and the underlying data structures. This presentation will focus on
the C API for arrays because it is the basis for the other language APISs, so they will likely reflect its idiosyncrasies.

SIDL arrays can be “row-major” or “column-major”. They are not parallel array classes, and not particularly
sophisticated, but they are very, very general. These are meant to generalize the array types built into many languages,
not to provide a general array component that everyone will use. It is expected for parallel array libraries to build on
top of the array type presented into SIDL.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

26

SIDL Basics

SIDL Language Features

As of release 0.6.5, interface definitions can specify that an array argument or return value must have a particular
ordering for a method. The type array<int, 2, rowejar> indicates a dense, ! two-dimensional array of
32 bit integers in row-major order; and likewise, the type array<irnt, 2, columajos> indicates an dense
array in column-major order. Some numerical routines can only provide high performance with a particular type of
array. The ordering is part of the interface definition to give clients the information they need to use the underlying
code efficiently. The ordering specification is optional.

For one-dimensional arrays, specifying Towf@jar or columajar allows you to specify that the array
must be dense, that is stride 1. Otherwise, for one-dimensional arrays row-major and column-major are identical.

If you pass an array into a method and the array does not have the specified ordering, the skeleton code will make a
copy of the array with the required ordering and pass the copy to the method. This copying is necessary for correctness,
but it will cause a decrease in performance. The implementor of the method can count on an incoming array to have
the required ordering.

For Ut parameters and return values, an ordering specification means that the method promises to return an array
with the specified ordering. The implementation should create the QUL arrays with the proper ordering; because if it
does not, the skeleton code will have to copy the outgoing array into a new array with the required ordering.

For inout parameters, an ordering specification means the ordering specification will be enforced by the skeleton
code for the incoming and outgoing array value.

At the time of writing this, the ordering constraints are enforced for Python implementation because Python uses
Numeric Python arrays, so BABEL cannot control the array ordering as fully. The Python skeletons do force outgoing
arrays (i.e., arrays passed back from Python) to have the required ordering.

Independent and borrowed arrays

There are two main kinds of arrays: independent and borrowed. The independent arrays owns and manages its data. It
allocates space for the array elements when the array is created, and it deallocates that space when the array is finally
destroyed.

The borrowed array does not own or manage its data. It borrows its array element data from another source that
it cannot manage, and it only allocates space for the index bounds and stride information. The rationale for borrowed
arrays is to allow data from another source to temporarily appear as a SIDL array without requiring data be copied.

If you slice an independent array, the resulting array is also considered independent even though it borrows data
from the original independent array. The resulting array can still manage its data by retaining a reference to the original
array; hence, its element data cannot disappear until the resulting array is destroyed. If you Slice a borrowed array,
the resulting array is also borrowed because like its original array, it doesn’t manage the underlying data.

The Life of an Array

The existence of borrowed arrays causes the arrays to deviate from the normal reference counting pattern. You may
recall that all arrays are reference counted, and an array’s resources are reclaimed when the reference count goes
to zero. However, a borrowed array’s array element data will disappear whenever the source of the borrowed data
determines that it should regardless of the reference count in corresponding the SIDL array. This behavior means that
developers should consider any SIDL array that they did not create themselves, for example incoming arguments to
methods, as potential borrowed arrays. When a method wants to keep a copy of an array that might be a borrowed
array, it should use the SrertGyoy method documented below.
Here are some rules of thumb about the use of borrowed arrays:

e The creator of a borrowed array should guarantee that the data for the borrowed array will exist through the
duration of any method calls using the borrowed array.

e Methods should not return a borrowed array as a return value or CUC parameter unless the method can guarantee
that the array element data will be available until the process shuts down.

e There is a negligible performance cost when using StartGy0y when the array is not borrowed, and there is a
huge correctness benefit when the array is borrowed.

'meaning non-strided

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays

27

Table 5.2: SIDL types to array function prefixes

SIDL TYPE | ARRAY FUNCTION PREFIX | VALUE TYPE

bool sidl ool sidl ool

dar sidl _der der

coonplex sidl _cdoorplex st sidl _doorplex
danle sidl _codle dodle

fanplex sidl _faoplex st sidl _faorplex
float sidl _flcat flcat

int sidl _irt it t

Iag sidl lag it t

qEgEe sidl _qee waid *

string sidl _string der *

The Language Bindings

The C++ binding for array provides access to the C API in case you need to take the gloves off and revel in the data
directly. But the C++ binding also provides a templated wrapper class to provide a more natural look and feel for C++
programmers.

The Python binding for arrays involves copying SIDL arrays to/from Numeric Python arrays. Arrays in Python
don’t have the SIDL methods available. They just have the Numeric Python API available.

The FORTRAN 77 API mimics the C API; all the C functions have been FORTRANified and have _f appended to
their names. The FORTRAN 90 API uses function overloading to allow programmers to use the short array method
names.

The Array API

In the following presentation, we use the SIDL irt type; however, everything in this section applies to all types
except where noted. The basic types are in the SIDL namespace. Table 5.2 shows the prefix for SIDL base types and
the actual value type held by the array...

For arrays of interfaces or classes, the name of the array function prefix is derived from the fully qualified type
name. For example, for the type Sidl.Bas(lass , the array functions all begin with sidl Bass(Class . For
sidl.Baelnterface , they all begin with sidl Baselnterface .

When you add an object or interface to an array, the reference count of the element being overwritten is decre-
mented, and the reference count of the element being added is incremented. When you get an object or interface from
an array, the caller owns the returned reference.

For arrays of strings when you add a string to any array, the array will store a copy of the string. When you retrieve
a string from an array, you will receive a copy of the string. You should sidl _String _free the returned string
when you are done with it.

When you create an array of interfaces, classes, or strings, all elements of the array are initialized to NULL. Other
arrays are not initialized. When an array of interfaces, classes, or strings is destroyed, it releases any held references
in the case of objects or interfaces. In the case of strings, it frees any non-NULL pointers.

The name of the data structure that holds the array if int is Stuct sidl _int _array . For some types, the
data structure is an opaque type, and for others, it is defined in a public C header file.

The functions are listed succinctly in Table 5.3 as well as in detail over the next few pages.

Function: createCol
/* C */
st sidl int. array*
sidl int array createl (int2 ¢ clinen,

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

28

SIDL Basics

Table 5.3: SIDL Array Functions

SHORT NAME

DESCRIPTION

5%8%%g@ﬁg%ﬁ%%%%%%éﬁﬁééﬁ&%ﬁggégééééé%

Creates a column-major order SIDL array

Creates a row-major order SIDL array

Creates a dense one-dimensional SIDL array

Creates a dense, column-major, two-dimensional SIDL array

Creates a dense, column-major, two-dimensional SIDL array

Creates a sub-array of another array. Takes parameters to define array properties.
Makes a SIDL array from thrid party data without copying it

Copies a borrowed array or addRefs a non-borrowed array

Increments the reference count.

Decrements the reference count.

Returns the indexed element from a one-dimensional array

Returns the indexed element from a two-dimensional array

Returns the indexed element from a three-dimensional array

Returns the indexed element from a four-dimensional array

Returns the indexed element from a five-dimensional array

Returns the indexed element from a six-dimensional array

Returns the indexed element from a seven-dimensional array

Returns the indexed element from an array of any dimension

Sets the indexed element in a one-dimensional array

Sets the indexed element in a two-dimensional array

Sets the indexed element in a three-dimensional array

Sets the indexed element in a four-dimensional array

Sets the indexed element in a five-dimensional array

Sets the indexed element in a six-dimensional array

Sets the indexed element in a seven-dimensional array

Sets the indexed element in an array of any dimension

Returns the dimension of the array

Returns the lower bound of the specified dimension

Returns the upper bound of the specified dimension

Returns the stride of the specified dimension

Returns the length of the Array in the specified dimension

Returns true if the array is a dense column-major order array, false otherwise
Returns true if the array is a dense row-major order array, false otherwise
Copies the contents of source array to dest array

Returns an array with guaranteed ordering and dimension from any array.
Provides direct access to the element data of the array.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays

29

//
// Cr
static sidl::array<int32 t>
sidl: :array<int32 £ :creataol (int32 _t diren,
ast IRt lower(],
arst IRt uged(]);
C
C KRR 77
stoattire sidl int array creatsol £(dinen, loer, yper, result)
intecpr*4 dimen
integerd lower(dimen), ugper(dimen)
integer8 result
|
| KRRN 90
sdrattire createCol (lower, uper, result)
intecpr (selected int kird(9)), dimension(:), irtert(in) 0 lower, ugper
e (sidlint 3d), intent(out) oresdlt ! e dgeads oan dimension

| dimfersiocn of result is infared frcm‘desizecfl@er

// Jaa
// (iRow doidd ke false to et a colun ader anay)
phlic Amay(int dim, int[] lower, int[] ygpsr, booleen 1Row);

This method creates a column-major, multi-dimensional array in a contiguous block of memory. diren should
be strictly greater than zero, and 1oser and Ugeer should have dimen elements. 1oaer[i] must be less than
or equal to ygeer[i]-l for 1 > Oand 1 < dimen . If this function fails for some reason, it returns NILL .
lower[i] specifies the smallest valid index for dimension 1, and Ugoer[i] specifies the largest. Note this defini-
tion is somewhat un-C like where the upper bound is often one past the end. In SIDL, the size of dimension 1is 1 +
uperi] - loer(i] .

The function makes copies of the information provided by diren , 1awer , and UQeer , so the caller is not obliged
to maintain those values after the function call.

For FORTRAN, the new array is returned in the last parameter, T&SUlL . A zero value in ¥&sUlt indicates that
the operation failed. For Fortran 90, you can use the function not _1ull to verify that Yesult is a valid array.

Function: createRow

/* C*
st sidlint array*
sidl int array createRow(int3 ¢ dlirren,
arst IRt lowexr(],
p arst Ittt upe(]);
// Cr
static sidl::amay<int3®?
sidl: :array<int32 > :createRow(int32 _t dliren,
ast IRt lower(],
crst iRt ugerl]);

C
C ERRAN 77

Ssdyoutire sidl int arvay createRow f(dinen, lower, Yy, result)

intecpr*4 dimen

integerd lower(dimen), ugper(dimen)

intecpr*8 result
|
| KREN 90
Sdxattire createRow(lower, ugeer, result)
integer (selected int kird(9)), dinensian(:), intert(in) 0 lower, ugper
tyee(sidL int 3), intent(out) oresdlt ! e dgEds an dimensian

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

30 SIDL Basics

! dimesicn of result is infered from the size of loer

// Jam
// (iFow doldd ke tne to gt a rov ader anay)
phlic Amay(int dim, int[] loer, int[] ugper, bolen iRow);

This method creates a row-major, multi-dimensional array in a contiguous block of memory. Other than the
difference in the ordering of the array elements, this method is identical to create(ol

Function: createld

/* C */
stct sidl it array*
sidl int. array createld(int32 £ len);

// C+
static sidl::array<int32 t>
sidl: :array<int32 £ :areateld(int32 t len);

C FRIRWN 77
sdoutire sidl int array areateld £(1en, result)
intecpr*d len
integer8 result

! FRIRN 90

Sdxostine createld(len, result)
integer (selected dnt kird(9)), intert(in) 2 len
tyee(sidl irt 1d), intent(aut) :: result

// Jam
odlic Arayl(ne 0, bolen iskow);

This method creates a dense, one-dimensional vector of ints with a lower index of 0 and an upper index of len — 1.
This is defined primarily as a convenience for C and C++ programmers. If len < 0, this routine returns NULL.

Function: create2dCol

/* C*/

strct sidl it array*

sidl int. array create2dol (iR £ m Ittt n);

// CH

static sidl::array<int32 t>

sidl: :array<int32 £ :areatedCol (int Rt m IRt n);

C KRR 77
Sdoutire sidL int array createdol £y, n, result)
intecpr*d m, n
integer™8 result

! FRIRN 90

shyotire crestsdbl(m, n, result)

integer (selected it kird(9)), intert(in) it m n

tyee(sidl int.), intent(out) i resdlt

/] Jam
// iRon dodd ke fale to gt a colun ader amay
pidic Ama2(rt €, int sl, boolen isRow);

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays 31

This method creates a dense, column-major, two-dimensional array of ints with a lower index of (0, 0) and an upper
index of (m — 1,n — 1). If m < 0 or n < 0, this method returns NULL. This is defined primarily as a convenience
for C and C++ programmers.

Function: create2dRow

/* C*/
st sidl int. array*
sidl int array create2Raw(int32 t m Ittt n);
// CH
static sidl::amay<int3®?
sidl : :array<int32 £ :createRon(int Pt m IRt n);
C FRIRAN 77
sdoattire sidl int array createlRow £(m, n, result)
integr™t m, n
intecpr*8 result
I FRRN 90
Sslxartine areatedRow(m, n, result)
integpr (selected int kKird(9)), intent(in) it m n
tyee(sidl it 2), intent(aut) :: result
// Jam

// iRon dodd ke fale to et a colun ader amay
phlic Aoay2(int <0, int sl, booleen iRow);

This method creates a dense, row-major, two-dimensional array of ints with a lower index of (0, 0) and an upper
index of (m — 1,n — 1). If m < 0 or n < 0, this method returns NULL. This is defined primarily as a convenience
for C and C++ programmers.

Function: slice

/* C*/

st sidL int array *

sidl int. array slice(stauct sidl int. array *sre,
iRt dliren,
arst It t nnklen],
arst IntP t *srcStart,
arst IRt FsrcStrdde,
arst IRt *rewStart);

//

// CH

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

32

SIDL Basics
! FRIRN 90
Sdxattine slice(sre, dimen, nnklan, scStart, socStrdde, reaStart)
tyee(sidL int 3), intent(in) i1 s ! e dgoads on dimension
Tyee(sidl it 2), intent(ax) oresult ! e dgoads an dimesion
integpr (selected int kird(9)), intent(in) :: dimen
integpr (selected int kird(9)), intent(in), dimensian(:) &

nnklan, scStart, scStrde, resStart

// Jam
phlic matie Agay _slice(int dimen, int[] noklen, int[] sccStart,
int[] scStrdde, int[] rewStart);

This method will create a sub-array of another array. The resulting array shares data with the original array. The
new array can be of the same dimension or potentially less than the original array. If you are removing a dimension,
indicate the dimensions to remove by setting nnElem[i] to zero for any dimension 1 that should go away in the
new array. The meaning of each argument is covered below.

src the array to be created will be a subset of this array. If this argument is NULL, NULL will be returned. The
returned array borrows data from SrC, so modifying one array modifies both. In C++, the this pointer takes
the place of srC.

dimen this argument must be greater than zero and less than or equal to the dimension of SrC. An illegal value will
cause a NULL return value.

numElem this specifies how many elements from src should be in the new array in each dimension. A zero entry
indicates that the dimension should not appear in the new array. This argument should be an array with an entry
for each dimension of src. NIL will be returned for srT if either

srcStart[1] + nnElani] * scStrde[i] >
srcStart[1] + nnEleni] * srcStride[i] < lower(i]

srcStart this parameter specifies which element of SrC will be the first element of the new array. If this argument is
NULL, the first element of SrC will be the first element of the new array. If non-NULL, this argument provides
the coordinates of an element of SrC, so it must have an entry for each dimension of src. NIL will be
returned for SrC if either

srcStart[i] < lower[i] ,or srcStart[i] > ugoer(i]

sreStride this argument lets you specify the stride between elements of SIC for each dimension. For example with a
stride of 2, you could create a sub-array with only the odd or even elements of SrC. If this argument is NULL,
the stride is taken to be one in each dimension. If non-NULL, this argument should be an array with an entry
for each dimension of SrTC.

newLower this argument is like the 10Mr argument in a create method. It sets the coordinates for the first element
in the new array. If this argument is NULL, the values indicated by srcStart will be used. If non-NULL, this
should be an array with diren elements.

Assuming the method is successful and the return value is named newArray, src[srcStart] refers to the same
underlying element as NEnwlrraly[nenStart]

If ST is not a borrowed array (i.e., it manages its own data), the returned array can manage its by keeping a
reference to SrC. It is not considered a borrowed array for purposes of SrertCooy

Function: borrow
/* C */
stct sidl it array*
sidl int. array borow(int32 t* firstElavent,

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays 33
It t dirmen,
arst IRt lower(],
axst iRt ugeer],
anst IRt strde[]);
//
// CH
woid
sidl : :array<int32 £ oo (int32 t* firstFlarat,
ntPt dirren,
arst IRt lower(],
arst ittt uygeedl,
cast IRt strdde[]);
C
C KRR 77

sdoautire sidl int array borow f(firstElaen t, dimn, loer, ype,
S stride, resulb)

integer4 firstFlamet(), dimen, lower(dimen), ugeer(dinen)

integer®4 strice(dimen)

intecpr*8 result
|
| FRRN 90
shxartire borow(firstElavet, diren, lower, ygper, stdde, &
result)
intecpr (selected int kird(9)), intent(in) :: firstFlawet, dinen
intecpr (selected int kird(9)), dimension(:), intent(in) o loer, ugoeEn,&

stride
tyee(sidl irt 1d), intent(ax) oresult ! e dgoads o amay dimension

This method creates a proxy SIDL multi-dimensional array using data provided by a third party. In some cases,
this routine can be used to avoid making a copy of the array data. dimen , 1oaer , and Ugeer have the same meaning
and constraints as in SIOL _int _array _createl . The firstElavet argument should be a pointer to the
first element of the array; in this context, the first element is the one whose index is 1ower .

strice[i] specifies the signed offset from one element in dimension i to the next element in dimension i.
For a one dimensional array, the first element has the address firstFlawt |, the second element has the address
firstElavwent + stride[0] , the third element has the address ﬁIStEl.eTH’]t + 2 * strdde[0] | ete.
The algorithm for determining the address of the element in a multi-dimensional array whose index is in array ird[]
is as follows:

i3 t* ad:h: = firstFlavet;
far(int O 1 < dimen; +4) |
adr + irdi] - lower[i])*stride[i];
}
/* mw adr is te adkess o deamt ird ¥/

Note elements of stride need not be positive.
The function makes copies of the information provided by dimen , lower , uygeer , and strice . The type of
firstFlavent is changed depending on the array value type (see Table 5.2).

Function: smartCopy
/* C */
st sidl int. array*
sidl int array swertGooy(stauct sidl irt. array aray) ;

// CH
woid
sidl: :array<int32 £ :grertCyoy() ;

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

34 SIDL Basics

C KRN 77
stoattire sidl int array swertGyy f(array, result)
integr*8 amray, result

P KRN 90

sdrattire swertCopy(aray, result)

tyee(sidl irt 1d), intent(in) o oamey ! e dgoeds an dimension

tyee(sidL it 1d), intent(out) oresdlt ! e dgEds an dimensian

// Jaa
pllic retive Aray _gwrtCoy();

This method will copy a borrowed array or increment the reference count of an array that is able to manage its own
data. This method is useful when you want to keep a copy of an incoming array. The C++ method operates on this .

Function: addRef

/* C */
woid
sidl int. array adRef(stuct sidl int array* aray);
// CH
woid
sidl : :array<int32 > :adRef () thrav (NUTIRERctian);
C KRN 77
shroddre sidl it array adRef. f(array)
integer8 array
| KRN 90

Sdhyotire adRef(amay)
tyee(sidL it 1d), intent(in) oary ! bpe dgEds o oamay dimension

This increments the reference count by one. In C++, this method should be avoided because the C++ wrapper class
manages the reference count for you.

Function: deleteRef

/* C*/
wvoid
sidl int array deleteRef (stuct sidl it array* array);
// CH
wvoid
sidl: :array<int32 1 :oeleteRef () throv (NUTRERctian);
C FRIRAN 77
sdooutire sidl int array celeteRef. f(array)
intege8 array
I FRRN 90

Sdhyotire deleteRef (array)
tyee(sidL it 1d), intent(aut) moaray ! bpe dgEds an dimesian

This decreases the reference count by one. If this reduces the reference count to zero, the resources associated with
the array are reclaimed. In C++, this method should be avoided because the C++ wrapper class manages the reference
count for you.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays

35

Function: getl

/* C %/

iRt

sidl int. array getl (aast stct sidl drt amay* array,

it t i1);

// CH

Rt

sidl: :armray<int32 et (int2 ¢ i1);

C KRR 77
Ssdyoutire sidl int aray el flaray, i1, result)
inteoer'8 amay

intecprd i1, result

| KRN 9O
Sdhyotire cet(amay, i1, result)
type(sidl int 1d), intent(in) - :: amay

integpr (selected int kKird(9)), intent(in) o 11
intecpr (selected int kird(9)), intent(aut) :: result
// Jam

phlic it get(int 1i);

This method returns the element with index il for a one dimensional array. The return type of this method is the
value type for the SIDL type being held (see Table 5.2). This method must only be called for one dimensional arrays.
For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call celeteRef ()
when they are done with the reference unless it is NILL). For arrays of strings, the client owns the returned string (i.e.,
the client is obliged to call free on the returned pointer unless it is NI). There is no reliable way to determine from
the return value cases when il is out of bounds.

Function: get2

/* C*/
it t
sidl int array get2(aast stmct sidl it array* array,
intR t i,
It t i2);
// CH
it t
sidl: :armray<int32 et (int2 ¢ i1, iRt 12);
C FRIRAN 77
sdoutire sidl int aray g2 flamay, i1, 12, resudlt)
inteoer'8 amay

intecpr*d i1, 12, result

I FRRN 90
sipotire get(amay, i, 12, resdlt)
type(sidl int), intent(in) - :: amay

integpr (selected int kird(9)), intent(in) i1, i2
intecpr (selected int kird(9)), intent(aut) :: result
// Jam

phlic int get(it i, int J);
This method returns the element with indices (i1, i2) for a two dimensional array. The return type of this method
is the value type for the SIDL type being held (see Table 5.2. This method must only be called for two dimensional

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

36

SIDL Basics

arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call GeleteRef
when they are done with the reference unless it is NILL). For arrays of strings, the client owns the returned string (i.e.,
the client is obliged to call free on the returned pointer unless it is NI). There is no reliable way to determine from

the return value cases when 11, 12 are out of bounds.

Function: get3

/* C*/
iRt
sidl int. array get3(aast st sidl int array* array,
it t i1,
it t iz,
it t i3);
// CH
iRt
sidl: :array<int32 t1oet(int3 ¢ il, imtPXt 12, ittt i3);
C FRIRWN 77
stoautire sidl int array =3 flarray, i1, 12, i3, result)
integer8 array
integer™4 i1, 12, i3, result
! FRIRN 90
sdorattire oet(amay, i1, 12, i3, result)
tyee(sidL int 3), intent(in) 1 aray
intecpr (selected int kird(9)), intent(in) 0 i1, 12, 13
integpr (selected int kird(9)), intent(aut) i1 resdlt

// Jam
phlic it get(int i, int J, int k);

This method returns the element with indices (i1, 12, 13) for a three dimensional array. The return type of this
method is the value type for the SIDL type being held (see Table 5.2). This method must only be called for three
dimensional arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
CeleteRef() when they are done with the reference unless it is NILL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to call free() on the returned pointer unless it is NIL). There is no reliable

way to determine from the return value cases when il, 12, i3 are out of bounds.

Function: get4

/* C */
it t
sidl int. array getd(aast st sidl int array* array,
it t i1,
ntX t i2,
intX t i3,
It t i4);
// CH
iRt
sidl: :array<int32 et (int2 ¢ i1, iRt 12, intRt i3, iRt
C KRR 77
sdoutire sidl int aray g4 flamay, i1, iz, i3, 14, result)
intecpr*8

array
integer*4 i1, 12, i3, 14, result

! FRIRAN 90
sdrattire oet(amay, i1, 12, i3, i4, result)

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

i4);

5.4 Arrays

37

type(sidl int 4d), imtent(in) - :: amay
intecer (selectad int kird(9)), intent(in) 0 11, 12, i3, 14
integpr (selected int kird(9)), intent(aut) i1 result
// Jaa
phlic it oget(int i, it j, it k, it 1);

This method returns the element with indices(il, i2, i3, i4) for a four dimensional array. The return type of
this method is the value type for the SIDL type being held (see Table 5.2). This method must only be called for four
dimensional arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
CeleteRef() when they are done with the reference unless it is NILL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to call fre=() on the returned pointer unless it is NIL). There is no reliable
way to determine from the return value cases when i1, 12, i3, or i4 are out of bounds.

Function: get5-7
Methods getb —get’/ are defined in an analogous way.

Function: get

/* C*/
it t
sidl int array get(cast st sidl it array* array,
arst it t irdices[]);
// CH
iRt
sidl: :array<int3? £ :et(aast ittt irdices[]);
C KRR 77
sdoutire sidlL int arvay et farray, indices, result)
inteoer'8 amay

integer™4 irdices(), result

| KRN 90
sdorattire oet(amay, indices, result)
tyee(sidl int 1d), intet(in) i amay ! tpe dgads on dimesio

integpr (selected int kird(9)), dimensian(:), intent(in) :drdices
integpr (selected int kird(9)), intent(aut) i resdlt
// Jam

phlic mathe it _get(int i, int §, int k, int 1, int m, int n, int ©);

This method returns the element whose index is indices for an array of any dimension. The return type of this
method is the value type for the SIDL type being held (see Table 5.2). This method can be called for any positively
dimensioned array. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
CeleteRef() when they are done with the reference unless it is NILL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to call fre=() on the returned pointer unless it is NIL). There is no reliable
way to determine from the return value cases when indices has an element out of bounds.

Function: setl

/* C %/

iRt

sidl int. array setl (aast stct sidl drt amay* aray,
ntR t i1,
ntR t valie));

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

38

SIDL Basics
// CH
ntP t
sidl: :array<dint32 tiiseb(int32 ¢ i1, iRt ahe);
C KRR 77
shroddre sidl it array setl f(array, il, vahe)
integer*8 amay

integer®d i1, wale

! FRIRN 90
shroddre st(amay, i1, ale)

tyee(sidL it 1d), intent(in) i amay
intecpr (selected int kird(9)), intent(in) 0 11, vale
// Jaa

phlic wid set(irnt 1, it vale) |

This method sets the value in index il of a one dimensional array to value. The type of the argument value is
the value type for the SIDL type being held (see Table 5.2). This method must only be called for one dimensional
arrays. For arrays of objects and interfaces, the array will make its own reference by calling aXRef() on value, so
the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so the client
retains ownership of the value pointer.

Function: set2

/* C */
it t
sidl int array se2(aast stct sidl it array* array,
iRt i,
iRt i2,
2t alhe));
// CH
ntPt
sidl: :array<int32 trisst(int3 ¢ il, IntRXt 12, it t valr);
C KRR 77
Sstoattire sidl int array s=2 f(array, i1, 12, vale)
integer8 array
integpr*d i1, 12, wale
! FRIRN 90
sdratire sst(amay, i1, 12, vale)
tyee(sidL int), intent(in) 1 amay
intecpr (selected int kird(9)), intent(in) 0 i1, 12, vale

// Jam
pilic wvad st(int i, it j, it whe) |

This method sets the value in index (i1, 12) of a two dimensional array to value. The type of the argument value
is the value type for the SIDL type being held (see table 5.2). This method must only be called for two dimensional
arrays. For arrays of objects and interfaces, the array will make its own reference by calling a3Ref() on value, so
the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so the client
retains ownership of the value pointer.

Function: set3

/x C*

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays 39

it t
sidl int. array set3(axst st sidl int array* array,
intR t i,
it t i2,
it t i3,
Rt ahe));
// CH
iRt
sidl: :armray<int32 triseb(int2 ¢ i1, it 12, iRt i3, iRt vale);
C KRR 77
sdyoutire sidl int aray =3 farray, i1, 12, i3, wvale)
inteoer'8 amay
integer*4 i1, 12, i3, vale
I FRRN 90
sdrattire sst(amay, i1, 12, i3, vale)
tyee(sidl it 3d), intent(in) o oamey
intecer (selected int kird(9)), intent(in) 0 il, iz, i3, wahe

// Jam
pblic woid set(nt i, it 5, it k, it ehe) |

This method sets the value in index (i1, i2, 13) of a three dimensional array to value. The type of the argument
value is the value type for the SIDL type being held (see table 5.2). This method must only be called for three
dimensional arrays. For arrays of objects and interfaces, the array will make its own reference by calling adRef ()
on value, so the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so
the client retains ownership of the value pointer.

Function: set4

/* C*/
iRt
sidl int. array setd(aast st sidl int array* array,
ntX t i1,
intX t i2,
intR t i3,
ntX t i4,
3Rt vahe));
//
// CH
iRt
sidl: :array<int32 st (int2 ¢ i1, iRt 12,
IRt 13, Rt 14, iRt vale);
C
C FRIRAN 77
sdyotire sidl int aray s=t4 flaay, i1, iz, i3, i4, ~alwe)
integer™8

array
integert4 i1, i2, i3, 14, ale
|
| KRN 9O
Sdhyotire set(amay, i1, 12, i3, i4, alwe)
tyee(sidl it 4), intent(in) o oamey
integpr (selected int kird(9)), intent(in) i1, 12, i3, i4, ahe

// Jam
pblic woid set(nt i, it 4, it k, it 1, it wale) |

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

40

SIDL Basics

This method sets the value in index (i1, i2, i3, i4) of a four dimensional array to value. The type of the
argument value is the value type for the SIDL type being held (see table 5.2). This method must only be called
for four dimensional arrays. For arrays of objects and interfaces, the array will make its own reference by calling
20Ref() on value, so the client retains its reference to value. For arrays of strings, the array will make a copy of
the string, so the client retains ownership of the value pointer.

Function: set5-7

Methods s=t5 —s2/ are defined in an analogous way.

Function: set

/* C*/
wvoid
sidl int array set(stuct sidl int array* array,
arst ItRt irdices(],
int32 t ale);
// CH
wvoid
sidl: :array<int3? £ :set(aast int32 ¢t dnddees[], Ittt vale);
C FRIRAN 77
sdoutire sidl int array st f(aray, indices, valir)
inteer*8 amray
intecpr*d irdices()
| FRRN 9O

Shyotire set(amay, irdices, wale)
tyee(sidl irt 1d), intent(in) ;oamay ! tpe dgeads o dimesion

integpr (selected int kKird(9)), intent(in), dinmensian(:) :: irdices
integer (selected int kird(9)), intert(in) 22 vale
// Jam

phlic matie wid _set(int i, int §, it k, it 1, int m, int n, int o, int walwe);

This method sets the value in index indices for an array of any dimension to value. The type of the argument value
is the value type for the SIDL type being held (see table 5.2). For arrays of objects and interfaces, the array will make
its own reference by calling aXRef() on value, so the client retains its reference to value. For arrays of strings, the
array will make a copy of the string, so the client retains ownership of the value pointer.

Function: dimen

/* C*
iRt
sidl int. array dinen(axst st sidl int amay *aray);
// Cr+
iRt
sidl: :array<int32 > :dimen() axst;
C KRR 77
Sdyotire sidl int array dinen f(aray, result)
integer8 array
Inepr*d result
' FRRAN 0
integper (selected dnt kind(9)) dimen(array)

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays 41

type(sidl irt 1d) oarey ! e dgemds an dinesion

/] Jam
phlic retivwe it _dim();

This method returns the dimension of the array.

Function: lower

/* C*/
it t
sidl int. array lower(axst st sidl it amay aray, ittt ird);
// CH
it t
sidl: :array<int32 £ loer(intR £ id) arst;
C FRIRAN 77
styattire sidl int array laer farray, ird, result)
intege8 array
intecpr*d ird, result
! FRIRN 90
intecpr (selected int kind(9)) fuction loer(amay, ird)
tyee(sidL it 1d), intent(in) oary ! b dgads an dimesian
intecpr (selected int kird(9)) ::ird

/] Jam
phlic mative int _lower(int dim);

This method returns the lower bound on the index for dimension ird of array.

Function: upper

/* C*/
iRt
sidl int. array ugeer(axst st sidl it amay aray, Ittt ird);
// CH
it t
sidl: :array<int32 £ rygeer (intR £ id) axst;
C ERIRAN 77
stoattire sidl int array uygeer farray, ird, result)
intege8 array
intecpr*4 ird, result
' FRRAN 9D
intecpr (selected dint kird(9)) fuctin ygeer(array, ird)
tyee(sidL it 1d), intent(in) oary ! b dgads an dimesian
intecpr (selected int kird(9)), intent(in) o oird
// Jam

phlic mative int _ygeer(int dim);

This method returns the upper bound on the index for dimension ind of array. If the upper bound is greater than or
equal to the lower bound, the upper bound is a valid index (i.e., it is not one past the end).

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

42 SIDL Basics

Function: stride

/* C*/
iRt
sidl int. array stride(aast st sidl int array Yaray, Ittt ird);
// CH
iRt
sidl: :array<int32 £ :stride(int32 t ird) ocast;
C KRR 77
sdoutire sidl it array strice f(array, ird, result)
inteer*8 amray
integer™4 ind, result
I FRRN 90
integer (selected dnt kind(9)) fuction stride(array, ird)

tyee(sidl irt 1d), intent(in) oarey ! e dgads an dimension
integer (selected int kdrd(9)) :r ird

/] Jam
phlic retive it _stdde(int dim);

This method returns the stride for a particular dimension. This stride indicates how much to add to a pointer to get
for the current element this the particular dimension to the next.

Function: length

/* C*
Rt
sidl int. armay leagth(aast st sidlint array Yaray, ittt ird);

// CH Defalt dimesion is 1.
iRt
sidl: :array<int32 1 :lepth(int32 t ird = 0) cast;

C KRIRAN 77
sdyoutire sidl it array legth f(aray, ird, result)
inteoer*8 amay
integer™4 ind, result
I FRRAN 0
integer (selectad dint kind(9)) fuctim legth(array, ird)
tyee(sidl irt 1d), intent(in) voarey ! e dgads an dimension
integer (selected int kdrd(9)) o ird

/] Jam
phlic retive it _Jegth(int dim);

// Fxr ae dimsioel Jaa amays. Avayl:
pllic int leth();

This method returns the length for a particular dimension. It is equivalent to the statement Ugaer(ctim) -
loer(dim + L

There is also a shortcut for one-dimensional arrays available in C++ and Java. In C++, if lqgth is called with
no arguments, it defaults to the first dimension. In Java Arrayl one-dimensional Java arrays have a length function
that takes no arguments.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays

43

Function: isColumnOrder

/* C */
sidl ool
sidl int. array isohmrOder(aanst st sidlint array *array) ;
// CH
ool
sidl : :array<int32 £ :igohnmOder() axst;
C KRR 77
stoattire sidl int array isolunrOcoer f(arra y, result)
jntgga:*S array
logical result
! FRIRN 90
logical furdo isCohmOder(array)
tyee(sidL int), intent(in) oary ! tpe dgads an dimesian
// Jaa

phlic retve booleen _igGohurOrder();

This method returns a true value if and only if array is dense, column-major ordered array. It does not modify
the array at all.

Function: isRowOrder

/* C*/
sidl ool
sidl int array iRoder(axst st sidl it array *array) ;
// CH
ool
sidl : :array<int32 £ :isRowder() axst;
C FRIRAN 77
stoattire sidl int array isRoder farray, result)
jntgga:*S array
logical result
! FRIRN 90
layical fuction isRodxcer(array)
tyee(sidL it 1d), intent(int) poaray ! bpe dgEds an dimesian
// Jam

phlic retive booleen _iRorder();

This method returns a true value if and only if array is dense, row-major ordered array. It does not modify the
array at all.

Function: copy

/* C */

woid

sidl int array agoy(aast st sidl it array *sre,
sttt sidl int array *dest);

// CH

wvoid

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

44

SIDL Basics
sidl: :array<int3? £ :axy(aast sidl: :array<int3? &sre);
C KRR 77
sdyoutire sidl int aray apy flamay, dest)
integer*8 array, dest
' FRIRAN 90

slrotire apylaxay, — oest)
tyee(sidL it 1d), intent(in) oaray ! tpe dgEds oamay dimension
tyee(sidl irt 1d), intent(in) r st ! e dgEds o amay dimesion

// Jaa
pdlic wid _agpy(sidl. Intecer Array cest);

This method copies the contents of SrC to st . For the copy to take place, both arrays must exist and be of the
same dimension. This method will not modify GESt s size, index bounds, or stride; only the array element values of
dest may be changed by this function. No part of SIT is changed by this method.

If dest has different index bounds than SrC, this method only copies the elements where the two arrays overlap.
If dest and Src have no indices in common, nothing is copied. For example, if SIC is a 1-d array with elements
0-5 and dest is a 1-d array with element 2-3, this function will copy element 2 and 3 from SrC to d&st . If dest had
elements 4-10, this method could copy elements 4 and 5.

Function: ensure

/* C*/
st sidl int array *
sidl int. array ensure(cast st sidl it array *sre,
3Rt dliren,
int arckerirg);
// CH
woid
sidl: :armray<int32 1 :ensure(int32 t diren, it aoedrg);
C FRIRAN 77
sdotire sidL int amay esuae f(sc, diren, adering, result)

integr*8 sc, result
intecpr*d dimen, adedng

I FRRAN 0

Slxatire asre(sc, djmm, aoerrg, result)
typee(sidl it 1d), intent(in) s ! e dgoeds an amay dimension
tyee(sidl int 1d), intent(out) oresdlt! e dgEds o amay dimesion
intecpr (selected int kind(9)) :: dimen, adedng

This method is used to obtain a matrix with a guaranteed ordering and dimension from an array with uncertain
properties. If the incoming array has the required ordering and dimension, its reference count is incremented, and it is
returned. If it doesn’t, a copy with the correct ordering is created and returned. In either case, the caller knows that the
returned matrix (if not NULL) has the desired properties.

This method is used internally to enforce the array ordering constraints in SIDL. Clients can use it in similar ways.
However, because the method was intended as an internal Babel feature, is not available in Java or Python.

The ordering parameter should be one of the constants defined in eum sidl _aray acdkerirg (e.g.
sidl _ggeral ader , sidl _colim major _ackr , or sidl _vow majar Qtder). If you pass in
sidl _ggeral _arder |, this routine will only check the dimension of the matrix.

Function: first

/x C*

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays

45

it *
sidl int. array first(axst stnct sidl int array *src);
// CH
IR t* frst() throw();
C FRIRAN 77
stoattire sidl int array acess f(array, ref, loer, Uy,
S sride, drdkex)
integer8 amray
integerd lower(), uper(), strde(), iroex
irtegerd ref()

This method provides direct access to the element data. Using this pointer and the stride information, you can
perform your own array accesses without function calls. This method isn’t available for arrays of strings, interface
and objects because of memory/reference management issues. There is no equivalent of this of this function in Java or
Python. To see how to get direct array access in FORTRAN 90, see Chapter 9.

The FORTRAN versions of the method return the lower, upper and stride information in three arrays, each with
enough elements to hold an entry for each dimension of array . Because FORTRAN 77 does not have pointers, you
must pass in a reference array, axay . Upon exit, ref (irdex) s the first element of the array. The type of ref
depends on the type of the array.

While calling the FORTRAN direct access routines, there is a possibility of an alignment error be-
tween your reference pointer, ¥&f . The problem is more likely with arrays of dodole or donplex
although, it could occur with any type on some future platform. If index is zero on return, an align-
ment error occurred. If an alignment error occurs, you may be able to solve it by recompiling your
FORTRAN files with flags to force doubles to be aligned on 8 byte boundaries. For example, the
-eligrdodle flag for g77 forces doubles to be aligned on 64-bit boundaries. An alignment er-
roroccurs when (Gder *)ref minus (der *)sidl _int _array first(array) isnotinteger
divisible by sizeof (atatype) where ref refers to the address of the reference array.

Here is an example FORTRAN 77 subroutine to output each element of a 1-dimensional array of doubles using the
direct access routine. FORTRAN 90 has a pointer in the array derived type when direct access is possible.
C This sdoottire will hnt eech elamt of an aray o dodles
sdhotire pdnt amay(dolarray)
inplicit rmae
integer*8 ddlaray
real*8 refarray(l)
integer™d lower(l), ugeer(l), stride(l), index, dimen, 1
if daray e. 0) ten

call sidl doble array dimen f(dolarray, dlimen)
if (dimn .y 1) ten
call sidl doble array access f(ddlarray, refarray,
S lower, uygper, strdde, index)

if (iroex e, 0) then
d i = lower(l), uger(l)
write(*,*) refarmay(index + (i-lower(1l)) *stride(l))

adb
else
write(*,*) 'Aligment aerxx oo
adif
adif
adif
ad

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

[WARNING:

46 SIDL Basics

For a 2-dimensional array, the loop and array access is

® 1= loer(l), yper(l)
® J = lower(2), yper(2)
write(*,*) refaray(irde(i-lower(l)) *stride(l) +

$ (3 — loer(2))*strice(2))

adb
adb

Suppose you are wrapping a legacy FORTRAN application and you need to pass a SIDL array to a FORTRAN

subroutine. Further suppose there is a FORTRAN 77 and FORTRAN 90 version of the subroutine. For example, the
FORTRAN 77 subroutine has a signature such as:

The FORTRAN 90 subroutine has basically the same signature as follows:
siyotire Tdedrde(x, n)
integpr (selected int kird(9)) it n
real (selected real kird(17, 308)) 1 x(n)

! insrt woderful, efficient, ddaoged ok hae
ad sdyortire THeddrdine

Here is one way to wrap this method using SIDL. First of all, the SIDL method definition specifies that the array
must be a 1-dimensional, column-major ordered array. This forces the incoming array to be a dense column.

static wid Treddrdine(inoat array<dadle, 1, columeijar> aqg);

Given that method definition in a class named Class and a package named Pkg, the implementation of the wrapper
should look something like the following for FORTRAN 77:

sdattire B Class TriedArdne fi (arg)

inplicit rmae
intee8 arg _ ,

C BO-NOIHELETE solicer Jegin(tkg.Class. Taedhrdne)
real*8 refarray(l)
integer*d lowec(l), ugeer(l), strce(l), droex
integer n
call sidl doble array agess farg, refarray,

n=1+uypx(l) - lower(l)
el?@ca]l Triedrdine(refarray (irckx), n)
wite(*,*) 'ERR: amay aligmet
adif
C DOAOLIHEE splicer.ad(Bg.Class. Triefrdhe)

ad

Similarly, it should look something like the following for FORTRAN 90, where the include statements are required
at the top of the Impl file to ensure proper handling of subroutine names that have automatically been mangled by the
Babel compiler:

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.4 Arrays

47

#irchoe "P]Q_Cﬂass_ﬂkb:e\f.h"

#irchoe "sidl Bas<Class fAdoev.h"

#irchce "sidl BassTnrerface fdoer "

! BONOIHELEIE solicer.Joegin(misellareass code star t)
#irchoe "sidl dodole fAdaev.h"

! BONOTHELETE golicer.erd(_misellansos aae start)

Sdyotire Bg Class TriedArdme ni (argy)
! DONOHHLEIE Selicer Jegin(Fg.Class. TriedArdine UR)
e SIL dodle array
! DONOHELEIE slicer.ad(Bg.Class. Trerdie.u *)
inplicit e
tyee(sidl doble a) arg
! BONOTHFLETE Solicer Jegin(Fy.Class. Triedhrdline)
real (selected real kird(17,308)), dimensian(1) 1 refaray
intecpr (selected int kird(8)), dimensicn(1) :r low, w, st
integer (selected int kind(8)) poindex, n

all agess(amg, refarray, low, W, str, indx)

if (iridex .ae. 0) ten

! e an asse stride(l) =1 bease of colmmsejrx geecification
n=1+uypxl - loerd)

all Tdedrdhe(refaray(index), n)
else

wWrite(*,*) 'FRRR: amay aligment’
adif

! DONOHELFIE solicer.end(Fy.Class. Triedhrdie)
aed sdxoutire B Class TriedAnde mi

The C Macro API

For all the SIDL basic types except string, there is a C macro API for those who fear the function overhead of the C
function API. When efficiency is not a concern, I recommend using the function API, but the C macro API is preferable
to the direct access to the data structure. The macro API is not available for arrays of strings, interfaces or objects
because the issues associated with memory and object reference management.

The macro API is very similar to the function API; however, a single set of macros applies to all the supported
array types. The macro names are independent of the type of array you’re accessing.

sidlArrayDim(array)

Return the dimension of array.
sidllower (array, ird)

Return the lower bound on dimension ind.
sidlUgeer(array, ird)

Return the upper bound on dimension ind.
sidlStrice(array,ird)

Return the stride for dimension ind. The stride is the offset between elements in a particular dimension. It can be
positive or negative. It is in terms of number of value types (i.e., it’s 1 means contiguous regardless of what data type).

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

48

SIDL Basics
sidlArrayFlen (array, irdl)
sidlAnayFle?(aray, irdl, irdR)
sidlArrayElan(array, idl, ind2, indB)
sidlArrayFlad (array, idl, i, ind3, i)
sidlArrayElenb(array, idl, i, ind3, indd4, indb)
sidlArrayElanb (array, idl, ind2, ind3, ird4, indb, indb)
sidlArrayFlent/ (array, idl, ind2, i3, ¥4, indb, indb, ird))

Provide access to array elements to arrays of dimension 1-7. This macro can appear on the left hand side of an
assignment or on the right hand side in an expression. These macros blindly assume that the dimension and indices
are correct.

sidlArray] (array, irdl)

sidlArayAdr2(array, irdl, irdR)

sidlArray 2t 3(array, irdl, ird2, i)

sidlArray 2l (array, idl, iR, ind3, irdd)
sidlArraypdrS(array, idl, i, ind3, ind4, indb)

sidlArray A6 (array, idl, i, i3, 4, indb, indb)
sidlArray T (array, idl, ind2, i3, in¥4, indb, indb, ird))

Return the address of elements in arrays of dimension 1-7. This macro can appear on the left hand side of an as-
signment or on the right hand side in an expression. These macros blindly assume that the dimension and indices are
correct.

The C Data Structure

If even the macro interface is not fast enough for you, you can access the internal data structure for all the basic types
except string. You cannot access the internal data structure for arrays of strings, interfaces and objects.
The basic form of the C data structure for type XXXX is:
stct sidl XK array {
<alle e fao XK *d firsthlanet;

it t *d lower;
It t *d ugoer;
it t *d strdde;
It t d dimen;
sidl ool d borroned;

—

7
The string “<value type for XXXX>" should be replaced by something like sidl ool for an array of boal
int32 _tforany array of irt, dodole foran array of dable |, intb4 _tforan array of 11, etc. (See Table 5.2)

ddimen tells the dimension of the multi-dimensional array. d_lower , d.ugeer , and d_stride each point to
arrays of d.dimen int32 _t’s. d. lowexr[i] provides the lower bound for the index in dimension i, and
dygeer[i] provides the upper bound for the index in dimension 1. Both the lower and upper bounds are
valid index values; the upper bound is not one past the end.

dboxowed s true if the array does not managed the data that d_firstElawent points too, and it is false
otherwise. This mainly influences the behavior of the destructor.

Clients should not modify d_lawer , d uygeer , d.strice , d.dimen , dlorrosed or (in the case of point-

ers) the values to which they point.

d stride[i] determines how elements are packed in dimension 1. A value of 1 means that to get from element
to 71 in dimension 1, you add one to the data pointer. Negative values for d_stride can be used to express
a transposed matrix. The definition also allows either column or row major ordering for the data, and it also
allows treating a subsection of an array as an array.

The data structure was inspired by the data structure used by Numeric Python; although, in Numeric Python, the
stride is in terms of bytes. In SIDL, the stride is in terms of number of objects. One can convert to the Numeric Python
view of things by multiplying the stride by the sizeof the value type.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.5 SIDL Runtime 49

5.5 SIDL Runtime

Inheritance

There is a small collection of interfaces and classes that are defined by the SIDL runtime library. Some of these objects
are implicitly inherited by objects and classes.

All classes that do not explicitly extend another class implicitly extend sidl.Basglass . All interfaces that do
not explicitly extend another interface implicitly extend sidl.Baseliterface . Furthermore, sidl.Basx’lass
implements sidl.Baseliterface . This means that all classes can be cast to a SIdl.BasgClass and all ob-
jects can be cast to sidl.Baseliterface .

All exceptions must explicitly implement the interfaces in S1dl.BaseFxcaatian . The easiest way to do this
is to is to extend the provided class sidl.SIDIFXECEIN . This is a class the implements the basic Exception
functionality for you, including cetiNote and s=tNote . You may also override one or more of these functions if

you wish.

If a method in SIDL claims to throw an object that does not inherit from s1dl. BasgFoaotian , this is an error
and will be reported by Babel.

Interfaces

The SIDL runtime library provides three sets of interfaces:

Base The base class, interface, and exception upon which all Babel-enabled software builds.

Library Handler The DLL and Loader classes facilitate dynamic loading of objects at runtime.

Introspection The ClassInfo interface and ClassInfol class enable checking meta-data associated with a class.

The interfaces for the runtime library, as described in SIDL, are:

//
//
//
//
//
//
//
//
//
//
/]
//
//
/]
//
//
/]
/]
//
/]
/]
//
//
//
//
/]
//
//
//

File: sidl.sidl

Release: QaEe: S

Revision: QH#) Revisin: 1.4 S

Date: Sate: 2004/01/28 19:32:28 S

Descridtian: Sl interface desrdpdan far the kesic SIIL nntime lilvary

Qprigt () 201, Tre Regts o te Uivesity of Glfomia.
Pdesd at te lawece Livemoe Natiawl Iaooatory.
Witten by te Copoents Tean <capoents@lnl.gor

This file is part of Bel. BExr moe infamatio, T

itz / . 1INl .gov/CASC/canprents/ Please reed the QPRET file
for Qr Notiee ad the LINE file for te QU Iesser Gaeral Rblic
License.

This pogran is distrhited in the hgee thet it will ke weful, bt
WITHUT AY WRRANIY; withot een the IMLIED @ WERRANY &

MRCHANTARILITY a FTINES R A BRIJIAR HREOFE. S te tams ad
arditios of te QU lesssr Goeral Rblic License for moe details.

Yu doidd ree recierd a apy o te QU lesser Geeral Rblic Licese
alag with this pogarny, if nof, wdite to te Fee Softwere Foudation,

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

50

SIDL Basics

//

Ic., 9 Taple Plae, ute 30, Bstm, M 2111307 UTA

©

A age to the Intdrsic mwfaerwre out in te udedying doject.
Qoject in <codesSIN</aode> e an intrirsic referace cout.
ojects aotine to exist as lag as the wfamre out is
positive. Cliets dwould @l this metdod weser tey

ceate avter aooirg refeeee o an dopct o interface.

<o

©
This does ot hae a reim wale lbearse taee is m lagee
Jnja_cﬁtéit e tet an refer to an interfas ar a

* ok ok ok ok ok ok ok ok

* Drease by ae te intrinsic wfemre out in te udedyirg
* doject, ad celee the dojpct if the refamre is moositive.
* Qopcts in <codeSI</axde> e an intrinsic referae cort.
* Cliegts dwoild @l this metod weser tey moe a

* referae O an dopct o dnterface.

*

/

wid deleteRef();

Jrx
* Reim tme if ad aly if <codedoi/code> refers to the sawe
* doject as this doject.

*/

bool isSare(in Baseliterface idog);

Jix
* ek weter the dojct an syt the socified inteface o
* dass. If the <coeSIO</axke> Gre mae in <ccerae/aodke>

* is syooted, ten a rfeece to tet dojpt is rmored with te
* referee cout increnented. Te allee will ke resoosible far
* alling <codexdeleteRef</aode> o te retmmed doject. If

* the soecified Gyee is ot sygpoorted, then a nill rw=feere is

* rebmred.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m. I

5.5 SIDL Runtime 51

}

Baselterfae qeyht(in sing rawe);

/**

* Rehim wether this dojct is an imstace of the goecified type.
* The strirg rae mst ke te <ccdeS</ccde> e mae. This
* rotire will rebm <cokestned/aake> if ad aly if a ast to
* the string tyee rae wolld suooesd.

*/

bool isBpe(in string rawe);

/**

* Retim the metachta admout te cdlass inplameting this interface.
*/

ClassInfo getClasshto();

/**

* Bery dass inplicitly irerits fran <codeBaseClass</aades. This
* class inplaets the methods in <codeBaselnterface</aodes.
*/

class BasClass inplaets Baseliterface |

%

i

* M ae to the inrirsic r=faere out in the udedying doject.
* et in <cadeSI</aake> e an intrinsic referare crt.

* ojects axtine to exist as lag as the referere cout is

* positive. Clists dould @l this metod weser tey

* crgte avter aooiny refeere to an dojpct ar interface.

*

*

<o

* This doss ot e a reim whe bEaee tae is o lagee
*] e tet an refer to an interfae o a

* class.

*</p

Jx

* Deaease by ae te inrinsic rwfeere cut in te udelying
* dopct, ad celete the dojct if the wfamre is mypositive.
* Qojcts in <codesSI</code> hae an intrirsic referace cout.
* Cligts dwoild @l this mettod weser tey moe a

* referee to an dopct ar interface.

*

/

firal woid deleteRef();

Jrx

* Reim tme if ad aly if <codedoi/code> refers to the sawe
* doject as this doject.

*/

firal bool isSse(in Basehtedface id9);

s
* ek weter the dojct an syt the socified inteface o
* dlass. If the <coeSIH</cake> tyee rae in <acderaed/cake>

* is sypoorted, then a referere to thaet dojpct is rered with the
* referee cout increnented. Te allee will ke resoosible far
* alling <codedeleteRef</aue> m te reoured dofpct. I

* the goecified Gype is ot sypoted, ten a nill r=feawxe is

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

SIDL Basics

* rebred.
*/
Beselnterface quexyInt(in - strirg rae);

/**

* Reim weter this dojct is an istae o the soecified typee.
* e strirg rae mst ke te <cadeSHc</ak> tyee rae. This
* ratire will retum <codestne</code> if ad aily if a ast to
* the string e mae would suoossd.

*/

bool isBpe(in string rawe);

/**
* Retim the metachta amut te dlass inplawting this interface.
*/
firal ClassTnfo gatClassTnfo();
}

/**

* Bary exsdion Inplavetts <codesBasahxoaptiax/aade>. This interface
* eclares the lasic fuctiamlity o gt ad st err messsps ad stk
* traces.

j.t:ée:face Basshxoeotion {

/E*E@:um the messap associated with the exoscton.
Stt/jlggeﬂ\bte();

/**

:Sett}en&;sage asxciated with the exgdo.
\oi/dsetbbte(m strirg messae) ;

/**

* Reims fametted string axtaining the cayoateation of all
* tracelires.

*/

strirng etTrace();

Jrx
* s a stdrgified etxy/lire to the stak tace.
*/

wid ad[Lire](in Strirg tracelire);

Jrx
* Famats ad adk an etry to te stak trae lkessd o tre

* file rawe, lire nnber, ad metod e

*/

wid add(in strirg fileawe, in int linep, in strirg netodae);

ok
* <cooesSIN Boeptiank/aade> povices the lesic furtaelity of te

* <ot Basskoaptiak/aade> inerface for oetting ad setting eror

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.5 SIDL Runtime 53

}

Jrx
*Wmlaadﬂgadyfmﬂ_caﬂy lirked lilvary, tee are tree
* oettirgs: IOAL, @A ad SISIFE.
*/
enm S |
/7 Ntapt to leed the spbols into a loal rameseEce. Y/
1oL,
/7 Mtept to led the sydwols into the gldal raesme. ¥/
3,
/7 Uee the sope sedrg fram the SO file. ¥/
SIS
}

/**

*Wmlcadﬂg a dymeically linked libary, tee ae tres
* oettirgs: IA%ZY, NOW, SORESOVE

*/

eun Resole |
/¥ Resolve sydols o an as rexed kasis. ¥/
1A7Y,
/¥ Resolve all syiwols at leed tme. */
N,
/* Ue te resole sething from the S file. */
SIRESIVE

}

Jox
*ﬂe@d@[lk/cnd@ class eargmulates agess to a sirgle
* dyramically lirked lilyary. Ols ae loeged at rurtime wsing
*tle<code>lcadmkxary</code> method ad later wloded wsing
* <cooeunlcedl ilrary</aade>. Sydols in a leeded livary are
* replved to an gEge minter by method <codeslodkySynool </aodes.
* Class irstaces are aested by <cxkearesteClass</aake.
*/
class OL {

¥

Iced a dyramic hrkhbﬁrymﬂgtkesg&nﬁeim Te
[RI HH_Y IE ()f t}‘.e fmn 'HBjn ":ljb " "ﬁ_‘l_e " "f@ " a
"hidp:". ALRItertstartsmﬂlanyotlrerp:otmlsmrg
is assmed to ke a file ae. Te "min" W aestes a
hlxaryﬂataﬂa\sacc&sstog]d@lsyfmlsmt}emrmg
pooan’s mein addess s, The "HibiX"' RI aowerts te
library "X' into a platfam-specific rae (eg., liXso) ad
leeds tat lilyary. Te "flei" W goas te OL fram te
Jecified file w@wth. The "fp" ad "mtpe" Rs apy te
Secified lilvary fran the rawte site into a loml tapoeary
file ad gen thet file. This methad r=oms te if te
OL wes loaded suessfully ad falss odewise. Note that
te "fp" ad "Mtp" potoxls ae wvalid aly if te W

url RL to can a
i te loed. This e Ja file
(@ meeata file podesd by lidcool) o

N R T I I A

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

SIDL Basics

i
b
@
%
;
i
i
g

<codestmes/aade> istncts the leeder to
tet sydols an ke rexdhved as reskd (lazy)
insteed of requiring emgything to ke resolved
o (at lod time).

A A

*/

kool loedlibrary(in - strirg ud,
in bl leadGldelly,
in bl lodlazy);

Jrx
*Gett}e]jkraryrﬁre This is the mare uwed to lcad te

hbﬁrym@@l@dl.ﬂb:ar%/cmd@ ecgt tet all file rawes
* aatain the "file!"

JHx
* lodap a sydol from the OL ad rebim the assoclated pointer.
* Anill vale is reomed if e mae does ot exdst.

*/

agage lodkuSyntol (in Strirg lirker rane);

Jrx
* Gregte an instae of the S class. If the dass castactor
* is ot defired in this OI, ten r=bm il
*/

BasClass areateClass(in Strirg sidl rave);

}

Jrx
* Class <cooelcadar</aone> maees daanc loding ad sdwl rae
* reolition for te SIL nutine Tre <aolodar</aake> class
Systam.
* maeces a libary ssardh mth ad kess a reoad of all lilvardes
* loeged throoh this interface, ichding the indtdal "gldwl" sypdols
* in the main progam. Uless eplicitly s, the ssardch wmth is taen
* fran the ewiramet variable SIOL UL BEATH, which is a saui-colon
* gyarated ssgEe of RIs as desrdbed in dlass <codelIc</aodes.
*/
class Iosder
s
* S te ssardh @th, which is a ssd-oolon ssarated ssgEee of
* (RIs as desriked in dlass <cadellI</aaks. This methed will
* imnalicate ay existing ssarch ath.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m. I

5.5 SIDL Runtime 55

*/
static wid setSeardRath(in string @th rare);

/**

*Reum te armmat ssardh @mth. If e ssardh @th hes ot been
* o=t, ten te ssardh @wth will ke tdken fron aviramat variddle
* SIO, UL, PATH.

*/

static string oetSeardRath();

/**

* pd the soecified @mth fragret to the begimirg of the
*armat sardh @the. If e ssadh @th hes ot et been ==t
* by a ;all to <cakesstSardrath/code>, then this fraget will
* e gpaded to the @th in eviramet vaddole SO DL BATH.

*/

static wid adSeardPath(in string ath fragrat);

* loed the spcified lilvary if it hes rot alresdy leen loeoed.
* The (RI famet 1is defired in class <coeOi</aode. Tre ssrch

Garan ud the (RI to leed. This en ke a .Ja file
(a metacata file podred by libtool) o

may ot ke able to oo te valle pesatad

Qaran loadlazy <cooetues/aade> imstnots te leder to
thet sydwols en ke rexlved as reedd (lazy)
insteed of reyuiring eerything to ke resobed

* @reom if te leed wes suoessful, a mNIL OL dofct is rehmred.

/**

* ypard te socified OL to te begimirg of te list of alreedy
* loeded [ils.

*/

static woid aHIL(n OL dll);

Jix
* Unleed all dyramic lirk lilyardes. Te libary may o lacer

* e wsd to agmss syol rawes. Wen the libary is acoelly

* nlceded fram te mery e dgoads an cetails of the qoerating
*

*/

static wid wlcedlilyaries();

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

56

SIDL Basics

¥

Fird a OL acotaining the geecified infometion for a STL
class. This method ssardes SI files in the ssarch @th loddrg
for a dared lilvary thet aatains te clietsice o IR
for a partiadlar SIML class.

Garan sidl rare the fully quelified (lag) rae o te
class/interface o ke ford. Pdar rawes
are sgarated by prdad derecters fram exch
oter ad the dass/interfae ree.

@aran taroet to fird a cliat=sice lirdirg, this is
mamelly the rmae of the lagee.

To fird te inplaetation of a dlass
in ader to meke ae, yu dold @mss
te string "io/inpl" here.

@aram 1Sage this seecifies wether te spbols gould
ke loadsd into te gldal soxe, a loal
s, o uwe te stting in the S file

Garan Resolwe this seecifies wether spdols doudd ke
rechvedl as resd (IAY), aapleely
ml\/ai atloadtJIre(I\UN), a e te

b D S T . S S S S S S S S R e S S S S S S

in strirg ‘@rggt,
in S 1S,
in Resale IResohwe);

JHx
* This povides an interface to the metaceta awildde o the
* class.

*/
interface Classinfo

/A%

* Reim te mae o the dass.

*/

strirng - gethre();

Jrx
* G te vasion of te intemediate dojpct reoesetation.
* This will ke in the fam o meEjor versionminor version.

*/

strirng ostIRErsion();

Jrx
* M Inpleventation of te <cakClassinfo/cae> interface. This povides
* metdoks to st all te atrbhites tet ae reedaly in te

* <areClassInfo/aode> interface.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.6 Objects

57

Jrx
* & te IR mejxr ad minr vasion nodeers.

*/

fimml wid sstIRErsian(in int major, in int minor);

5.6 Objects

One of the strategies that SIDL uses to enforce language interoperability is to define an object model that it supports
across all language bindings. This enables real object-oriented programming in non OO languages such as C and
FORTRAN 77. This also means that the inheritance mechanisms inside real OO languages may be circumvented.

Contrary to newer scripting languages such as Python and Ruby, not everything in SIDL is an object. Only classes
(abstract or not) and interfaces are objects. Everything else (e.g. arrays, enums, strings, ints) is something other than
an object and therefore outside the scope of this Section.

Babel’s Object Model

SIDL defines three types of objects: interfaces, classes, and abstract classes. A SIDL infterfaze is akin to a
Java interface or a C++ pure abstract base class. It is an object that defines methods (aka member functions), but
carries no implementation of those methods. A class by comparison is always concrete; meaning that there is an
implementation for each of its methods and it can be instantiated. An &stract class falls somewhere between
an interface and a class . It has at least one method unimplemented, so it cannot be instantiated, but it also may
have several methods that are implemented and these implementations can be inherited.

SIDL supports multiple inheritance of interfaces and single inheritance of implementation. This is a strategy
found in other OO languages such as Java and ObjectiveC. The words to distinguish these two forms of inheritance are
etark and inplamats . Interfaces can extend multiple interfaces, but they cannot implement anything. Classes
can extend at most one other class (abstract or not), but can implement multiple interfaces.

Furthermore, any inherited abstract methods (inherited from either and abstract parent class or and implemented
interface) will default to abstract unless they are re-declared in the current class. If a concrete class implements many
large interfaces, this can result in a fairly large list of redeclared functions in the class definition. As a shortcut,
we included the inpleventsall directive, a short hand that states explicitly that we intend to implement every
method in the named interface concretely. That’s why, in the following example, class B must be declared abstract,
but class D is concrete. Class B does not redeclare the @intMe function, but class D inplavertsall . There is
no similar directive for inheritance from abstract classes.

We display a small SIDL file below and finish this Subsection with a discussion of its details.

pdae det vasiam 1.0 {
interface A {

wid digalay();
}widprirﬂ\@();

astrat class B inplarwats A {
}Voidcﬁqﬂc‘_fy();

class C etark B {
}widprirﬂ\@();

class D inplarats-all A {

}
}

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

58

SIDL Basics

djct.A s an interface that has two methods digolay() and prirt() . Both of these methods take no
arguments and return no value. (We will discuss arguments and return values in the next section.) Since dopt.A
is an interface, there is no implementation associated with it, and Babel will not generate any implementation code
associated with it.

abject.B s an abstract class that inherits from dbjact.A . Since it redeclares the digolay() method, Babel
will generate the appropriate code for an implementation of this method only. It will not generate code for the other
inherited method ptlnt () (since it wasn’t declared in the SIDL file) and it will not generate constructors/destructors
since the class is abstract.

aject.C s a concrete class that extends the abstract class dbjact.B it then lists only the unimplemented
method orint() , implying that it will use the implementation of digolay() it inherited from its parent.

abjct.D s also a concrete class that uses the inplarats-all

directive. This is identical to using InplarE@ts and then listing all the methods declared in the interface. The
Inplaats-all directive was added to SIDL as a convenience construct and to save excessive typing in the
SIDL file. By virtue of the Inplamaitsall directive, dojact.D will provide its own implementation of all of

bt A s methods, namely digolay() and rirt ()

Methods on Objects

Methods in SIDL are virtual by default. This means that the actual binding of a method invocation to an actual
implementation is determined at runtime, based on the concrete type of the object.
SIDL currently defines three modifiers to methods that change their default behavior.

e firal : Final methods are the opposite of virtual. While they may still be inherited by child classes, they
cannot be overridden.

e Static : Static methods are sometimes called “class methods” because they are part of a class, but do not
depend on an object instance. In non-OO languages, this means that the typical first argument of an instance is
removed. In OO languages, these are mapped directly to an Java or C++ static method.

e gy : reserved for future use.

Parameter Passing

Each parameter in a method call obeys the following syntax
[(rodifier)] (o) (byee) (raw)

Where (mock) s one of in, at, or imadt ; (tyee) is any SIDL recognized type; and (rgre) is any non-
reserved word?>. The (nodifier) is optional, and currently unimplemented. SIDL currently reserves the word
apy for future use as an parameter modifier, and may add others in the future?.

For new users, the parameter’s mode (e.g. 1, A, or Int) is perhaps the most troublesome. On the surface,
it’s easy to explain that in parameters are passed into the code, Qi parameters come out, and I/t parameters do
both. More specifically the rules are:

1. indoes not mean ISt .

2. 1Inarguments are passed by value, therefore what happens inside the function has no effect on the value passed
in (from the perspective of the caller).

3. Imait arguments are passed by reference. The callee is allowed to do whatever it wants with the data passed
in, even destroy the reference and return a new one.

4. Types created on the stack should never be passed as an 10 argument, since the implementation may want
to destroy it.

2Refer to Section A.2 for the list of reserved words
3Babel is still pre-1.0 after all!

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

5.7 XML Repositories

59

5. air arguments are also passed by reference, but they are assumed NI, when they are passed in. Do Not
attempt to pass in a value to a function through an out argument. There is no guarantee that the data will make
it to the Implementation, and if the data is lost, there is no guarantee the reference will be correctly destroyed.

Method Overloading

Method overloading is the object-oriented practice of defining more than one method with the same name in a class.
Doing so allows the convenient reuse of a method name when, for example, the underlying implementations differ
based on the types of the arguments. Actually, support for overloaded methods typically relies on the signature of
each method to ensure uniqueness. In this case, the signature consists of the method name along with the number,
types, and ordering of its arguments.

Since Babel supports languages that do not support method overloading, a mechanism for generating unique names
was needed. These are typically generated by compilers based on hashing the argument types into the method name.
However, developers often manually address this with far fewer characters than would be used by a compiler. Conse-
quently, it was determined it would be more efficient to leave the task of identifying the unique name to the developer.
Therefore, Babel allows the specification of the base, or short, method name along with an optional method name
extension as illustrated in the SIDL file below for the geValie method.

mdkae Oerleed varsicn 1.0 {

class Saple {
it stane ();
int Hahe[Int] (in it v);
chnle Hlalhe[able] (in cable v);
}

}

Thus, the full method name is the concatenation of the short name followed by the name extension. When gen-
erating code for supported languages, Babel makes use of either the short or full method name as appropriate for the
language(s) involved. For those that support method overloading, such as C++ and Java, Babel relies only on the short
method name, thus ignoring the extension. For the rest, like C, Fortran, and Python, Babel must make use of the full
name to ensure methods are uniquely identified.

In the example above, the first method specification takes no arguments so has no name extension. This is accept-
able because there are no potentially conflicting methods at this point for any programming language supported by
Babel. The second method, with the user-defined name extension of I, takes a single int argument, resulting in
the unique method name gehallelrtt . The last method, with a user-defined name extension of Dodole | takes a
single double argument, resulting in the unique method name of cgeValuelodole . Examples of calling overloaded
methods from Babel-supported languages can be found in the respective language binding chapters.

5.7 XML Repositories

Even though SIDL is currently the primary input format for Babel, it is not the only format Babel understands. For
type repositories (similar in function to include directories for C/C++ headers) the preferred language to articulate
types is XML.

Babel has the capabilities to convert SIDL files into XML files adhering to the SIIL.dxd . This capability is
explained further in Chapter 13. The XML files in these repositories can be included in subsequent runs quickly since
all the external references were resolved by Babel during their creation. A SIDL file may refer to unresolved types.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

60

SIDL Basics

babel-0.9.6 Doc Last Modified September 8, 2004

9:11 a.m.

Part 11

Supported Language Bindings

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 6

C Bindings

Contents
6.1 Introduction it ittt ittt tnnneeeeennneeeas 63
6.2 BasicTyPes . . o v v v i i i i e e e e e e e e e e e 63
6.3 Headerfiles o i i i i i i i ittt ittt e e e 63
6.4 Mapping for classes, interfacesand arrays 64
6.5 Calling SIDLmethodsfromCttt tieenneens 65
6.6 Catching and Throwing ExceptionsinC 65
6.7 Implicitly definedmethods o0 it it i ittt 67
6.8 Invoking Babel to generate Cbindings o0 68
6.9 Invoking Babel to generate C implementations 68

6.1 Introduction

This chapter provides an introduction to the C bindings for SIDL. Babel supports both callers and callees written in C
so this chapter illustrates the use of Babel for both. That is, it shows how to use Babel to wrap the implementation of
software written in C as well as how to call software, possibly implemented in any other supported language, from C.

Since Babel’s Intermediate Object Representation (IOR) is written in C, the C bindings are very similar to the IOR.
In addition, all of the objects in the sidl namespace (e.g. sidl::BaseClass, etc.) are implemented in C, so clients can
develop solely with a C compiler if necessary. Of course this seems a little silly since the intent of Babel is to provide
multilingual interoperability.

6.2 Basic Types

The basic types in SIDL are mapped into C according to Table 6.1.

6.3 Header files

If you would like to use type X.Y.Z from C (package X, subpackage Y, class Z), you should #irchice ~ "X_Y_Z.h"
. If you would like to include the header files for a whole package X.Y, you can #irchide "X_Y.h" . For example,
you can include all the types in the Sidl namespace with #inchude "sidl.h"' .
Each client side header file will ensure that Sidl _hesder.h isincluded. sidl hesder.h defines:

1. st sidl _doarplex for the SIDL dcomplex type with parts named real and inegirery
2. st sidl _faarplex for the SIDL fcomplex type with parts named real and imegirery

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

C Bindings

Table 6.1: SIDL to C Type Mappings

SIDL TYPE | CTYPE

it it _t

Ilag 4 t

float flcat

chnle cole

ool typedef sidl ool
dar

string der *
faplex st sidl _famplex
coplex st sidl _doaorplex

aim enm
gage wid *
interface | typedef
class Tyeecef
array stmxct *

3. int3? _tand irt4 _tfor the SIDL int and long types;

4. atypedef for sidl _laol for the SIDL bool type;

5. preprocessor symbols TRE and FALTE ; and

6. function prototypes for the multi-dimensional array APIs for the basic SIDL types.

In general, clients don’t need to worry about including sidl _hesder.h because the Babel generated header files
will include it for you.

6.4 Mapping for classes, interfaces and arrays

Because C doesn’t have built in mechanisms for protecting the global namespace, the C mapping attempts to avoid
namespace collisions by using struct and method names that incorporate all the naming information from the package,
class and method names. For a type Z in package X.Y , the name of the type that C clients use for an object reference
is X Y_7Z. X.Y_Zis defined as follows in the X Y_Z.h header file:

stmct XY Z dojct;
struct XY 7 array;
typeef st XY Z doject* Y Z;

This code fragment also shows that struct X Y_7Z__array is used for a multi-dimensional array of X.Y.Z
objects. Here are some additional concrete examples of the object and interface reference types derived by the C

mapping:

ok
* gl "sidlBeeClass" (version 0.5.1)

*

* Bary dass Inplicitly drherits fran <caeBassClass</aode>. This
* class inplaets te methods in <codeRasenterface</aode>.

*/

bpeef st sidl BeseClass doject* sidl BaseClass;

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

6.5 Calling SIDL methods from C

65

* Sndol "sidl .Baselnterface" (version 0.5.1)

*

* Bary interfaee in <odeS</ade> nplicitly irkerits
* fran <codeBaselnterface</aode>, ad it is inplavented

6.5 Calling SIDL methods from C

The names of the C functions used to call SIDL methods are a concatenation of the package name, the class or interface
name and the method name(s) with the period characters changed to underscores . If the method is specified as being
overloaded (i.e., has a name extension) , the full method name is the concatenation of the package name, the class or
interface name, the method name, and the type extension. For non-static methods, the object or interface pointer is
passed as the first parameter before any of the formal parameters. This parameter operates like an in parameter.

Examples of calls to SIDL overloaded methods are based on the overload _sarple.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of the geii\/a]lp, method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

int Wi, i1, iresult, rwesult;

Owerleed Saple t = Orrlced Saple create 0);
mesilt = Orrloed Saple getiAle(t);

iresdlt = Owrlcd Saple geValelnt(t, i1);
result = Owerleed Saple getvallERDL (L, Kl);

Here are the C bindings for the critical aXRef and celeteRef methods from sidl.Baselnterface

These methods are mentioned in particular because C clients must manage object reference counts themselves.

wvoid
sidl BaseTrterface adRef(
sidl BaseTnterface =lf);

woid
sidl BaseTrterface deleteRaf(
sidl Baselnterface slf);

These same methods can be called from the sidl .Base(Class bindings. In fact, every C binding for an interface
or class will have entries for adRef and deleteRef

woid
sidl BaseClass adRef(
sidl BaseClass =lf);
woid
sidl BaseClass deleteRef(
sidl BaseClass xlf);

6.6 Catching and Throwing Exceptions in C

For methods that can throw exceptions, there is an extra CUt argument in the generated code that holds the exception.
For maximum backward compatibility and consistency, the extra argument is of type Sidl.Baselnterface

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

66

C Bindings

When the exception parameter is not NILL , it indicates that an exception has been thrown. When an exception is
thrown, the caller should ignore the value of the other QUL parameters as well as the function’s return value. Every
time you call a method that potentially can throw an exception, you must check the result. Otherwise, those exceptions
will be utterly ignored and leak memory. There are are four macros provided in sidl_Exception.h to help with
exception checking. Their use is fairly obvious from their names. They are:

THROW(EX VAR, EX (1 S,M35)
CEK(EXVAR)
TFR(EXVAR)
CATCH(EX VIR, sid. NAVE)
In these macros, EX_VAR is the exception object itself, EX_CLS is the name of the SIDL type we wish the
exception to be in a string, MSG is the message we wish to include with the exception and a string, and sidl NAME is

the type of the exception we expect to catch, as a string.
The following SIDL method taken from the Babel regression tests demonstrates how exceptions are handled.

it gtFib(in it n, in int nexdgth, In It nexywalle, In It dgoth)
thraws NeggtihvEaleExogctian, FitFoactiay

Here is the C binding for this method:

iRt

BExoeptiaflest, Fil getFil(
FxoctiaiTest. Fib =lf,
ittt n,

iRt mex dgcth,

Ittt mexvale,
ittt dath,

sidl BaseTnterface * ex);

Here is an example of how to perform exception handling in C using a package of macros defined in sidl _Fxogption.h

Note that the macros assume the exception class that is being thrown and caught inherits from or implements

sidl.BasaFxoaatian — something guaranteed by Babel.

#Hrchoe "sidl Bosotion.h”
/5 ..nmeos lires cEleted... %/

else if (SIOL CATCH(ex, "ExoactiaiTest . ToRBigexoactian)) {
tracdak((ex);
SIIL JFAR(_ex);

}

elee if (ex = NIL) {
rem FALSE;

}

SIIL (HRK(ex);

ream THE;

EXTT:;
tracdak((ex);
SIIL, AFAR(X)) ;
reom FALSE;

babel-0.9.6 Doc Last Modified September 8, 2004

6.7 Implicitly defined methods

67

You do not have to use the macros provided in sidl _Excgotian.h if you do no want to. You can check _€x by
checking if it is not NI, and then trying to cast it to the various potential exception types.

The following code snippet shows how to throw an exception in C using the macros from sidl _Fxogotion.h
The first argument to SICL _THRON is the exception output parameter, and the second argument is the type of exception
being thrown. The third argument provides a textual description of the exception.

#irchre "sidl Exoeorion h"

/* ..nmeos lines deleted... %/
iRt
inpl. FosptianTest, Fib getFib(
Bxoectiaflest. Fib slf, ittt n, IRt mexdgth, IntP t mexvale,
iRt dgtth, sidl Basenterfacs*)
{
/* DONOHEFE splicer.begin(Bogdriailest. Fib.getFib) */
if n <0) {
SITL, THROW(* ex,
Eb@qtij.crﬂest_l\IaﬁU_\é\falL@(mjm,
"alled with regtive 1n");
}
/% L lines cEleted... ¥/
EXTT:;

/* SILTRW rmeao will jup hee. ¥/
/* Cleen p e dodd ke hee. ¥/
rem theale;
/* DONOHEFE splicer.ad(Bogdtiailest. Fib.getFib) */
}

The code section labeled EXTT is where you should put clean up code. The caller will ignore all the values leaving
your C function (i.e., QUL or iUt parameters) because you have thrown an exception, so your code should delete
any references you were planning to return to the caller. It’s good practice to set all in0ut and QUt array, interface
or class pointers to NILL . This makes things work out better for clients who forget to check if an exception occurred
or willfully choose to ignore it.

6.7 Implicitly defined methods

The C binding for interfaces and classes includes two methods for perform type casts. The methods are named _Gast
and _Gast? . The leading underscore prevents these built in methods from conflicting with a user method because user
methods cannot begin with an underscore. Neither of these methods increases the reference count of the underlying
object — this is contrary to standard methods that always return new reference counts. Every object has these two
methods, we will use Sidl.Base(Class as an example. Here are the signatures for _cast and _aast2 from
sidl .BaseClass

sidl BaseClass

sidl BasClass cast(

wid* doj);

\eileq

sidl BaseClass _aast2(
wid* doj,
arst der* tyee);

The _cast method attempts to cast a SIDL interface or object pointer to a pointer to Sidl .BasaClass . The
_@st? method attempts to cast a SIDL interface or object pointer to a pointer to an interface or object pointer of the
type named tyee . In the case of _Gast2 , the client is responsible for casting the return value into the proper pointer
type. Both methods are NILL; safe. A NULL, return value indicates that the cast failed or that doj was NULL .

Non-abstract classes have an additional implicit method called _Cregte to create new instances of the class.
Interfaces and abstract classes do not have this method because you cannot instantiate them. The _.Create method
returns a new reference that the client must manage. Here is an example of its signature.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

68 C Bindings

6.8 Invoking Babel to generate C bindings

To create C stubs (i.e. code to support C clients to a set of SIDL classes or interfaces), you should invoke Babel as
follows !:

% bbel —cliet=C file.sidl

or more cryptically

% bbel € file.sidl

This will create more files than you can shake a stick at. The files ending in _.TXR.h and _IR.C are the Interme-
diate Object Representation. The files ending with _St10.C are the C stubs — the interface between a C client and
the IOR. The remaining header files have external C API that C clients may use.

To use the C stubs, you must compile the stub files whose file names end with _Sto.c and link them against the
SIDL runtime library and a backend implementation.

6.9 Invoking Babel to generate C implementations
To implement a set of SIDL classes in C, you should invoke Babel as follows:

% bdbel —sarver=C file.sidl

or use the short form

% bbel -sC file.sidl

In both cases, the use of the default repository is assumed for resolving symbols.

IFor information on additional command line options, refer to Section 3.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 7

C++ Bindings

Contents
701 Introduction i it it it e e e e e e e e 69
T2 BasicTypes . . v v v v i i i et e e e e e e e et e e e e e e e e e e 69
73 SIDLC++Header Suffix o0 i ittt ittt ittt i i e 69
74 SIDL’sMainC++HeaderFile i 70
7.5 Calling Methodsfrom C++ o vt i i i i it ittt ettt e e 70
7.6 Catching and Throwing ExceptionsinC++. 71
7.7 Invoking Babel to generate C++stubs 0o 72
7.8 Implementing SIDL ClassesinC++ v v v v vttt i oo 72
7.9 Accessing SIDL Arrays From C++ o 0 0 v v i it ittt i e e e e e e 73

7.1 Introduction

This chapter provides an introduction to Babel’s C++ bindings. It illustrates the support provided for both C++ callers
and C++ implementations, or callees.

Unlike C or FORTRAN 77, there is no runtime library created for a particular C++ compiler at installation. Instead,
when you generate C++ from SIDL, you will find Stubs (aka proxy classes) generated for SIDL base classes and will
have to compile and link them into your application.

That said, if you switch to a different compiler after installation, there may be some values set in Ialeel _axfig.h
that become invalid. This can be overcome by copying the header file, making the necessary changes, and placing the
modified header file earlier in the include path than the original one.

7.2 Basic Types

The basic types in SIDL are mapped into C++ according to Table 7.1.

7.3 SIDL C++ Header Suffix

The first thing that C++ users will notice is that C++ headers have a ”.hh” suffix to distinguish them from C’s ”.h”
suffix. This convention was born out of necessity to distinguish both differing header files and their include guards.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

C++ Bindings

Table 7.1: SIDL to C++ Type Mappings

SIDL TYPE | C++ TYPE
int nt? t

Ilag 4 t
float fleat

aanle dole

bl ool

dar der

string stdl: :string
faplex : :faplex
coonplex sidl : :ccaplex
aim aum

qEge sidl: :qeope
Iinterface class

class class

array sidl::array (template specialization)

7.4 SIDL’s Main C++ Header File

All C++ code generated by Babel #inclice s afile called ”sidl _cxx.bh 7. This file includes kalel _axnfig.h
the C header file that defines configuration information. Finally, sidl _cxx.bh defines some C++ classes in the SIDL
namespace such as

o sidl::StuiBase [implementation detail] Common base class for all C++ stubs (proxy classes)

template <T,U,V> SIDL.::array_mixin [implementation detail] Common base class for all C++ array classes.

typedefs for sidl::famplex |, sidl::domplex ,and sidl::gege (usually std: :aoplex
std::caplex and void* | respectively)

o taplate<> sidl:i:array Template array type for SIDL arrays.

template specializations [implementation detail] specialization of arrays of all SIDL types are defined in this
file.

7.5 Calling Methods from C++

Since C++ is an object-oriented language, there is a lot less programmer overhead in using SIDL from the C++
perspective than from non-OO languages such as C or FORTRAN 77.

These proxy classes (we call ”stubs”) serve as the firewall between the application in C++ and Babel’s internal
workings. As one would expect, the proxy classes maintain minimal state so that, unlike C or FORTRAN 77, there is
no special context argument added to non-static member functions.

Below are examples using standard classes. The first is an example of creating an object of the base class and its
association to the base interface.

sidl: :BasxClass doject = sidl::BasClass:: creste();
sidl: :Baselnterface interface = doject;

Here is an example call to the addSearchPath in the SIDL.Loader class:

std:strirng . s("/ay/locdkdng/here) ;
sidl : :Icader: :addSearadrath(s);

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

7.6 Catching and Throwing Exceptions in C++

71

Table 7.2: SIDL Features Mapped onto C++

SIDL Feature C++ Implementation

packages C++ namespaces (no name transformations)
version numbers | ignored
interface C++ class (called ”stub”, serves as a proxy to the implementation)
class C++ class (called ’stub”, serves as a proxy to the implementation)
methods C++ member functions; uses base method name when overloading; no name mangling;

99 99

NOTE: Member functions beginning with a leading underscore ”’_” may be Babel in-
ternals, or specific to C++ binding.

static methods Static C++ member functions; uses base method name when overloading; no name
mangling; even works for dynamically loaded object’s exceptions thrown and caught
using C++ exception handling.

reference counting | SIDL C++ stubs can be treated as smart-pointers. Constructors, destructors, and oper-
ators are overloaded so that explicit calls to adRef() or deleteRef() are rarely
needed.

casting Assignment operators are overloaded to handle safe casting up and down the inheri-
tance hierarchy. User should never call dyremic _cast<>() on a SIDL object since
the stubs inheritance hierarchy does not follow the SIDL inheritance hierarchy. At-
tempted downcasts using assignment should be checked by a call to (_is_nil() , or
_rot _nil()).

instance creation | Use static member function ”_Cregte . The default constructor for a C++ stub cre-
ates the equivalent of a NULL pointer. Works only with non-abstract classes.

Examples of calls to SIDL overloaded methods are based on the overload _sarple.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of the get'\/éll,e method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

bool bl, lesdlt;
it i1, dresult, rresdlt;

Oerlced: :Saple t = Oerlod::Saple:: _create();

mesult = t.ostale();
bresilt = t.getahel);
iresdlt = t.getale(il);

7.6 Catching and Throwing Exceptions in C++

Adapted from the Babel regression tests, the following is an example of a package called ExceptionTest that has a
class named Fib with a method declared in SIDL as follows:

it ogtFib(in it n, in int nexdgth, in it nexywalle, In It dgth)
throns Neggtivaalieeaaiay, FiFxoactiay
The corresponding C++ code fragment to use this method is:

Bosotiaflest: (Fib fib = Bogotiaflest: [Fio:: creste();

try {
int result = fib.getFil(4, 100, 3000, 0);
atr < "Result o fib.ggFil() =" < reqilt < adl;
} Cthl// (Exoaddiailest: Negptivaalugksogation e) {

babel-0.9.6 Doc Last Modified September 8, 2004

C++ Bindings

} c;ttch (PxogdiorTest: :Fidsoeption e) {
,

This example shows the standard way to throw an exception in C++. You are not strictly required to call the
sNote and add methods; however, these methods provide information that may be helpful in debugging or error
reporting.

e t
Bxogctiailest: :Fib inpl : :oetFib (

A/ iRt n, [ne/ ittt mex dath,
MM/ ittt mexvalue, At/ InfRt dgath)
tdrow (

::Eb(gt]_crﬂ“est: Bhﬁtl\/é\fahmm},

y : :Bxogdtiailest: (Fildogdtion

// DONOHEFEE splicer.egin(Exosdtiailest. Fib.getFib)
if n<0) |

Necptivaalugisosctian ex = NeggtivealueExosotian: :_create();
ex.s=eote("n recptive);
ex.ad(_FIIE |, _IINE "Exoeptiailest: :Fib dnpl : :oetFild");
throw ex;

}

// s=seral lires delete

// DONOHHEIE solicer.erd(FxoactiaiTest. Fib.cetFib)

}

7.7 Invoking Babel to generate C++ stubs

To create the C++ stubs from a SIDL file, invoke Babel as follows !:

% bbel —clien=CH file.sidl

or simply

S bbel CH file.sidl

This will create a babel.make file, some C headers and sources, and many C++ headers and sources. Files ending

in ”.c” or ”.h” are in C, files ending in ”.cc” or ”.hh” are C++.
You will need to compile and link the files together to use the C++ stubs.

7.8 Implementing SIDL Classes in C++
Much of the information from the previous section is pertinent to implementing a SIDL class in C++. The types of the
arguments are as indicated in Table 7.1. Your implementation can call other SIDL methods, in which case follow the

rules for client calls.
To create the implementation, you must first have a valid SIDL file, then invoke Babel as follows:

$ el —server=CH- file.sidl

or simply

IFor information on additional command line options, refer to Section 3.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

7.9 Accessing SIDL Arrays From C++

73

% bbel -CH file.sidl

This will create a makefile fragment called babel.make, several C headers and source files, and numerous C++
header and source files. To create a working implementation, the only files that need to be hand-edited are the C++
“Impl” files (header and source files that end in _Inmpl.lh or _Inpl.ac). All your additions to this file should
be made between code splicer pairs. Code splicing is a technique Babel uses to preserve hand-edited code between
multiple invocations of Babel. This allows a developer to refine their SIDL file without ruining all their previous
implementations. Code between splicer pairs will be retained by subsequent invocations of Babel; code outside splicer
pairs is not.

Here is an example of a code splicer pair in C++. In this example, you would replace the line // Insert code here...
” with your implementation.

wid MEadace: MClass: mypMetod() {
// DDNDMHEEE solicer.beginMPackege MClass.mMetdo d)
// Irsxt axke here...
// DOAUMHEFE splicer.adMPackage MClass.mMethad)

}

It is important to understand where and why splicer blocks occur. Sphcer blocks appear at the beginning and end
of each Impl header and source file; for developers to add #inchie s and other miscellaneous items respectively.
In the headers, there is a splicer block that allows a user to make the impl class inherit from some other class. From
SIDL’s point of view this is private inheritance — meaning that it is useful for inheriting implementation details, but
they can’t be automatically exposed to the SIDL method dispatch mechanism. There is a splicer block inside the class
definition for developers to add any data members the wish to the class. In the source files, splicer blocks appear
in each method implementation. There are two implicit methods (i.e., methods that did not appear in the SIDL file)
that must also be implemented. The _ctor method is a constructor function that is run whenever an object is created.
The _dtor method is a destructor function that is run whenever an object is destroyed. If the object has no state, these
functions are typically empty.

7.9 Accessing SIDL Arrays From C++

Although it is feasible to expose the underlying C array API to create, destroy and access array elements and meta-data,
the C++ bindings provide a sidl: :array<T> template mechanism that is more in keeping with C++ idioms.

For SIDL built-in types, template specializations of sidl::array<T> are defined in sidl _cx.th . For SIDL
interface and classes, the array template is again specialized in the corresponding stub header. The reason for the
extensive use of template specialization is an effort to hide the detail that the array implementation is really templated
on three terms: the type of the C struct that represents the array internally, the internal representation of each item in
the array, and the C++ representation of each item in the array. (See array mixin in sidl ox.h for grungy
implementation details.)

An example is given below.

iRt len = 10; // amay legth=lo
Ittt dm =1; // ae dmesiasal
Xt lower(l] = {0}; // zro offset
ittt yper(l] = {lexl);

Yt e = nedPrme(0);

// cregte a SIL amay of pnes.
sidl: :array<int32 a = sidl: :amayint3? £ :areateRow(dim, lorer, uper);
for(It 3=0; iden; +H) {
e = nextPrime(e);
a.set(i, wv);
}

Of course, the example above is only one way to create an array. The list of member functions for all C++ array
classes is:

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

74

C++ Bindings

// axstmctars

aray (amyixt * sc); // intemsl
aray () ; // epy
//

Taray() ;

// creatim

static anEy<se>

oet(;

1.¢ o<l il, Xt i2);
item o wageer © et(int £ il, Ittt 12, iRt i3);
item ¢ et(intR . il, Ittt 12, iRt i3, iRt
item o wrageer © et(cast IRt rirdices);
wid s=f(int2t 1, itemocxwageer t elan);
wid sst(int2t i1, intRt 12, itemoxwapes t elam);
wid sttt i1, Rt 12, iRt i3,

item o wrageer © elam);
wid sttt i1, Rt 12, iRt i3, iRt i4,
item o wageer © elam);
wid sef(aast ittt Firdices, itamoxwager t elan);

// ofrer agessrs
i@t dimen() aost;

ittt lower(ittt dim) arst;
Ittt ygoer(IRt dim) arst;
Ittt strde(ittt dim) aast;

bool _isnil() cast;

babel-0.9.6 Doc Last Modified September 8, 2004

i4);

7.9 Accessing SIDL Arrays From C++

75

bool _rotnil() cast;

// gt a cast pointer to te actml amay o
arst amay iac t* _oet dar() ast { mum damay;)

// et a roraast pointer to the acthel amay dor
array iar t* _oet dar() { mom damay;}

where
e array _iar _tis the type of the C struct that represents the array internally,
e itam _iar tis the internal representation of each item in the array,

e ifan ox _wrageer _tis the C++ representation of each item in the array

Please note that all SIDL array constructors are static methods returning a newly allocated array. Normally, you
assign the return value to a variable.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

76

C++ Bindings

babel-0.9.6 Doc Last Modified September 8, 2004

9:11 a.m.

Chapter 8

FORTRAN 77 Bindings

Contents
81 Introductionttt iii it tuntneeeeennneeeas 77
82 BasicTypes . . . v v v v i it e e e e e e e e e e e e e e 77
8.3 Calling Methods From FORTRAN 77 ittt ittt 78
8.4 Catching and Throwing Exceptionsin FORTRAN77 79
8.5 Invoking Babel to generate FORTRAN77Stubs 80
8.6 Implementing Classes in FORTRANT77ttt 81
8.7 Accessing SIDL Arrays From FORTRAN77 i vt v vt v v 82
8.8 FORTRAN 77 objects withstate 83

8.1 Introduction

This chapter provides an introduction to Babel’s FORTRAN77 bindings. Babel supports both callers and callees
written in FORTRAN 77 so this chapter illustrates the use of Babel for both. That is, it shows how to use Babel to
wrap the implementation of software written in FORTRAN 77 as well as how to call software, possibly implemented
in any other supported language, from FORTRAN 77.

8.2 Basic Types

For pointer types, such as opaque, interface, class, and array, a 64-bit integer is used, so FORTRAN 77 code will be
portable between systems with a 32 bit address space and systems with a 64 bit address space. On a 32 bit system, the
upper 32 bits of these quantities are ignored. Systems with more than 64-bit pointers aren’t currently supported.

Generally, clients should treat opaque, interface, class and array values as black boxes. However, there is one value
that is special. A value of zero for any of these quantities indicates that the value does not refer to an object. Zero is the
FORTRAN 77 equivalent of NULL . Any nonzero value is or should be a valid object reference. Developers writing
in FORTRAN 77 should initialize values to be passed as in or inout parameters to zero or a valid object reference.

When mapping the SIDL string type into FORTRAN 77, some capability was sacrificed to make it possible to use
normal looking FORTRAN 77 string handling. One difference is that all FORTRAN 77 strings have a limited fixed
size. When implementing a subroutine with an out parameter, the size of the string is limited to 512 characters.

Enumerated types are just integer values. The constants are defined in an includable file assuming your FORTRAN
77 compiler supports some form of including.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

FORTRAN 77 Bindings

Table 8.1: SIDL to FORTRAN 77 type mapping
SIDL TYPE | FORTRAN 77 TYPE

int IN[KFR*4

layg INTEFR*S

flcat REAL

danle DOHE ERCISION
Jasolk TOEICAL

dar (ERACTER*L
striny (PRECTER* (*)

famplex CEEX
chplex | DOBEE QVELEX
aim INTEER
g e INTHFER*8

8.3 Calling Methods From FORTRAN 77

All SIDL methods are implemented as FORTRAN 77 subroutines regardless of whether they have a return value or
not. For object methods, the object or interface pointer is passed as the first argument to the subroutine before all the
formally declared arguments. The exception is static methods, where the object or interface pointer does not appear in
the argument list at all.

When a method has a return value, a variable to hold the return value should be passed as an argument following
the formally declared arguments. This extra argument behaves like an QUL parameter.

The name of the subroutine that FORTRAN 77 clients should call is derived from the fully qualified name of the
class and the name(s) of the method. If the method is specified as overloaded (i.e., has a name extension), the method’s
full name will be used. That is, the concatenation of the short name and the name extension will be used for a unique
method name. Hence, to determine the subroutine name for FORTRAN 77, take the fully qualified name, replace
all the periods with underscores, append an underscore, append the short method name, append the method name
extension (if any) and then append ”_f”.

For example, to call the deleteRef() method on a sidl.Raselnterface interface, you would write:

intecpr*8 interfacel, intefac?

logical arssare
C axk to initdalize interfacsl & interface 2 here
all sidl Baselhterface deleteRef f(inter facel)

To call the isSame method on a sidl.BaseInterface , you would write:
call sidl Baselnterface queryTit, f(intert ael, My.InerfaeNare’, interface?)
To call the queryInt method on a sidl.Baselnterface, you would write:
call sidl BaseTiterface queryTrt: f(interfa cl, 'My.IterfaeNae’, interface?)

Examples of calls to SIDL overloaded methods are based on the overload _sarple.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of the get'\/éll,e method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

inteepr*8 t
logical bl, etal
integerd i1, irebal

all Orrlcd Saple create £ (t)

all Owrlced Saple getialie £ (t, iretal)

@l Overloed Stple getvallelt £ (t, i1, irenal)
@ll Owerlod Sarple cevalieBxl £ (t, Kb, lrebal)

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

8.4 Catching and Throwing Exceptions in FORTRAN 77

79

For interfaces and classes, there are two implicit methods called _.cast() and _cast2() . Both of these methods
are used to convert from one type to another, and each can be used for upcasting up downcasting. Neither method will
increment the reference count of the object.

_@ast() is a static method. It tries to convert its opaque argument to the type of the class indicated by the method
name. For example, X V.7 _cast(doj, xyz) will try to convert A0j to type X.V.Z . If XyZ is nonzero, the cast
was successful.

_cast2() is an object method. Its return type is opaque, and it has one formal argument, a string in addition to
the implicit object/interface reference. The .Gast() method attempts to cast the object/interface to the named type.
It is similar to the queryInt method in sidl.Baseliterface except it does not increment the reference count of
the return object or interface, and it may return an object or an interface pointer. The QUeryIrit() method always
returns an interface pointer.

For non-abstract classes, there is an implicit method called _cregte() . It creates and returns an instance of the
class.

Here are examples of the use of these two methods:

integer*8 doject, interface
call sidl BasxClass creste f(doject)

call sidl Baselnterface cast f(doject, interface)

c te followirg @1l to _ast?2 is eqgwalet to the pevios _ast all
call sidl BasClass cast? f(dojct, 'SINL. Baselnterface’,
3 irterface)

Please note the presence of two underscores between BaseClass and create and between BaseClass and cast; the
extra underscore is there because the first character of the method name is an underscore.

Here is an example call to the addSeardath() in the sidl.JoxcEr class:
all sidl Teeder addSeardkath £(7 /fay/1oo kKing/h ere')

Your FORTRAN 77 must manage any object references created by the calls you make.

8.4 Catching and Throwing Exceptions in FORTRAN 77

When a method can throw an exception (i.e., its SIDL definition has a throws clause), an extra variable of type
INIEFR*8 should be passed to hold a pointer if an exception is thrown. For maximum backward compatibility, the
base exception type argumentis Sicl .Baselnterfae though the base exception class is Sidl .S FxECEIAN
The exception argument appears after the return value when both occur in a method. After the call, the client must
test this argument. If a function does not test the exception argument, thrown exceptions will be utterly ignored —
not propagated to higher level functions. If the exception parameter is non-zero, an exception was thrown by the
method, and the method should respond appropriately. When an exception is thrown, the value of all other arguments
is undefined.

Here is another example adapted from the Babel regression tests. Package ExceptionTest has a class named Fib
with a method declared in SIDL as follows:

it ogtFib(in it n, in int naxdgth, in int nmexvales, in int ocgth)
throns NeggtivaaleRsoaatiay, FitFxoctiay

Here is the outline of a FORTRAN 77 code fragment to use this method. When an exception is thrown, the value
of the AL and inoUt parameters is unknown, the best practice is to ignore their values.

integer8 fib, exxt, eo?

intecpr*d irdex, mexdecth, mexal, dgoth, result
all Exoectiailest Fib create £(fib)

index =4

meceth = 100

mexale = 32000

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

80 FORTRAN 77 Bindings

Geth = 0
all Exoetiailkst getFib f(fib index, mededh,
S mexale, dgoth, reﬂult exat)
if (et re. 0) ten
ca]l Exoactiailest, Fildkxootion cast f(exap T, excg?)
if e ae. 0) ten
c b saething hee with the Fidsxosddo
else
all Eogtailest Neggtiveaheboectian ast £
S (e, exs?)
b saething here with the Neggtivdalugbxostian
adif
all sidl BassFxoedtion deleteRef, fexoat)
else
white (%,*) 'oggFib for /, index, rwaoed 7, result
erdif
call Exoeptiailest Fib deleteRef £(£1b)

Q

Here is an example of FORTRAN 77 code that throws an exception.

sdxattire Bxogptiailest Fib getfFib fi(self n, mexdegh,
& mexvalle, dgoth, rebel, @qujm)
inplicit rae

intepr*8 ==lf, exgdio
integer™ n, mexdeoth, mexvalle, deoth, r=tal

C BO-NOTHELETE solicer.egin(Bxoedtiailest Fib.cetFib)
daracter*(*) nyfilerare
Erareter (myfilename="Excactiatilest, Filb Tpl.f 7)

LAires of ok celeted...
if (n .lt. 0) ten
all Exogotiailest Neggtivealugbxogtian. ¢ raate f(exe phio)
if (exston re. 0) ten
call Exostiailest Necptivealugisosotian =Nt e f(
Slecoules)

‘called with recgptive 1)
call Exoetiailest Necptivealugisosotian ad £(
@cqotjm,
Iw[kﬁjﬂa[e/
"ExoectiaiTest Fib getFib inpl”)

Ur Uy Ur > Uy U

retum
adif
C DONOLELEIE olicer.ad(Bosptiailest. Fib.oetFib)
ad

Please note that when your code throws an exception it should delefeRef any references it was planning to
return to its caller. Any caller of a method that returns an exception should ignore the values of QUt and inout
parameters, so anything you do not free will become a reference and memory leak. In general, it is good practice to
set all QUL and inOUt array, class and interface arguments before returning when throwing an exception. This makes
things work out better for clients who forget to check if an exception occurred or willfully choose to ignore it.

8.5 Invoking Babel to generate FORTRAN 77 Stubs

Here is how you should invoke Babel to create the FORTRAN 77 stubs for an IDL file .

IFor information on additional command line options, refer to Section 3.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

8.6 Implementing Classes in FORTRAN 77 81

s bbel —client=f77 file.sidl

or simply

s bbel —of77 filesidl

This will create a babel.make file, numerous C headers, numerous C source files, and some FORTRAN 77 files.
The files ending in _£5010.C are the FORTRAN 77 stubs that allow FORTRAN 77 to call a SIDL method.

You will need to compile and link the files ending in _£S0do.c into your application (i.e. SIBRES in
IAlel ke). Normally, the IOR files (_IR.C) are linked together with the implementation file, so you prob-
ably don’t need to compile them.

If you have some &1m’s defined in your SIDL file, Babel will generate FORTRAN 77 include files in the style
of DEC FORTRAN (Compaq FORTRAN? (now HP Fortran???)) $INJIIIE . These files are named by taking the
fully qualified name of the &1m, changing the periods to underscores, and appending .inC . Here is an example of
a generated include file.

C File: ains qar.irc
C Syrtol : enns.car+1.0
C Sydool Tyee: anneration
C Bel Vesio: 0.5.0
C Descridtian: MAutaetically omaated; dages will ke Icst
C
C eel=arsicn = 0.5.0
C sorce-lire =25
C
irteger porsde
Eraeer (pasde = 911)
intecpr fad
mraeter (fad = 190)
integer mEreedes

8.6 Implementing Classes in FORTRAN 77

Much of the information from the previous section is pertinent to implementing a SIDL class in FORTRAN 77. The
types of the arguments are as indicated in Table 8.1. Your implementation can call other SIDL methods in which case
follow the rules for client calls.

You should invoke Babel:

% bdbel —server=£77 file.sidl

or simply

S bbel —s£77 filesidl

This will create a babel.make, numerous C headers, numerous C source files and some FORTRAN 77 source files.
Your job is to fill in the FORTRAN 77 source files with the implementation of the methods. The files you need to edit
all end with _Tnpl.£ . All your changes to the file should be made between code splicer pairs. Code between splicer
pairs will be retained by subsequent invocations of Babel; code outside splicer pairs is not. Here is an example of a
code splicer pair. In this example, you would replace the line ”C Insert extra code here... ” with your lines of code.

C DONOHELETE Solicer.oegin(misceellareass qode star t)
C Insrt extra aoe here...
C CONCTHELEIE solicer.ad(_misellansos cooe start)

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

82

FORTRAN 77 Bindings

Each _Implf file contains numerous empty subroutines. Each subroutine that you must implement is partially
implemented. The IBRJJIINE statement is written, and the types of the arguments have been declared. You must
provide the body of each subroutine that implements the expected behavior of the method.

There are two implicit methods (i.e. methods that did not appear in the SIDL file) that must also be implemented.
The _ctar() method is a constructor function that is run whenever an object is created. The _diar() method is a
destructor function that is run whenever an object is destroyed. If the object has no state, these functions are typically
empty.

The SIDL IOR keeps a pointer (i.e. C void *) for each object that is intended to hold a pointer to the object’s
internal data. The FORTRAN 77 skeleton provides two functions that the FORTRAN 77 developer will need to use to
access the private pointer. The name of the function is derived from the fully qualified type name as follows. Replace
periods with underscores and append __get_cata _for __set data £ The first argument is the object pointer (i.e.
self), and the second argument is an opaque . These arguments are 64 bit integers in FORTRAN 77, but the number of
bits stored by the IOR is determined by the sizeof(void *).

Babel/SIDL does not provide a mechanism for FORTRAN 77 to allocate memory to use for the private data pointer.

8.7 Accessing SIDL Arrays From FORTRAN 77

The normal SIDL C function API is available from FORTRAN 77 to create, destroy and access array elements and
meta-data. The function name from FORTRAN has _f appended.

For SIDL types dcomplex, double, fcomplex , float, int and long, SIDL provides a method to get direct access to
the array elements. For the other types, you must use the functional API to access array elements.

For type X, there is a FORTRAN 77 function called sidl X _array _acxss _fto provide a method to get direct
access. An example is given below. Of course, this will not work if your FORTRAN 77 compiler does array bounds
checking.

integerd loer(l), uger(l), strce(1), 1, irdex(l)
integer™4 wale, refindex, refamay(l), mrochval
intepr*8 rexqpydme, tp

lower(l) =0
vahe =0
ypeer(l) =len -1
call sidl it amay create f(1, loer, yps, rebel)
@all sdl it aray aoess f(rebal, refarray, loser,
$ yper, stride, refiroex)
di=0 len -1
mp = vale

call sidlint amay st f(rebal, i, vale)
else
if (modal .. 1) ten
index(1) =1
call sidl int aray set f(rebal, index, vale)
else
C this is eydwalat to the sidlint amay set f(rebal, index, vale)
refarray (refirndex + stride(1)*(1 — lowexr(1))) =
$ vale
edhif
edhif

adb
To access a two dimensional array, the expression referring to element i, j is
refarray(refirdex + strde(l) * (1 - loer(l)) + sce(2) * (5 - lower(2))

To access a three dimensional array, the expression referring to element i, j k is

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

8.8 FORTRAN 77 objects with state

83

refarray(refircex + strde(l) * (1 - loer(l)) + stace(2) * (- lower(2))

You can call things like LINPACK or BLAS if you want, but you should check the stride to make sure the array
is packed as you need it to be. Stride(i) indicates the distance between elements in dimension 1. A value of 1
means elements are packed densely in dimension 1. Negative stride values are possible, and when an array is a slice
of another array, there may be no dimension with a stride of 1.

Fora cbaiplex array, the reference array should a FORTRAN array of REA[8 instead of a FORTRAN array of
double complex to avoid potential alignment problems. For a faaplex array, the reference array is a CVMHEX*8
because we don’t anticipate an alignment problem in this case.

8.8 FORTRAN 77 objects with state

If you need to implement a FORTRAN 77 class with state, you can use SIDL arrays to store the state information.
This is certainly not the only way to implement a FORTRAN 77 class with state, but it’s one that will work wherever
Babel works. For example, if you have a class whose state requires three boolean variables and two double precision
variables, your constructor might look something like the following:

sdrattire eaple withState ctar fi(self)

inplicit mae
intepr*8 s=lf
C BONOTHELETE solicer.egin(earple.withState._ctor)
intepr*8 statearray, loprray, ddlaray
all sidl gege amay createld £(2, statearray)
call sidl bl array aeateld £(3, looprray)
call sidl doble array createld £(2, ddlarray)
if ((statearray re. 0) ad. (lcpmay ae. 0) ad.
S (dlarray .re. 0)) then
call sidl gege amay st f(statearray, 0, looprray)
elseca]l sidl gege array st f(statearray, 1, ddamay)
C a real inplenetation wuld ot lesk memxy like this ae
statearray = 0
auif
call eaplewithState st chta f(self, Statearray)
C DONOIHELFIE Flicer.ad(eaple.withState._ctar)
ad

Of course, it is up to your application make the association between elements of the arrays and particular state
variables. For example, you could say that element O of the double array is the kinematic viscosity and element 1
could be the airspeed velocity of an unladen swallow. Element O of the boolean array could specify African (true) or
European (false). The destructor for this class could look something like this:

Sdyotire eaple withState dror £ (self)
inplicit mae
integer8 w=lf
C DONOHELETE olicer.oegin(eaple.withState._dtar)
intepr*8 statearray, loprray, ddlaray
all eaple withState et cata f(s=lf, Statearray)
if (statearay Je. 0) ten
call sidl geae amay el f(statearray, S, looprray)

all sidl gege array et f(statearray, , olarray)
call sidl ool array deleteRef. f(logprray)
call sidl doble array delaeteRef. f(dolarra Y)
all sidl gege array celeteRef f(statear ay)

C the following two linss are rot strictly recessary
statearray = 0
all eaplewithState s=t chta f(self, Statearray)

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

84 FORTRAN 77 Bindings

adif
C CONCTHELEIR solicer.ad(earple.withState._dtor)
erd

In this example, an accessor function for the airspeed velocity of an unladen swallow could be implemented as
follows:

Sdhyotire eaple withState getAirseeedelocityy £i(
$ s=lf, welocity)
inplicit mae
integer8 w=lf
real*8 welaoity
C DONOIHHEIE olicer.egin(earple.withState .cetAir SV elacit)
integr*8 statearray, | dolaray
call eaplewithState et chta f(self, statearray)
if (statearay Je. 0) ten
all sidl gege aray et f(statearray, 1, ddlaray)
all sidl dodle array el f(dolarray, 1, welaoity)
edif
C BONOTHELETE solicer.ad(earple.withState.cetAirsp esdel aoity)
ad

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 9

FORTRAN 90 Bindings

Contents
91 Introduction i it i it ittt tteeeeenneneeeenns 85
92 BasicTypes . . v v v v i it e 85
9.3 Calling Methods From FORTRAN90, 86
9.4 Catching and Throwing Exceptionsin Fortran90 88
9.5 Invoking Babel to Generate F90Stubs 000 89
9.6 Implementing Classesin FORTRAN90 90
9.7 Accessing SIDL Arrays From FORTRAN90 92

9.1 Introduction

This chapter provides an introduction to the FORTRAN 90 bindings supported by Babel. Software written in FOR-
TRAN 90 that illustrates both the caller, or client, side as well as the callee, or server side, is provided.

For ease of comparison, this chapter is patterned after the chapter on FORTRAN 77 bindings. Further, the initial
support described below is very similar to that provided for FORTRAN 77.

9.2 Basic Types

The mapping for simple SIDL types to FORTRAN 90 is given in Table 9.1. For opaque pointers, the equivalent of a
SIDL double is used. That is, the intermediate object reference assumes a 64-bit integer is used to enable portability
between systems with a 32 bit address space and those with a 64 bit address space. On a 32 bit system, the upper 32
bits of these quantities are ignored. Systems with more than 64-bit pointers aren’t currently supported.

For interfaces, classes and arrays, there is a derived type that holds an opaque pointer. The derived type for arrays
of numeric types also has a FO0 pointer to an array to provide native array access without function calls. For each
interface and class, there are two modules created. In the first module, the derived type for the object and array are
defined. In the second, the methods for the object/interface and arrays of the object/interface are defined. Clients of
a class or interface, typically Use the module containing the methods, and it in turn uses the module containing the
types.

Generally, clients should treat opaque, interface, class and array values as black boxes. However, there is one value
that is special. A value of zero for any of these quantities indicates that the value does not refer to an object. Zero
is the equivalent of NULL. Any nonzero value is or should be a valid object reference. The method module provides
functions to test whether an interface, class or array value is ruall oris rot rull . There is also a subroutine
to initialize the value to indexFORTRAN 90!set nullset _rull . Clients should generally initialize new interface or
class values to NULL.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

FORTRAN 90 Bindings

Table 9.1: SIDL to FORTRAN 90 type mapping

SIDL TYPE | FORTRAN 90 TYPE

it INIKFR (SIECIED _INT _KIND(9))

lagy INIKFR (SELECIED _INT _KIND(18))
float RAL (FIETTED _REAL _KIND(6,37))
cable REAL, (SHIECIED _REAL _KIND(15 07))
ool TIGEICAL

dar CHERACTER (IENEL)

string CERCTFR (LEN=Y)

fanplex CQVHEX (REAL KIND(6, 37))
donplex CQHEEX REAL KIND(15, 307))
aim INIKFR (_INT _KIND(9))

Qg e INIEFR INT _KIND(18))

The SIDL string type mapping is currently identical to that of the FORTRAN 77 mapping. That is, all FOR-
TRAN 90 strings have a limited fixed size. When implementing a subroutine with an out parameter, the size of
the string is limited to 512 characters. This can be changed when configuring babel by changing the value of

ST, _FO _SIR _MINSIZE in nuntime/sidl/estel _axfig.h before compiling and installing babel.

Enumerated types are just integer values. The integer parameters are defined in a module.

9.3 Calling Methods From FORTRAN 90

All SIDL methods are implemented as FORTRAN 90 subroutines regardless of whether they have a return value or
not. For object methods, the object or interface pointer is passed as the first argument to the subroutine before all the
formally declared arguments. The exception is static methods, where the object or interface pointer does not appear in
the argument list at all.

When a method has a return value, a variable to hold the return value should be passed as an argument following
the formally declared arguments.

The name of the module that holds the method definitions is derived from the fully qualified name of the class or in-
terface. You can generate the module name by replacing all the periods with underscores. For example, the methods for
sidl ST Fxcgctian are defined in a module named sidl ST Fxoctian in the file sidl ST Fxoectian. FOO
The name of the module holding the derived type of the class or interface is the same as the one holding the methods ex-
cept thatit has _type appended to it. The types for sidl .S FxEctian are called sidl _SINExgtian £

and sidl ST Fxogotian _g, for the array, and they are defined in the file sidl ST Exogtian _typee FO .
The name of the subroutine that FORTRAN 90 clients is the method’s full name from the SIDL description. If

the method is specified as overloaded (i.e., has a name extension), the method’s full name will be used. That is, the
concatenation of the short name and the name extension will be used for a unique method name.

For example, to call the GeletdRef() method on a SIOL.Baselitertace interface, you would write:
e sidl Baselnterface
tyee(sidl Baselnterface t) 11 interfacel, interface?
logical 1 assae
|
! cock to initalize interfacsl & interface 2 here
|
call deleteRef (interfacel)

To call the isSame method on a Sidl.Baeliterfar , you would write:

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

9.3 Calling Methods From FORTRAN 90

87

To call the queryInt method on a sidl.Baselnterface , you would write:
ue sidl Baselnterface
! later
all qerynt(interfacsl, "My. Tnterface Nave’, interfacs?)
! interfaces? holds the reim valle now
Examples of calls to SIDL overloaded methods are based on the overload _sarple.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of the geii\/a]lp, method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

e Cerlceed Saple

Hyee(Crerlced Saple t) st

logical b, betal
intepr (selected int kird(9)) 0 i1, irebel
call rew(t)

all hale (t, irebal)
@ll etiElelt (t, il, iretal)
@ll oefaleBol (t, W, betal)

Here is an example of what Babel will produce for an enumerated type with some of the whitespace and comments
reduced for brevity.
! File: ans car.F0
! Syriool: enus.car+1.0
! Sydool Tyee: anneration
! Bel Versim: 0.8.2
! Description: Cliet=—=side moule far enms.car

modille enns car
! Sydol "enms.car" (ersicn 1.0)

intecpr (selected int kird(9)), praeter i ppsde = 91

integpr (selected int kKird(9)), mraeer i fad = 10

intecpr (selected int kird(9)), rEaEEter o mercekes = 590
ad rmodule eums Gr

For interfaces and classes, there is an implicit method called Gast() . There are actually a set of overloaded
methods that support every allowable cast between a type an all its parent types (objects and interfaces). The first
argument is the object/interface to be cast, and the second argument is a variable of the desired type. If the value of the
second argument after the call is TOC _rull , the cast was successful; otherwise, the cast failed. Gast() is similar
to the queryInt method in Sidl.Raselnterface except it does not increment the reference count of the return
object or interface, and it may return an object or an interface pointer. The QuEryIrnt() method always returns an
interface pointer.

For non-abstract classes, there is an implicit method called 1ew() . It creates and returns an instance of the class.

Here are examples of the use of these two methods:

e sidl BasClass
ue sidl Baselnterface

tyee(sidl BassClass t) :: doject
tyee(sidl Baselnterface t) 1 interface
! s oter aak here

all rew(dojct)

a@all cst(doject, interface)

Here is an example call to the addSeardath() , a static method, in the sidl.Jcackr class:
ue sidl Iesder

Your FORTRAN 90 must manage any object references created by the calls you make.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

88

FORTRAN 90 Bindings

9.4 Catching and Throwing Exceptions in Fortran 90

When a method can throw an exception (i.e., its SIDL definition has a throws clause), a variable should be passed to
hold an exception. For maximum backward compatlblhty, the exception argument type is a Sidl.Raselnterface
pointer that is assumed to implement the Sidl.BasaFxgctian interface. The exception argument should appear
after the return value when both occur in a method, and it behaves like an OJIC parameter. After the call, the client
should test this argument using is_Tull or not _rull . If it is not _rull |, an exception was thrown by the method,
and the method should respond appropriately. When an exception is thrown, the value of all other arguments is
undefined, and the best course of action is to ignore their values. If your code does not check the exception argument
after each call that can throw an exception, any exceptions that are thrown will be utterly ignored; they will not
propagate automatically to higher level routines.

Here is another example adapted from the Babel regression tests. Package ExceptionTest has a class named Fib
with a method declared in SIDL as follows:

it ogtFib(in it n, in int nexdgth, in it nexywalle, In It dgoth)
throns NecgtivaaleRsoaatiay, FitFxoctiay
Here is the outline of a FORTRAN 90 code fragment to use this method.
e Bogdiailest Fib

e Exogtiailest Fildxosotion
e Ebcqobaﬂ%t_bh;aﬂxé/ahﬂbcegtm

tyee(Exosctiailest Fib t) fib

tyee(sidl Baselnterface t) et

typee(Exoactiailest Fildxosation t) et

Tyee(Exoactiailest Necptivealuesootio nt) :: et

integer (selected int kdrd(9)) oindex, medsoth, mexal, dgdth, result
call rew(fib)

iroex =14

mecscth = 100

mexalle = 3000

Gepth =0

all Fib(fib, ik, medath, mexalle, dgdh, result, exot)
if (ot nill(exet)) then

all cst(exoet, fibexot)

if (rot ol (fibexoet)) then
! d saething hee with the Fildxeaton

else

all acstexst, nveoqjt

! d saething hae with the Neggtivdalugkxostion

adif

all celeeRef (exat)
else

white (%,*) 'oggFib for 7, o,) rwaoed Y, result
adif

call celeteRef(fib)

Here is an example of an implementation subroutine that throws an exception. Note you must Gast the returned
exception object into the exception QL parameter. The SeNote method provides a useful error message, and the
ad method helps provide a multi-language traceback capability (provided each layer of the call stack calls &0d).

rearsive sdoottire Exoaddiailest Fib getFib i (self n, mxogth, &
mexvalle, dgoth, r=twel, eogtdom)
e sidl Baselnterface
e Bxogdiailest Fib
e BExoctiailest Necptivealugisoactian

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

9.5 Invoking Babel to Generate F90 Stubs

89

e Bogatiailest Fildxosotion

! DONOHHLEIE gﬂm@nwﬁﬁbﬁ buse)
e Bogdtiailest ToRigkkosctian

e BExoctiailest ToDeadxostion

! DONOHFLEIE olicer.erd(Bxoeptiailest. Fib.ogtFib Ue)
Inplicit nae
tyee(Exoactiatlest, Fib t) roself
integer (selected int kird(9)) 1 on, mexdsoth, mxvale
intecpr (selected int kirnd(9)) :: rebal, dgth
type(sidl Baselnterface t) 1 exgdo

| DDMOMHEFEE — splicer begin(Bogdiailest. Fib.oeFib)
tylceE}(qj:aﬂestNaﬁtjsé/ahm(m:o nt) :: repc

I llires deleted..
daracter (lax) myfilerare
Erareter (nyfi lerame=' Exoectiatlest. Fib Ipl.f)
if (n .1t. 0) ten
all rev(ineec)
if (rot null(necexc)) then
all s=oefrsee, &
'called with regative 1)
all adreee, nyfilaare, 57, &

"Exoectiailest Fib cetFib dnpl”)
all aestiregpee, exEptian)
relum
adif

else
| IAOMHEFE — solicer.ad(Bogatiailest. Fib.getFib)
aed sdxottine Exosptiaflest Fib ogetFibmi

Please note that when your code throws an exception it should CeletieRef any references it was planning to
return to its caller. Any caller of a method that returns an exception should ignore the values of QUt and inout
parameters, so anything you do not free will become a reference and memory leak. In general, it is good practice
to call s=t ruill on all QU and irout array, class and interface arguments before returning when throwing an
exception. This makes things work out better for clients who forget to check if an exception occurred or willfully
choose to ignore it.

9.5 Invoking Babel to Generate F90 Stubs
Here is how you should invoke Babel to create the FORTRAN 90 stubs for an IDL file !.

% bbel —clin=0 file.sidl

or simply

s bbel o0 file.sidl

This will create a babel.make file, numerous C headers, numerous C source files, and some FORTRAN 90 files.
The files ending in _fS0do.C are called by the FORTRAN 90 module which in turn allow FORTRAN 90 to call a
SIDL method. The files ending in _t5e.F90 contain derived type definitions for classes and interfaces., and the
other files ending in .F90 are FORTRAN 90 modules containing methods.

IFor information on additional command line options, refer to Section 3.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

90

FORTRAN 90 Bindings

You will need to compile and link the files ending in _fStio.c (i.e., SIBRCS in kel meke) and all the
files ending in .FO (i.e., SIBMIIERCS and TYPEMIOIERCS in Al make) into your application.
Normally, the IOR files (_IR.C) are linked together with the implementation file, so you probably don’t need to
compile them.

9.6 Implementing Classes in FORTRAN 90

Much of the information from the previous section is pertinent to implementing a SIDL class in FORTRAN 90. The
types of the arguments are as indicated in Table 9.1. Your implementation can call other SIDL methods in which case
follow the rules for client calls.

You should invoke Babel:

$ el —s=erver=f0 file.sidl

or simply

s bbel =0 file.sidl

This will create a babel.make, numerous C headers, numerous C source files and some FORTRAN 90 source files.
Your job is to fill in the FORTRAN 90 source files with the implementation of the methods. The files you need to edit
all end with _Tnpl.F9O0 and Mod.F90 . All your changes to the file should be made between code splicer pairs.
Code between splicer pairs is retained by subsequent invocations of Babel; code outside splicer pairs is not.

Here is an example of the standard code splicer pairs in generated FORTRAN 90 code. You would replace the
comment “Insert extra code here... ” associated with the "miscellaneous code start” splicer pair with code needed for
your implementation such as additional abbreviation file(s) and any local, or private, subroutines. For the subroutine’s
“use” splicer pair, you would replace the “Insert use statements here...” comment with any use statements that are
needed by the subroutine. Finally, you would add the implementation between the subroutine body’s splicer pairs in
the place of the “Insert the implementation here...” comment.

! DONOHELEIE solicer.Joegin(misellareass code star t)
! Insart extra aok here...
! BONOTHFLETE olicer.erd(_misellansos auae start)

sdorattire B Class rave ni (arogs)
! BONDHEEE solicer.egin(Bqg.Class.rae.ue)
! Insrt v= statamts here...
! DONOT [FIEIE Folicer.erd(Bg.Class.rare. use)
Inplicit nae
intecpr (selected dint kird(18)) oag

! DONOHELEIE olicer.oegin(Bag.Class.rare)

! Tnext the inplevatation here...
! BONOTHELETE Flicer.erd(Hg.Class.rare)

Each _Impl.F90 file contains numerous partially implemented subroutines. The SBOJIINE, and END JBEROUTINE
statements have been generated and the types of the arguments declared. As mentioned above, you must provide any
needed use statements and the body of each subroutine to implement the expected behavior of the method.

There are two implicit methods (i.e., methods that did not appear in the SIDL file) that must also be implemented
if the object is to have state (i.e., data associated with the instance). The _ctar() method is a constructor function
that is run whenever an object is created. The _dar() method is a destructor function that is run whenever an object
is destroyed. If there is not state then these functions are typically empty.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

9.6 Implementing Classes in FORTRAN 90

91

The SIDL IOR keeps a pointer for each object that is intended to hold a pointer to the object’s internal data. The
FORTRAN 90 skeleton provides two functions that the FORTRAN 90 developer will need to use to access the private
pointer. The name of the function is derived from the fully qualified type name by replacing periods with underscores
and appending __ceL _data mor __sst _data m The first argument is the object pointer (i.e., self), and the second
is a derived type defined in the Mod.F9O file. Here is an excerpt from a Md.FO0 file for an object whose state

requires a single integer value.

#Hnchuoe"sort SinpleCanter: fAdaev.h "
modile sort SinpleCarter inpl

te st SinpleCourter private
SETE
! DONOHHLEIE s@mkﬁ;:msm:t&r@.e(bn:erm
intecer(selectad int kird(9))
! DONOHHLEIE sgﬂmadsact&np]@nterm\/a
aed tye sot SinpleConter private
e st SinpleCouter wap
sETE

tyee(sart, SinpleCanter: private), poirter
ed tye sot SinpleConter wap

ed modile sort SnpleConter: impl

vae d am)

tedat a)

:: dpivate cata

The derived type Sart _SinpleCanter _jxdvate s the type where the developer adds data to store the ob-
ject’s state, and Sort _Sinpleanter _wrao exists simply to facilitate transferring the pointer to a

sxt Sinpleanter _jpdvate to and from the IOR.

Typically for a class with state, the developer needs to allocate(edkd jdvate _data) in the constructor,
_ctar , and deallocate(pid Jxivate _cEta) in the destructor, .Atar . Here is a concrete example of a

constructor.
rearsive sdoatdre st SinpleConter chor mi (self)
e st SinpleConter

e sort SinpleConnter private

! DMOMHEFEE — solicer.begin(sart. SinpleConter, ot
! DONOHHLEIE olicer.erd(sart.SinpleCanter. ctar
inplicit e

tyee(sart SinpleCarter t) ros=lf

! BONOIHELEIE gﬂmk@nﬂt&r@fﬁ}mm

type(sart. SinpleCarnter wap) e o
alloare(dsd rivate data)
dd private catatoouat =0
call sot SinpleCarnter s=t data m(self, do)

! BONOTHFLETE olicer.erd(sort.SinpleCanter._ctar)
ed sdxottire sort SinpleConter ctocmi

Here is the corresponding destructor.

rearsive shxodtire sort SinpleCanter: dbor mi (self)
e st SinpleConter
e st SinpleCornter, private
! DONOHFLEIE Solicer Jegin(sort.SinpleCanter. de
! BONDHEEE solicer.erd(sart. SinpleCarter. dtar
Inplicit nae
Type(sart SinpleCarter t) roself

! BONOIHELEIE gﬂmk@nﬂt&r@fﬁuﬁ:@fd@r
Syee(sart SinpleCarter wrap) e o)

a.a=e)
use)

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

92

FORTRAN 90 Bindings

call st SinpleCarnter et data m(self, do)
deallocate(dcyd private ceta)

! BONOTHELEIE Folicer.erd(sart.SinpleCanter._drar)
aed sdxoutire sort SinpleConter dbocmi

9.7 Accessing SIDL Arrays From FORTRAN 90

The normal SIDL C function API is available from FORTRAN 90 to create, destroy, and access array elements
and meta-data. The array routines are in a module. For sidl.SIIFxactian , the array module is named
sidl ST Exstian _array |, and the array module is defined in the sidl ST Fxection _array.FO

For SIDL types dcomplex, double, fcomplex , float, int, and long, SIDL provides an array pointer to get direct
access to the array elements. For the other types, you must use the functional API to access array elements.

The SIDL derived type for a SIDL array is named after the class, interface or basic type that it holds and the dimen-

sion of the array. For sidl.SIIExcctian , the array derived types are named sidl _SIIExection 1d,

sidl _SIExection A, sidl SJIIE'KEthm 3, ...upto sidl ST Exesction M. For the basic
types, they are treated as sidl.cdooplex |, sidl.chble SJ_CZZ famplex |, etc. Each of these derived types

has a 64 bit integer to hold an opaque pointer.
The derived type for SIDL types dcomplex, double, fcomplex , float, int, and long also has a pointer to an array of
the appropriate type and dimension. For example, here is the derived type for 2d and 3d arrays of doubles.

e sidl dodle A4
s EE
integer (selected int kdrd(18)) :: damay
real (selected real kind(15, 7)), pointer, &
dimersian(z, :) :: ddEta
ad type sidl dole A

tye sidl doie 3

s EE
intecpr (selected int kird(18)) :: daray
real (se]s:tedreal}md(lf') 7)), pointer, &

dimrersian(z, ¢, 2) :: dceta
ad tpre sidl dodle A

You can access the array with the F90 array pointer d.cdata just like any other FO0 array. However, you must
not use the FI0 builtins allocate or dallocate on d.data . You must use SIDL functions creas(ol
aeateRon |, areateld |, aeatedRon |, areated0l to create a new array. These SIDL routines initialize
d.cEta to refer to the data allocated in d_array .

You can call things like LINPACK or BLAS if you want, but you should check the stride to make sure the array
is packed as needed. You can check stride(i) , which indicates the distance between elements in dimension i. A
value of 1 means elements are packed densely in dimension i. Negative stride values are possible. When an array is
sliced, the resulting array might not even have one densely packed dimension.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 10

Java Bindings

Contents
10.1 Imtroduction o v v v i i it e e e e e e e e e e e e e e 93
102 BasicTypes . . o v v v v i i e e e e e e e e e e 93
10.3 Client Side: Using SIDL Classesand Methods 93
10.4 Server Side: Writing SIDL classesinJava 94
10.5 Casting Objects . . .« v v v v v v it e e e e e e e e 95
10.6 Outand Inoutarguments oo v v v ittt ittt oo oo oo oenan 95
10.7 Using SIDL arrayswithJava 95
10.8 Interfaces and AbstractClasses o v i i it ittt i it 96
109 EXCeptions v v v i i i e e e e e e e e e e e e e e 97
J10.10Enumerations o v v v v v it e e e e e e e e e e e e e e e e e 98
10.11Invoking Babel to generate Java bindings 98
10.12Invoking Babel to generate Java implementations 99
10.13Environment Variables i L e e e e e 99

10.1 Introduction

This chapter provides an introduction to the Java bindings for SIDL, including illustrations of both callers and callees
written in Java. It shows how to use Babel to wrap the implementation of software written in Java as well as how to
call software, possibly implemented in any other supported language, from Java.

10.2 Basic Types

Most SIDL types map directly into Java as shown in Table 10.1.

10.3 Client Side: Using SIDL Classes and Methods

SIDL’s object model is very similar to Java’s, and therefore maps easily into Java’s object model. A SIDL object is
treated almost exactly the same in Java as any other Java object, the only difference being that all data held by the
object is private, and all methods are public.

Importing SIDL packages and classes is also exactly the same as in Java. For example, assume there is a package
test that includes the class Hellddrdld , and you wish to print this message in your program. The following code
segment does this.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

94

Java Bindings

Table 10.1: SIDL to Java Type Mappings

SIDL TYPE | JAVA TYPE

it int
lagy layg
float flcat
aanle dodle
bool boolean
dar der
string Strirng

aim Fim
gge | lag
intafare | inerface
class | class
anay | bpeAray

inport test.Belldrld;
phlic static meEinStrdrg args[]) |
Hellodrld h = rew Helldérld();

} hi.prndvey() ;

Writing the fully qualified class name would also have sufficed. test.Helldwbrld hi = rew test.Helldirld()

Babel also generates Java code in line with Java’s use of directories to organize packages and classes as files. For
example, assume you are generating babel code in a directory named kalelaade . Assume your package test con-
tains 2 classes HelloNrld and Goodoygirld . After running kelel —aJava test.sidl you will have a
new directory in keloelaade named test which will contain 2 files, FelldNx1d. v and Goodoyahtrld. java
These classes will be accessible from your Java program as long as kalelasde is in your TASSEAIH .

10.4 Server Side: Writing SIDL classes in Java

Babel also supports calls to SIDL classes implemented in Java. These classes obey the same rules as the client side
Java classes, except that is this case the file, class, and method names all end in _m .

As is the case with other Babel server side files, only the code written between splicer blocks will be preserved
between calls of Babel. Make sure any data and code is kept in the designated areas, otherwise it won’t be there after
you run Babel on those files.

Another interesting fact of the Server Side is that it inherits from the Client Side Java class. This allows us to call
local methods directly. Take this recursive Fibonacci function implementation for example:

dass FibTpl extats Fb {
phlic it cetFb Fpl(int x) {
// DONOLLHEE solicer beyin(Froectiailest. Fib.oetEib)

if(x >= 2) {
reom getib(l) + ogFib(x2);
}oelse
eom 1;
}
// DOAOMHEFE splicer.ad(Bogdtiailest.Fib.getFib)
}

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

10.5 Casting Objects

95

Here the client side class is name Fib, and therefore the Server Side class is Fio _Tnpl . The same relation is true
for the getb_lb method. You can also see that we are able to call @tELb , the client side method, directly. A call
like this will go through Babel glue code, as it should. You should not try to make calls directly to _Tqpl methods. It
won’t work at all on different objects, and it breaks the object model if used on methods in the current object. (That is,
it is possible to call foo _Tnpl in the current object, but because the call will not go through Babel, any inheritance
information will be lost, and the wrong version of the method may be called. Simply call £o0O in the standard way.)

This also means there is no way to have Server Side object inherit from non SIDL Java classes, in fact, there are
no splicer blocks available for inheritance, so implementing interfaces on the Server Side is also not supported. This
is because we feel that having the Server side inherit from non-SIDL classes is probably not a good idea.

10.5 Casting Objects

In some cases it is necessary to cast the internal representation of an object as well as the Java object. (For example,
getting an object from a SIDL array of superclass objects.) In these cases a Java cast is insufficient. Therefore we have
provided two casting functions.

_Gast(doject) s astatic function included with every SIDL class that returns object passed in to cast that class.
For example, in order to cast an object of type sidl.BaseClass to foo.Bar simply write foo.Bar rewdo]
= (foo.Bar) foo.Bar. _cast(olddoj) . Ifthis is an invalid cast, .Gast will return ruill .

The alternative is _cast2(*‘ClasNare’’) . This is a cast function that is included with every SIDL object.
It performs basically the same function as _Gast , but the form is doject. _cast2(“Clasawe’’) . Tt takes a
fully qualified class name. If the cast is invalid, or a class of that name cannot be found, this function returns 1111 .

Both of these functions return a sidl .BasaClass which then must be Java casted to the correct Java class type.
Also, in casting, they both create a new Java object that owns a new reference to the IOR object. In Java you never
have to worry about reference counting, but this does mean that the pre-cast object still exists and is valid.

10.6 Out and Inout arguments

In C or C++ out and inout arguments are handled by passing pointers to the data so that if the data is changed, the
pointer will be pointing to the new, correct, data. Because Java does not support pointers, each SIDL type and class
has a static inner Holder class. This Holder class can hold a single variable or object of the correct type. There are
functions Ogt() and s=t() for getting or setting this object.

10.7 Using SIDL arrays with Java

Every object and type defined in SIDL can be put into a SIDL array of that type. Arrays are a fairly complex topic, and
the specifics of the Babel Array API are discussed earlier in Section 5.4. Suffice to say that the entire API is available
in Java, except for

asure , borow |, and first |, all of which have no real use in Java. adRef and celeteRef exist in Java,
but shouldn’t be used, because the Java decrements the reference count itself when it garbage collects a SIDL object
or array. If it is necessary to deleteRef an array, you should use the destzoy() array function instead.

More to the point are the specifics of the Java implementation. Each SIDL type and class includes a static inner
class named Array . This is the main Array class, and in order to support up to 7 dimensional arrays, every method
takes either 7 array indices, or an array of indices. For example, in order to get the element (2,3) from a 2 dimensional
array, we would type arry. _gt(2,3,0,0,0,0,0)

Since typing all those zeros can get a little tedious, we also implemented a set of subclasses of Array. One subclass
for each dimension. So, if we had and Array? instead of an Array we could simply type arry2. - o£L(2,3) to
get the correct element.

These numbered Array subclasses improve on the Array API usability somewhat, but that do have a side effect.
In order to avoid conflicts between the Array superclass and the numbered Array subclass functions, all other basic
Array methods found in the Array superclass are preceded by an underscore * . For example, in order to get an array’s
dimension, you can type arry. _&im() . The numbered arrays all inherit these methods, so arry2. cim() will
also work, although in this case, the answer should be obvious.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

9

Java Bindings

Furthermore, there is another underscore rule for Arrays in Java. All numbered arrays have two GC and two
=t functions. The _OeC and _Set functions are the same in Array and all the Array# subclasses, they simply
pass the arguments of the _OeC call down to the underlying implementation. However, the underscore-less 0L and
et do bounds checking in Java before calling the underlying implementation, and, if there is a problem, throw an
Prray TroesQurOfBoroskxoactian

Because the numbered arrays are subclasses of Array , if necessary you can Java cast an Axvay# to an Array .
However, some functions return an Array . In order to convert an Array to the correctly numbered array, we provided
a function in Array called _d@st() . Inorderto cast an Aray object to a numbered array, simply call _aast()
on it. For example, assume we have a 1 dimensional array of type f00.Bar called arry that is represented by the
Java class Array . In order to get a correctly numbered array type:

foo.Bar Arrayl aryl = ay. dast();

After this cast we have 2 references to the same array, arry and arryl .
Finally, the Java array constructors are slightly different then they are in other languages. This is the constructor

definition for Array .
phlic Amay(int dim, irt[] loser, int[] ypes, booleen iRow)

This constructor creates and array of dimension clim. It takes two arrays of integers to define the lower and upper
bounds of each dimension in the array. If lower or upper has fewer elements than there are dimensions in the array,
or any element in lower is larger than the corresponding element in upper, this constructor will throw an exception.
Finally, this constructor takes a boolean 1SRow . If 1SRow is true, this constructor will create a SIDL array in row-
major order, if it is false, it will create an array in column-major order.

The constructors for numbered arrays are simpler. Here’s the constructor for a 2 dimensional array:

phlic Aray?2(int 10, int 11, int W, it ul, booleen isRow)

The dimension argument is no longer necessary, and it is no longer necessary to create arrays of bounds to pass
into the constructor. 10 and 11 are the lower bounds. and U0 and Ul are the upper bounds. This constructor still
includes the choice between column and row major orders.

If all your lower bounds are 0, you can use an even simpler constructor:

pblic Arey2(it &0, it sl, booleen isRow)

Another alternate way to construct sidl arrays is present in numbered arrays. The following constructor takes a
Java 2 dimensional array, and copies it into a SIDL 2 dimensional array:

pdlic Amay?(foo.Bar(][] aray, boolean 1iRow)

If you already have a numbered SIDL array of the correct dimension, you can copy a java array into it with the
method fra®rray . The method takes the same arguments as the constructor above, and returns nothing.

If you wish to go the other way, to copy a sidl array into a Java array, you may use the numbered array function
thrray . tArray takes no arguments, and returns a new Java array with the SIDL array elements copied into it.

10.8 Interfaces and Abstract Classes

Babel implements SIDL interfaces as Java interfaces in Java. This is a close mapping in general, but it does have the
problem that Java interfaces can’t hold data. Since we need the correct IOR pointer in order to place that interface in
an array or throw it as an Exception, the lack of data becomes a problem. For this reason, we have created Wrapper
classes for interfaces and abstract classes.

All interfaces and abstract classes have static inner class named Weggoer . This Weggoer class holds the interface
IOR pointer, and also inherits from gov.11nl Jakel .BasClass and implements the outer interface. Therefore,
you can call all the interface methods on the wrapper object, as well as gov.11nl Jatel .BaseClass methods
such as _Gast? , and iSKype .

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

10.9 Exceptions

97

This wrapper class is what is returned when an interface is gotten out of an array, a method takes or returns an
interface, or when an exception implemented as an interface is caught. (There’s actually a difference here. While
what is gotten out of the Array or returned from a method is a Wrapper object, the programmer doesn’t usually need
to worry about that, as is shown in the example below. In the case of exceptions, you actually do have to catch the
Wrapper. Exceptions are covered in more detail in Subsection 10.9) Because wrapper classes inherit only from an
interface, they can be java casted to their enclosing interface, or it’s super-interfaces, but must be Babel casted to any
classes. In this example, Subclass implements Super-Interface:

SyerTnterface. Arayl arry = rew SyeerTnterface.frrayl (5, tme);
Suflass doj = rew SdLlass();

ary.s=£(0, (SuperTterface)do);

doj = nill;

SyeerTnterface tap = axy.cget(0

doj = (Sigdess) tayy; //I[\C(R?ECI Will throw ClassCastFxosption

dj = (dClass) SidClass. cast((Syperinterface. liage r)tap); //CRET

Sometimes you can get away with not Java casting the interface to the Wrapper class before Babel casting it, but
not in general. (Usually you don’t have to when the interface was gotten out of an array)
Here’s an example of casting an interface on the server side:

phlic dofrg.9iClass toClass pl (Y dohrg Iface ifoy)
// DDANUMHEEE — solicer.begin(doprg.SdClass. taClass)
dojarg.SiClass ret = (dojarg.SdLClass)
((dojarg.lface.magef)jfcy)._caslﬁ("o bijarg. 4fla ss");
rebim ret;
// DONOHHEIE solicer.erd(dojarg.3ilass. taClass)

10.9 Exceptions

Exceptions are caught and thrown in exactly the same way as Java exceptions. If an exception is defined in SIDL,
Babel will generate the code for it, and the exception can be thrown in Java. The only difference is that SIDL exception
constructor cannot take a String. Instead, the message must be set with SIDL’s setNote method, the message
is gotten with SIDL’s geNote method. This is important because SIDL exceptions inherit from the Java Class
Exogdtian . The Java compiler will not give an error if getMessage is called, but the message returned will not have
been from SIDL.

The other problem is that regular Java exceptions cannot be passed on by Babel. Of course, it’s not possible to
throw normal non-SIDL exceptions from a SIDL Java function, the Java compiler will throw an error. (Unless you
have changed the Java method “throws” statement outside the splicer blocks, which you should never do.) However,
Java runtime exceptions, such as ArrayTrosCurOfBordskoactian can be thrown. In this case, an error
message and stack trace are printed to stderr, the method returns 0, the values of any out or inout arguments are set to
NULL, and the program proceeds.

Finally, SIDL Exceptions may be interfaces, where as Java exceptions are always classes. This means Babel allows
you to throw an interface. However, in Java we actually need to throw the interface’s Wrapper class.

In this example we have a class FilFxogotion - which implements two exception interfaces, Neogtivevaluekxootian

and TodDegdxoactian . These two Exceptions are thrown by a babelized method named getFib . oetFib s

a standard recursive Fibonacci number generating function, in which if something goes wrong, it throws one of these
two exceptions. First, server side:

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Java Bindings

reg.setNote("n recptive);
throw reg;
}

// Do Filboeooi sooff
}

You can see here some of the hoops you have to jump though to throw an interface. First, since we cannot create
an interface, or it’s Wrapper, directly, we first create a new FilFxootian and cast it to the interface we want.
Secondly, we have to refer to the Wrapper’s full name in this case, because it is impossible to throw interfaces in Java.
Finally, as with all SIDL Exceptions, we use S&tNOte to set the exception’s message, as we cannot pass in a message
with the constructor.

Next the client side:

try |
fib.ogtFib(-1);
} catch Na;atj_\/e‘\/ah:@(qtim ex) |
Systan.err.arintin(ex.cetNote())
} cach (Tod?eqﬂqmjmmagﬁf) |
Systan.arr.arintin(ex.geNote()) ;
} atch (Java.lag.BEosction ex) |
if (((sidl.Baselntarface)ex) . ishyee("sid 1.9 Bxogct i) {
dek(EBSS, e, "Usgected SIIL Exogction throa");
} else |
dek(ERSS, falss, "Usxeected ad uwkon excgtan thron);
}
}

In order to differentiate between the two different interfaces in this case we must catch the Wrappers explicitly by
their fully qualified names. In the eX350ians regression test we discover the types of the Exceptions by calling the
SIDL function iSTyge on them. However, because SIDL can cast between the two interfaces, in this case iSTyce
would return true no matter what the exception originally was. The final catch Java. lang.Exoeotion €x should
not ever be executed in out example code. GEtFib does not throw any other kinds of exceptions, and babel cannot
throw non-SIDL Exceptions. This was included because it demonstrates the most basic way to differentiate a SIDL
exception from a Java exception.

10.10 Enumerations

Enumerations are implemented as firal static ints in their own Java class, and as such, are accessed just like
variables in that class. For example, if we had a sidl package named dealership that contained the following code
segment:

aum car |
prde = 91,
fad = 190,
mercakes = 590

};

we would be able to get the value assigned to a Porsche by typing dealership.car.porsde

10.11 Invoking Babel to generate Java bindings

To create Java stubs (i.e. code to support Java clients to a set of SIDL classes or interfaces), you should invoke Babel
as follows ':

IFor information on additional command line options, refer to Section 3.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

10.12 Invoking Babel to generate Java implementations

% bbel —dliet=Ta file.sidl

or more cryptically

S bbel -adaa filesidl

This will create a great plethora of files, including a directory named file . This directory contains the Java client
classes, if you want to take a look at them. The files ending in _IIR.h and _ICR.C are the Intermediate Object
Representation. The files ending with _JniStiio.c are the JNI stubs — the interface between a Java client and the
IOR. The “jni” in the filename represents the fact that we use the Java Native Interface to communicate between Java
and the IOR representation. The remaining header files have external Java API that Java clients may use.

To use the Java stubs, you must compile the stub files whose file names end with _JiStd.c and link them
against the SIDL runtime library and a backend implementation. The resulting library needs to be referenced in a
.l file listed in the SIDL_DLL_PATH environment variable so that the Babel runtime library loader can find it.
Also, the current directory needs to be in the CLASSPATH environment variable so that Java can find the file and
sidl directories that contain the Java component of the client side.

10.12 Invoking Babel to generate Java implementations

To implement a set of SIDL classes in Java, you should invoke Babel as follows:

$ el —serversTaa file.sidl

or use the short form

S bbel —sJTam file.sidl

The directory structure that results from this command is that same as the client side, there are just a bunch more
files. In the file directory there are new files that end in _Tpl. @@ . These are the java files where you should
write your implementation. All of your methods in this class now also end in _Inpl . In the current directory there are
also new files that end in _jiSkel.c . These files are the equivalent to the _JiStdo.c for the client side.

You should also notice that all the Client side files have been generated in addition to the new Server side files.
These files are present to allow for calling methods on the current object in the Implementation java file. You can
safely ignore them.

10.13 Environment Variables

There are some environment variables associated with running Java with Babel. You can find examples for some of
these in the regression tests included with babel.

CLASSPATH: The CLASSPATH is an environment variable that Java uses to find .Class files. It’s is not specific
to Babel, but it is necessary. It consists of a colon delimited series of directories to search for Java classes. In addition
to any of your own Class files for use in Java server side, you should include oild dir/lil/sidl<er.jar
where ver is the current sidl version, and oadld ~ div/nntine/jma

BABEL_JVM_FLAGS: This environment variable is used only when passing java command line variables to Java
server side. It consists of a semi-colon delimited list of command line variables you wish to pass to Java server side.
(A useful one might be -Xcheck:jni))Here’s an example:

BT WM FIAGS="seroose:ar; 20 0n "

It is also necessary to set your LD_LIBRARY _PATH (or LIBPATH on AIX) and SIDL_DLL PATH correctly. Not
including all the necessary files in the SIDL_DLL_PATH and LD_LIBRARY _PATH can crash the JVM in unhelp-
ful ways. Babel tries to generate helpful error messages, but sometimes the JVM crashes due to missing files and

doesn’t generate very helpful output. If the JVM crashes, make sure you’ve included all the necessary files in your
SIDL_DLL_PATH and LD_LIBRARY _PATH.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

100 Java Bindings

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 11

Python Bindings

Contents
11.1 How to Create a SIDL ObjectinPython 101
11.2 How to Cast SIDL ObjectsinPython 101
11.3 How to Call Methods fromPython 102
11.4 Catching and Throwing ExceptionsinPython, .. 102
11.5 Building Python Extension Modules0.... 103
11.6 SettinguptoRunPython 103
8 R 1 N 103
11.8 How to Implement SIDL ObjectsinPython 104

11.1 How to Create a SIDL Object in Python

(once you’ve built the Python extension module)
You need to import the extension module and then calling a method to create an instance. If you have a class whose
fully qualified name is x.y.z, you would say:

>>> inpat Xy.z
>>> dj = xy.z.z()

The last part of the class name is repeated. You can also use fimm x.y.z dnpart *if you prefer; although,
you must guarantee that there are no namespace collisions.

In some cases, the Python extension module may be name zvagdile.sO instead of simply Zz.S0 . This might
tempt you to say impart x.y.z2modile instead of just IMpart X.y.Z ; resist this temptation!

11.2 How to Cast SIDL Objects in Python

Let’s say you have an object d0j, and you would like to see if it is an instance of a SIDL class or interface whose
fully qualified name is X.y.z . Here is how you do it.

>>> inpat Xy.z
>>> b = xy.z.z(d)

Of course, you don’t need the import if you know that X.y.Z has already been imported. If 230] is not equal to
Naxe , the cast was successful.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

102

Python Bindings

11.3 How to Call Methods from Python

Once you have created an object, you call methods on it using normal Python method calls. The arguments to the
method only include the in and inCUt arguments, and the return value of the Python method includes the SIDL
return value and the inOUt and QUL parameters. Hopefully, this will seem natural to Python programmers. For the
following example, the object d0j has a method asssverymbere with the following SIDL declaration:

dable passenymere(in chnle dl, atr dable &, imt dble B);
You can see the Python calling signature with prarnt doj. passsverywhere. _cbc . Here is what that

shows for this example:

S pythan

> inport Aos.Goddle

>> doj = Args.Codle.Godle()

>»> At dojesseernywere. dog

EsssEnyweEre(in dole di,
it dodkle B)

REIIR\B
(e _retim,
at dolkle &,

imt dobkle D)

In the method documentation, the SIDL method’s return value is called _retirm ; and unless the method is void ,
the return value always appears first. The fact that _refirm starts with an underbar should alert you to the fact that it
is not a parameter because parameter names cannot start with an underbar. The document comments from the SIDL
file (i.e. comments enclosed in /** */ comments) appear below the Babel generated signature documentation.

Static methods of a class are available in the Python X.y.Z namespace assuming you use the impart x.y.z
command. Static methods have documentation just like class methods.

Examples of calls to SIDL overloaded methods are based on the overlced _sarple.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of the geii\/a]lp, method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

b =1

i1 =1

t = Owrerled.Saple.Sample()
mresilt = t.oetalue()
iresult = t.geahelnt(il)
result = t.getalueol ()

11.4 Catching and Throwing Exceptions in Python

SIDL exceptions are caught and thrown very much like normal Python exceptions are caught and thrown. Here is an
example of a code catching exceptions from a call to GetFib .

fiboetFi(-1, 10, 10, O)

et E@Dﬁﬂ%tl\bﬁtlve\fal@mm& atio n:
(ebye, edoj, eb) = sys.exc info()
edyj is the SIL exgtion doject
it edoj.gethote() # dov the exgtion coment
it edoj.getTrace() # ad tracdeck

Here is an example of a Python implementation function that throws an exception. The sstote method provides
a useful error message, and the add method helps provide a multi-language traceback capability (provided each layer
of the call stack calls ad).

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

11.5 Building Python Extension Modules

103

def getFib(self, n, mexdegth, mexvale, dgth):
sidl EERCIED INOMING TYEES

#
int n, mexdgth, mexwvale, dgoth
#
sidl EECIED REIURN VALLE(S)
#
it _retm
DDNOMHEEE solicer.begin(getFib)
if n < 0):
ex = BEogpailest. Neggtivealekasdtian. Neogti v&alu ebaep tian()

ex.s=oe("n recgtive)
ex.ad(_ e |, 0, "Exogctiailest.Fib.cetFild")
raise Exogotiailest Neggtivdalugiogtian Bop tdom, ex

11.5 Building Python Extension Modules

SIDL creates a S=ipo.py file that can be used to build the Python extension modules that you create. Sep.oy
uses the Python distutils package to build the Python extension modules. There are two extra command line arguments.

o —irchitedirs= — Use this to specify extra directories for the preprocessor include path. This is like —L
for most C compilers.

o —lilyarydirs= — Use this to specific extra directories for static or shared libraries. This is like L for
most C compilers/loaders.

Normally, you need to specify the directory where the SIDL runtime headers and SIDL Python headers are stored
with —irnchidedirs= . You also need to specify the directory where 1ilosidl.s0 is stored. Here is a hypo-
thetical example:

stippy —irchoedirs=Asr/laal/inchide
—inchoe-dirs=/usr/laal/inchce /foyth an
—libyrany-dirs=/usr/lacal /1ib uld ext —irplace

It is unlikely that any installation actually uses those settings.

11.6 Setting up to Run Python

Here T assume that you’ve installed Babel in directories rooted at SFREFTX . You need to have $EREEIX/Q/|:}m
in your PYTHNEATH environment variable in addition to the directory where you are doing your work.

On many systems, you will need SFREFIX/1ib in your ID_LIERARY _EATH (or whatever system setting con-
trols which directories are searched for shared libraries/dynamic link libraries).

You will likely need to use SILL, _[I1, FATH (a semicolon separated path) to provide the path to the directory that
holds the shared library/dynamic link library containing the implementation of the SIDL objects.

11.7 Notes

The Python binding for SIDL long uses Python’s unlimited precision integer data type, so it will not behave exactly like
a 64 bit integer (i.e. there is no overflow). For Python versions before 2.2, your code needs to guarantee that a Python
unlimited precision integer is used whenever a SIDL long is needed. For example, if you want to call a method whose
SIDL signature is bool — isPrime(lay rm) , calling isPrine(1) will fails; but calling isPrime(1L) will

work fine.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

104 Python Bindings

The Python binding for an array of SIDL longs may use an array of 64 bit integers if Numeric Python supports a
64 bit integer. Otherwise, it uses an array of Python’s indefinite precision integers (i.e., integers with unlimited bits).
What does this error message mean?

>>> inpaxt x.y.Zwodile

Tracdak (memmest last):

File "<stdir>", lire 1, in ?

TnportError: dramic modide does ot dEfire init fuction (initAwcdile)

Is the name of your SIDL interface/class X.y.Z or X.y.Arcdile | if it’s the former, you should say import
X.y.Z . If this isn’t the problem, submit a bug report for Babel. It might be informative to look at the symbol of
the shared library/dynamic link library using a tool like nm. I suppose it’s also worth checking the PYTHONPATH
environment variable to make sure it’s pointing to the right place.

>>> inpat xy.Z
Fatal Bt aexar: CGrot lead inplawetation for SIL class x.y.Z
Moyt (cxe dopd)

This means that the Python stub code (the code that links Python to SIDL’s independent object representation
(IOR)) failed in its attempt to load the shared library or dynamic link library containing the implementation of SIDL
class X.y.Z . Make sure the environment variable ST, 0T, FATH lists all the directories where the shared li-
braries/dynamic link libraries for your SIDL objects/interfaces are stored. SILL 1T, _EATH is a semicolon separated
list of directories where SIDL client stubs will search for shared libraries required for SIDL classes and interfaces.
Make sure the directory in which the SIDL runtime resides is in the ID_TIHRARY _EATH (or whatever your machine’s
mechanism for locating shared library files is).

>>> inpat xy.Z
Faral Bt exar: CGirot lead inplawetation for SIL intefae xVv.2
Aoyt (cxe dopd)

This is the same problem for an interface as described immediately above for a class.

11.8 How to Implement SIDL Objects in Python

To build server side Python, you must have Python compiled as a shared library or dynamically link library. The
standard Python build only builds the necessary shared library on a few platforms — none of which are target platforms
for Babel. Some Linux distributions include a Python shared library, and it is possible to make a Python shared library
on Solaris. The Python shared library should contain the objects from libpythonx.y.a where x.y is your Python version.
Making a shared library is different on each platform, so it is not covered here.

To implement an object in Python, first you must run Babel to create the Python server side bindings '.

% bbel —sarverption file.sidl

or simply

S bebel -spthm file.sidl

This creates the IOR, Python skeleton (pSkel), and Python launch (pLaunch) files in your currect directory, and it
will create tree of subdirectories based on the package hierarchy found in file.sidl. The IOR, pSkel and pLaunch files
must be compiled and place in a shared library (in most cases).

IFor information on additional command line options, refer to Section 3.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

11.8 How to Implement SIDL Objects in Python

105

The tree of subdirectories created by Babel includes Python implementation files whose name ends with _Tnpl .oy
and Python extension modules for the Python client side binding (Module.h
modules need to be compiled as above in section 11.5, and you need to fill in the implementations in the _Inpl.py

files.

Babel generates the outline of the implementation. It creates a class definition and empty methods for you to fill
in the each _Tnpl.py file. If you put your code between the comments as indicated, your code will be preserved if
you rerun Babel. Any changes out side the comment blocks will be lost if you rerun Babel. Here is an example of a

method implementation:

Ef EsssEpmbere(self, d, dB):

#

S, BEECIED DINOMING TYEES
#

donle dl

doble B

#

#

S, BEECTED REORN VALLE(s)
#

(rem, &, D)

doble _retim

doble &

doble B

#

:
:
:
«@

in(assserywere)
if d = 3.14):

rebmal = 3.14
else:
rebal =0

reum (rebel, 3.14, D)
DONOIMHFIE solicer.ad(rassseryntere)

Babel generated everything except the code that appears between the splicer.oegin

comments.

babel-0.9.6 Doc Last Modified September 8, 2004

9:11 a.m.

and Module.c). The extension

and solicer.ad

106 Python Bindings

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 12

SIDL. Backend

Contents
12.1 Imtroduction o i i i i it e e e e e e e e e e e 107
T12.2 PUIPOSE & ¢ v v v v v o v e i e e o e e e e et e et e 107
12.3 Generated versus Original SIDLfiles 107
124 XML File Comparison ¢ ¢ v v v v v v v ittt ittt et et oo oo oo 109
12.5 Babel Command Line Optionsottt i ittt 109

12.1 Introduction

This chapter introduces the SIDL backend associated with symbols that may originate from a SIDL file or the corre-
sponding Extensible Markup Language (XML) representation. Unlike most of the other supported language bindings,
the output from this backend is textual in nature. That is, it is the textual, human-readable form of the interfaces
description. An alternative text form, XML that is, which is also supported is described in Chapter 13.

12.2 Purpose

The primary reason for having a SIDL backend is to provide a mechanism for generating human-readable text for
interfaces that are written in conformant XML. It is important to emphasize that Babel requires the XML to conform
to the SIDL DTD in order to benefit from this feature.

Generating SIDL provides a feature to collaborators who are interested in experimenting with the XML form
of the interfaces. Such groups should find the more human-readable descriptions of the interfaces to be helpful for
distribution and discussion.

12.3 Generated versus Original SIDL files

Generated SIDL files may differ from their original SIDL files in several respects in terms of content as well as layout.
These differences are summarized below.

Packages. The code generation is limited to one high-level package per generated file. In fact, the name of the
generated file is currently defined to be the concatenation of the name of the highest-level package and -sidl-

Versioning. The generation of requires statements is inferred from the symbols that actually appear in the associated
interface descriptions. The intent is to provide a requires statement for only the highest level package needed of a
given version. Consequently, requires and imports statements that were not necessary for resolving symbols will
not appear. Also, fully qualified names will be shortened in the generated files due to the automatic generation

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

108 SIDL Backend

of the associated requires statement(s). Finally, since an import and require statement can be used in a SIDL file
and no distinction is made in the XML, only a require statement will appear in the generated file.

Implements. Since there is no distinction between Inplar@tsall and Inplar@ts in the XML version of
the interfaces, the generated code outputs InplamEats along with the inherited methods.

Comments. Babel preserves only document, or doc, comments so any comments that do not conform will not appear
in the generated file !.

Whitespace. Obviously there may be whitespace differences in the generated file. These include indentation, blank
spaces and lines, and brace placement.

As an example, suppose we have a package in the file fao.sidl . The original file’s contents are:
rdae foo wsiom 1.0 {
class A {}

rdar kar vwesian 2.0
class B {}
}

}
The resulting contents of the generated SIDL file are:
rdae foo wsion 1.0 {

class A {
}

rder lear vasion 2.0 {

class B {
}

}

Notice the differences in white space. To illustrate more features, further suppose we have a package in the file
faoTest.sidl . The original file’s contents are:

// M igored cament
require foo vesim 1.0;
require foolar wvesion 2.0;

/*k

* Test of doc comet with XML goecial darecters < & >.
*/
rdae foolest weasion 0.1

/**

* Avder doc camat fo an ey dass.

*/

class A exads fooJar B {}

class B extads fooA {}
}

For more information on comments and doc-comments, refer to Comments and Doc-Comments in Section 5.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

12.4 XML File Comparison

109

The resulting contents of the generated SIDL file are:

require foo vasion 1.0;
require foodar wveasian 2.0;

ok
/:Testofcbco:mteit with XL soeecial derecters < & >.
paéage fodlest wvasian 0.1

Jrx

:/Amtler ac camat for an ety dass.

c}:lass A etads foolarB |

c}:lass B etads fooA |

}

Here we see the exclusion of non-document comments and the retention of document comments. Refer to Sec-
tion 5.2 and Appendix C for more information about document comments.

12.4 XML File Comparison

Testing has revealed that XML generated from the original SIDL file compared to XML generated from generated
SIDL files have only minor differences. In fact, the differences are limited to specific metadata fields. Specifi-
cally, the date, source-url, and source-line entries can differ. The dates, however, will be the same if the “—suppress-
timestampoption was used when both XML files were generated. Similarly, the source-line entries will be the same
if the package started on the same line in both the original and generated SIDL files. The latter can happen if, for
instance, there are no non-doc comments in the original file.

12.5 Babel Command Line Options
To generate SIDL from a file using the default repository to resolve symbols, you should invoke Babel as follows 2:

S bbel —ted=SIL. file.sidl

or use the short form

% bbel +SIIL file.sidl

Alternatively, you can generate SIDL from XML symbols, again assuming the default repository is used to resolve
symbols, by typing the following at the command line:

% bbel —ted=SI. padaggare

or use the short form

% bbel S pdagEare

2For information on additional command line options, refer to Section 3.2.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

110 SIDL Backend

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 13

XML Backend

Contents
13.1 Introduction 0 i v i i i i e e e e e e e e e e e e e e e e 111
132 PUIPOSE .« & o o v o i e e e i e e e e e e e e e e e 111
133 BasicStructure 0 i i i e 111
13.4 Command Line Options 0 i i i i ittt i ittt ot v oo e e nns 117

13.1 Introduction

This chapter introduces the XML representation supported by Babel. Here we describe the motivation for having an
XML backend and the basic structure of a conformant XML file. To illustrate, a few of the SIDL symbol XML files
will be presented.

Details regarding the layout of XML files can be obtained by referring to the Document Type Definition (DTD)
provided in Appendix C. For more on the type repositories, refer to XML Repositories in Section 5.2.

13.2 Purpose

The XML backend is a key feature of Babel. It provides the basis upon which the symbol, or type, repository depends.
SIDL files should be translated into their XML representations and stored in the type repository. This is the case for
the SIDL interfaces and classes that are provided as part of the Babel toolkit.

13.3 Basic Structure

Each generated XML file specifies the interfaces for a given SIDL Symbol in an expanded textual representation.
Although the structure of a given file depends upon the type of symbol it contains, the basic layout consists of a set of
common elements followed by symbol-specific elements.

Common Elements

The common elements are prolog, document type, name, metadata, and comment. These elements, which are described
below, are followed by symbol-specific information.

Prolog. The prolog simply identifies the XML version and encoding scheme associated with the file.

Document Type. The document type declaration states the document contains a Symbol and it identifies the associated
DTD (i.e., SIDL.dtd).

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

112 XML Backend

Name. The symbol name is the first element within the symbol tag pair and it identifies the name and version of the
SIDL symbol that is described in the file.

Metadata. The metadata element identifies the date the XML file was generated' along with a set of three key-value
pair entries. The first, source-url, identifies the URL of the SIDL file that was used to generate the XML file.
The second, source-line, identifies the line within the SIDL file at which the symbol was first detected. Finally,
babel-version identifies the version of Babel that was used to generate the XML file.

Comment. The comment tag is used to save off any comment that is associated with the symbol.

Packages

In addition to the common elements, packages retain elements and attributes associated with SIDL packages. These
include whether or not the package is final along with a list of the symbols contained within the package. The list of
symbols consists of the tuple: name, type, and version.

For example, the XML representation of the toplevel SIDL package (i.e., SIdl) is:

<l versiaE"1.0" encoding="UIE-8">>
<IDCIYEE Sl RHEIC "-//QR//SIL Snol DD vIL/AN' "SIIL.ced™
<Syrol>
SpolNae rae'sidl" versia'0.8.2"/4
Metechta cate="20030320 13:29:02 B
Metacatafttry key="sourceur" vahe="file: /rove/dehlgrery/ R EASE/1in K _kao/s tare/. /..o
Qetachtafitry key"'source-lirg"” value="40"/>
Qetachtafitry ke tebelsersian” valie="0.8.2"/>
<Metzchta>

<Comert>
Tre <codesot;sidlslt; /aodesat; mder atains te fudaetal type ad interface
dfinitias far the <codesgt;SINEIL; /aodesat; interface definition larguece. It
defires comn rnrtime lilvaries ad comon ese dassss ad interfacss.
RBary interface inplicitly drterits fron <codesgt;sidl.Baselnterfaces]t; /o dBssgt;
ad emry cdlass Inplicitly dirterdts from <codesgr;sidl BaseClassslt; /aadesy ;.

</Camat>

Pdeae fil'false™

<PackaceSymdaol rare="BassTnterface” e interface" versia="0.8.2"/>

<PackaeSynool rave="BasClass" gpedass" versiae"0.8.2"/5>
<PadaceSyndaol rane="Basehxoeotian” Hreclass" versiae"0.8.2"/>
<BackaosSyriool e gpeddass" versiad'0.8.2"/>
NEceicecShicall reve="Tosder" gpee'dass" versia="0.8.2"/4
NEceicecShicall reme="ClassTrfo" e interface" versian="0.8.2"/>
<FadacsSyndool rare="ClassTnfol" gpe'dass" versiae"0.8.2"/4

</Syndol>

Interfaces

Similarly, the XML for interface symbols contain the common elements. In addition, they retain elements and at-
tributes associated with SIDL interfaces. These include any extensions, parent interfaces it implements, and its meth-
ods. Method information includes its name, communication mode, short name, name extension (for languages that
don’t support method overloading), comment, return type, argument list, and exception list.

For example, the XML representation of sidl.Baseliterface is:

<l versiaE"1.0" encoding="UF-8"2>
<IDICIYEE~ Sybol - RELIC "-//QRY//SIL Sydol DD vLLL/AN' - "SIOL.Ad™
<Syizol>

! Assuming the =—suppress-timestampoption was not used.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

13.3 Basic Structure 113
rare="sidl .BaseTnterfans" versia¥"0.8.2" /4>
Methta daeE"20030320 13:20:2 BsI™
Metacataftry key="sourceurl" valie="file: /rove/cehlgren/RELFASE/1inx _kao/s tere/. /..o

Metecatathiry key""sarce-lirg" vale="47"/>
Metachataftry kel ersian” valie="0.8.2"/>
<Metadata>
<Comet>
Bery interface in <codesgt;SIO&NL; /cadesgt; Inplicitly drherits
fran <codesgt;Baselnterfaces]t; /codesgt ;, ad it is dnplaveted
by <codesgt;BassClassslt; /aadesgt; kelow.

Method comnicatias"romal" ap'falss" definitio"dostract”

&1L;p8gt;
A ae to the intrmsic mwfaere out in te udedying doject.

Qoject in <codesg; SINLENL; /cadesat; hae an intrirsic referece count.

ojcts aotine to exist as lag as te rwfeee c@at is
positive. Cliets dould @l this metod weser tey
ceate acter aooirg rfaare t© an dopct o interface.
&1t; /osat;

&IE7060;

This does ot hae a reim e bearse taee is m lagee
eregﬁdaﬁ:tygetlratcanrefertoanmteﬁace a a

< /p5gt

Method comunicatia= nommal " ap"false" cefinitia"astract"

Drreae by ge the intrinsic rfeere cut in te udedlying
dopct, ad celete te dojpct if the e is nmpositive.

Qojects in <codesgt; SIL&NL; /aadesat; hae an inrinsic rmfeaere cuat.

Clients gadd @&l this nethod wees tey more a
referare to an dojpct o interface.

Method comunicatia= " nomal " ap"false" cefinitia="astract"

Reim tme if ad aily if <codesgt;dojslt;/cadesat; refers to the sawe

dopct as this doject.
</Camat>
<y typeboolean'/>
Brgnetlist>
<Argmet agpofalse” mooe"in" rame"idoj™>
<Bre tyee'syntol™
<SyrolNare

reme="sidl .BaseTnterfase" versiae"0.8.2" />

</Rjpe>
</Prgurent>
</Argaentlist>

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

exttensiaeE™ Sortrares

extensiaE™ Sortrares

extensia=™ Shortrares

114 XML Backend

<Throwelist/>
<Method>
<Comet>
ek wether the dojct @an syt the goecified interfae o
class. If the <cadesgt;SIEIL;/aodesgt; tyee rae in <code>rme&it/code>

is sypoted, ten a refeere to thet dojct is retured with
referace cout irncraveted. Te allee will ke resoxsible f@r

alling <cooesgt;deleteRef§lt; /aodesot; o the reimed doject. If
the socified tyee is ot syported, ten a nill refeece is
rebrred.

</Camet>

Dype typeisyol™

SGniolNare rame"sidl .BassTnterface" versiae"0.8.2" />
SHpe>
<Argurertlist>

<Argurerc aquz'false mooe"in" raerae’™>

</Brgment>
</Argaentlist>
<rrowel ist/>
<Methad>
Method comnicatia="romal" ap'falss" definition"dostract” extersian="
<Comet>
Reom weter this dojct is an imstae of the soecified e
Te string mare mst ke the <oodesgt;SISIL; /codesgt; type mare. This
ratire will retum <oodesgr;truesdt; /aodesgt; if ad aily if a east t
the strirg tpe rae would suooesd.
</Camet>
<y typeboolean'/>
<Arouarentlist>

<Arogmat apEtfales" | moein" raemae’™
<Rpe typee'strirg!/>
</Brgmernt>
</Argaentlist>
<Throwslist/>
<Method>
dethod comnicaria="romal" ap'alse" definitior"dsstract” etasiaE"
<Comert>
Rem te metachta dout te dass inplawting this interface.
</Camet>
Type typesyol™>
<SntolNare rave="sidl .ClassInfo" versiae"0.8.2"/>

Classes

Class definitions are almost identical to that of interfaces except for additional attributes. The additional attribute,
which include whether or not the class is final. Recall that Babel/SIDL supports only single inheritance of classes;
therefore, only a single class will appear in the extends block. If one does not appear in the original SIDL file, by
default the class will extend sidl.Baseclase .

For example, the XML representation of 5idl.Basx’lass — is:

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

13.3 Basic Structure 115

<l versia?'1.0" eooding?'UIE-8"2>
<IDCIYEE Sl RHEIC "-//Q3//SIL Snol DD v/ "SIIL.csd™

<Syrdool>
rae="sidl .Bas=Class" versia="0.8.2"/>
Metadhta date=" 20030320 13:20:02 BST™
Metachataftry ke="sourceurl" vale="file: /rove/dehlgrery/ R EASE/1in K _kao/s tere/. /..o

Metahtaftry key"source-lire" value="109"/>
JMetecataFtry ke el versian" valie="0.8.2"/>

Bery cdlass dnplicitly irterits fron <codesgt;BassClassslt; /aodesat; . This
class inplamats te methoks in <oooesgr;Basenterfaces]t; /aadesat; .
</Camat>
Class dstracE="false">
Fxterds/>
<mplawetRlodk>
<SyolNare rame="sidl .Bassnterface" versia="0.8.2"/>
</TnplarentBlagk>
AlParatClasses/>
AlParentTrerfaces>
<SyolNare rame="sidl .Bassnterface" versia="0.8.2"/>
</Bl1ParantTnterfaces>
QMethodRlodke>
Method comnicatia="romal" ap'alse" definitiaE"firal" extensiay " Sortrare"ao
<Comet>
&LE7o8at;
M ae to the inrinsic rwfaere @t in te udedlying doject.
Qoject in <cooesot; ST &t /aadesat; e an intrirsic referare cout.
ojcts aotine to exist as lag as te rwfeee c@at is
positive. Cliets dodd @1l this medhod weaser they
aeate acther aooing wfeerwe to an dopct o intedface.
&1t; /p8at;
&IL7ost;
This does ot hae a wom valle bease thee is m lagee
irdgeedat tyee tet an refer to an interfae o a
class

&1t; /oty
</Camet>
e tyeetvald"s
Brgaentlist/>
<Trrowelist/>
<Method>
dethod comnicatios"nomal" apfalss" definitio "firal" etasiar™ dotraetel
<Comert>
Drreae by ge the intrinsic rfeere cut in te udedlyirg
dojct, ad delete the dojpct if e rfemre is noositive.
Qojcts in <aodesgr; SISt ; /aodesat; e an Inrirsic referare cout.
Clients gaid @l this method weesr tey more a
referace to an dopct o interface.

QMethod comnicatios romal" apyfalse" cefinitia="firal" extensia="™ Shortrame="1

Reim tme if ad aily if <codesgt;dojslt;/cadesat; refers to the sae
dojct as this doject.
</Camet>

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

116

XML Backend

<Ky typeboolean'/>
Brgnetlist>

<Aouet apEfalse" mooe"in" raeido™>
<SyolNare rame="sidl .Bassnterface" versia="0.8.2"/>

</Type>
</Argrent>
</Argaentlist>
<romslist/>
<Methad>

Method comnicatia® " nommal " ap"false" cefinitia="romal" extensiay™

<Comer>

Gek weter the dojpct an syt the soecified interface o

class. If the <codkesgt;SIEIL;/aodesgt;
is syorted, ten a wfemee to tet dojpct

calling <audesgt;deleteRef< /aadesgt; fog}

tyee ree in <oooesgtramesdt; /aadkesat;
is reimed with te
ke rexposible far

the soecified Gypee is ot syported, ten a nill r=feaxe is

retumed,
</Camert>
<Bre Tyee'sydol™
<SynolNare

rare="sidl .BaseTnterfans" versia¥"0.8.2"/>

SHpe>
<Argurertlist>

<Agmat apEfalse moe="in" raerrae’™>

<Byee type="string"/>

</Brgmertlist>
<Throwglist/>
<Method>

Method comnicatias"romal" apfalses” definitia " romal"” extensias™

<Comer>

Reom weter this dopct is an imstae of the soecified e
Tre strirg mae mst e the <oossgr; STt /aodesat; tee ree. This

ratire will retum <oadesgr;teslt; /aodesgt;
the strirg tpe e would suooesd.
</Camat>
<pee typeeoooleen/>
<Arouarentlist>
QArogmet apA'falss” moke'in"
<Ry type"string"/>

if ad aly if a st to

rae="rare'>

Method comnicatias"romal" ap'falss" definitiad'firal" extarsiay™

<Comert>

Rem the metachta dout te dass inplawting this interface.

</Camat>
<Bre Teesydol™
SGnoNae rae"sidl .ClassInfo"

</Tyee>
Zrguentlist/>
<Trrowgl ist/>
<Method>
<MethodRladk>
</Class>
</Syriol>

versia="0.8.2"/>

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Srortrame=":

13.4 Command Line Options

117

13.4 Command Line Options

XML must be generated from a SIDL file. The Babel command line is as follows 2

s bbel —tedt2ML filesidl

or simply

S bbel M. file.sidl

In both cases, the use of the default repository is assumed for resolving symbols. In addition, the output will appear

in the default output directory.

2For information on additional command line options, refer to Section ??.

babel-0.9.6 Doc Last Modified September 8, 2004

9:11 a.m.

118 XML Backend

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Part 111

Advanced Topics

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 14

Building Portable Polyglot Software

Babel generates very portable source code for multilingual programing. There is also an art and science to trans-
forming the source code to binary assets without breaking the language encapsulation Babel is trying to create. This
chapter discusses the details: from the mundane issues of file layout, to the arcana of linker and loader flags.

Contents

14.1 Layoutof Generated Files i it 121
14.2 Grouping compiled assets into Libraries 122
14.2.1 Basics of Compilation and Linkage 122
14.2.2 Circular Dependencies and Single-Pass Linkers 123
14.2.3 IOR assingle pointofaccess oo 123
14.3 Dynamic vs. StaticLinking oo i e 123
14.3.1 Linkers and Position Independent Code (PIC) 124
14.3.2 Tracking Down Problems 124
14.4 SIDL Library Issues v v v v v v v ittt ittt ittt ettt oo eee s 125
14.5 SCL Files for DynamicLoadingt 125
14.6 Deployment of Babel Enabled Libraries 126

14.1 Layout of Generated Files

Babel generates a lot of files. Many of these files you never have to look at in an editor, but they must all be compiled
and properly linked into an application (see Section 14.2). In this section we discuss a host of flags that can affect
where files get generated.

o —aupbdirtachary =path
This sets the root directory of where your files will be generated. The path can be absolute, or relative to the
current working directory.

o —gEexabesdirs
This option forces files to be laid out in a directory hierarchy following the package hierarchy in the SIDL file.
This arrangement is required for the Java and Python languages, so those generators force this option on and
allow no means to turn it off. For C/C++ and Fortran 77/90, the default is that all files be generated in the single
output directory with no package-named subdirectories.

o —lagar-sidir
This option was contributed by a user. This option appends a language-specific subdirectory (e.g. c, python,
f77) to the end of the path.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

122 Building Portable Polyglot Software

. —h:l.é'g]lE
This option was contributed by a user. The intent here is to separate the Impl files (which must be modified)
from all other files. If this flag is set, then wherever an Impl file gets generated, all the corresponding Skels,
Stubs, IORs, etc get generated in a subdirectory named glie .

Arbitrary combinations of the above flags are allowed. Regardless of the order they appear in the commandline,
they are applied to the resulting path in the order they are presented above. For example if a SIDL file d«.sidl
defines a CIs class in the 7k package, and the user runs Babel as follows:

T bbel -hap there -=c

Then the majority of the sources will be generated in the there/idky/c/glie/ directory (except the Impl files
which will occur one directory up in there/idg/c/). Note the use of equivalent short-form commands in this
example. If readers wish to review long and short forms of command line arguments, see Tabel 3.1 on page 13.

Note that many of these options were contributed by users and are not employed in Babel’s own build. Instead, we
tend to put a SIDL file in a directory and then generate client-side or server-side bindings in in either I¥XXX/ or
14I3¢4X%/ subdirectories, respectively (where XXX is a language name). We don’t use the —rerate-sbdirs
or —hide-ghe flags because they place source files that belong in the same library in different directories. Au-
tomake, which Babel uses as part of its build system, works much more reliably when all the sources that go into a
library appear in the same directory as the library to be. The —langege-sddir has a similar effect to what we
do manually, but doesn’t capture if it was client-side or server-side. In our tests and demos, we tend to build these
separately because we want to exercise different drivers with different implementations.

14.2 Grouping compiled assets into Libraries

Babel enables one to completely encapsulate language dependencies inside a static or dynamically loaded library. This
means that one can take a SIDL file and a compiled library, generate the bindings they want in their language of choice
from the SIDL file, link against the library, and use it. .. never knowing what the original implementation language is
for the library.

Babel generates the source code to accomplish this level of language interoperability, but users must use their
compilers and linkers correctly for the effect to be complete. This section deals with many of the details that

14.2.1 Basics of Compilation and Linkage

What we generally think of as a compiler is really an ensemble of related tools. Generally there is a preprocessing
step where very simple transformations occur (e.g. #define, #include directives and others). Next, the compiler
proper executes and typically transforms your sourcecode into assembler or some other intermediate form. Optimizers
work on this intermediate form and do perform additional transformations. Most big vendors of C, C++, and Fortran
compilers have a common optimizer for all languages. Next, assemblers transform the optimized codes into platform-
specific binaries. But this is not the end. The binaries may be linked together into libraries or programs. Libraries
can be linked against other libraries, and eventually multiple programs. The main difference is that a program has
additional instructions to bootstrap itself, do some interaction with the operating system, receive an argument list, and
call nrein() . To see all this in action, try building a “hello world” type program in your favorite language, and run
the “compiler” with an additional flag such as -7, —vexboge , or whatever.
For example, this is what I get from a g77 compiler.

% g7l hello wardd.f
% .[a.at

Fello Wxld! % g7l - hello wxldd.f

Drivirg: g7l = hello waddd.f —Ifrtdeegin —Igkc -Im —dared-lilyec

Reeding goeecs fran Asr/loal/goe/3.2/1iy/goe-1i/1686 “oli nxg ny3. 2/sec s
Crfigred with: ../ge3.2/cxfigre —pefis=Arr/loal /gc/3.2

Threed mockl: posix

grc vesian 3.2

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

14.3 Dynamic vs. Static Linking 123

Jusr/local /gao/3.2/1iky/ge-1iky/i6 8orc -link -gu/ 3.2/f 771 rello warld.f
-qiet -dndese hello wxld.f -—sersicm o /tp/agdBFE.s

QU F77 versicn 3.2 (i686po-linmxg)

apiled by QU C veasion 3.2.

as —traditiasl-fomat vV €y -0 /op/aEildt.o /ap/a A BE.S

QU assabler wversion 2.11.90.0.8 (1380redat—linx) wing BD wversion

2.11.90.0.8

Jusr/lacal /goe/3.2/1i/gae-1ih/i6 8y -linx -gw/ 3.2/c allect 2 -m elf 13%6

-dyramic-lirker /1i/1d-inx.s0.2 Jusr/lib/crtl.o Jusr/lib/crti .o Jusr/loal /goe/3.2/1ib/r
—L/sr/loal /gae/3.2/1iky/goe-11ly/ 1686 p;‘—]jn weon W/3.2 L/usr/local/goe/3.2/1i/goe-11k/1686

/op/cEi IS0 —frtegin @ Az -Im —lgr s g -lc -dgr s -gr /fsr/loal/gae/3.2/1iky
Juer/li/artn.o

For the purposes of this discussion, we will make a big distinction between linking to build a library and linking
to build and executable. Even though these transformations have similar names, they perform very different kinds of
transformations to the code.

14.2.2 Circular Dependencies and Single-Pass Linkers

Almost all linkers are single pass. This means that when linking an executable, linkers will run through the list of
libraries exactly once trying to resolve symbols Ever get libraries listed in the wrong order and an executable wouldn’t
get built? Ever have to list the same libraries over and over again to build an executable? These are both side-effects of
single pass linkers. The symbols in question are essentially jumps in the instruction code corresponding to subroutines
that are defined elsewhere. When linking a final executable, all these symbols need to be resolved. When linking
libraries, multiple undefined symbols are commonplace.

Having to list libraries over and over again in the link line when compiling the final executable typically indicates
a circular dependency between libraries. Circular dependencies are much better kept within a single library. Even
though linkers are single-pass between libraries, they exhaustively search within them.

This is important because all the files generated by Babel have a circular dependency in each Babel type. The
stub makes calls on the IOR, the IOR calls the Skel, the Skel calls the Impl, but the Impl also may make calls on a
Stub. Just like C++ has a this object, and Python has a Self , Babel objects have a stub for them to call methods on
themselves and dispatch properly through Babel’s IOR layer.

14.2.3 1OR as single point of access

When building a Babelized library, its also important to note if your code has dependencies to other Babel types not in
your library. These types often appear as base classes, argument types, or even exception types. Your library will need
stubs corresponding to all these types, so it is best to put these in your library as well. We call these external stubs.

Many have tried to minimize replication of Babel stubs by removing the external stubs and letting the library link
directly against the stubs in an external library. This is a mistake because the external library may be implemented in
a different language, and the stubs may be for a different language binding. By bundling the external stubs specific to
your implementation with the implementation’s library, you are ensuring that the only access your library has with any
other Babelized library is through the IOR. This is a good thing. The Babel IOR is the same for all language bindings
and essentially forms the binary interface by which all Babel objects interact.

14.3 Dynamic vs. Static Linking

Most UNIX users are very comfortable with statically linked libraries (e.g. 1i113&X.a). Most are aware of “shared
object files” in UNIX (with the form 1il3&X.50) though few actually build them. Even fewer still are familiar
with dynamically linked libraries, called DLL’s in Microsoft (after the common .dl1 suffix), which involve actu-
ally selecting and loading dynamic libraries at run time based on their strlng name. MacOSX uses the novel suffix
JidX.cynlib . (In most UNIX systems, including Linux and Solaris, .so “shared object files” are actually dy-

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

124

Building Portable Polyglot Software

namically linked libraries.) This section serves as a quick overview of how Babel handles both static and dynamic
libraries, including runtime loading.

14.3.1 Linkers and Position Independent Code (PIC)

In a static library, the linker simply copies needed compilation units from the library to the executable. The static
library can subsequently be deleted with no adverse affects to the executable. This also causes common libraries to be
duplicated in every executable that links against it, and for the resulting executables to be quite large.

In a shared library, the linker simply inserts in the executable enough information to find the library and load it when
the executable is invoked. This typically happens before the program ever gets to T&in() . This keeps executables
small and allows commonly used libraries to be reused without copying, but it also means that the executable can fail
if the library is renamed, moved, deleted, or even if the user’s environment changes sufficiently.

A necessary (but not sufficient) condition for shared libraries to work is that all the compilation units (*.0) con-
tained must be explicitly compiled as position independent code(PIC). Position independent code has an added level of
indirection in critical areas since details (such as addresses to jump to in subroutine calls) are not known until runtime.
Even though shared libraries are very useful, PIC causes a small but measurable degradation in performance, making
static linked libraries with non-PIC code a viable option for performance-critical situations.

A dynamic-linked library is a shared library with one added feature, it can be loaded explicitly by the user at
runtime by passing the string name into dlga() . Dynamic-linked libraries (DLL’s) also require compilation as
PIC, though many compilers (including GCC) have special commands for each'.

14.3.2 Tracking Down Problems

When tracking down problems with Babel libraries, to UNIX tools rm and I are your friends. rm will print the
list of linker symbols in a file, including details such as whether the symbol is defined or not. 1 lists dynamic
dependencies of a shared libraries or executables, indicating where it will look for these symbols when loaded.

Recall the Fortran hello world example in section 14.2.1. Even though we may think this is all done with static
linking, using these tools we find out the truth.

% 1 a.at

lige.o0.0 = Asr/loal/gre/3.2/1iy/like.50.0 ((A00180000)
libnso.6 = /li/i686/1ikm.so.6 (40042000)

libye _s.s0.1 = /Asr/loal/goe/3.2/1iy/lieyc S.0.1 ((x4006d000)
libc.s0.6 = /1ib/1686/1ilc.50.6 (O40076000)

/1i/10-linx.s0.2 = /liby/1d-linx.so.2 (040000000)

Here, we clearly see that five libraries are shared libraries that will be loaded after the executable is invoked, but
before we get to the main program. Some of these libraries make sense: 1162 is a Fortran to C support library,
lilec is the C standard library, but why is lilmn listed... its a library of transcendental functions (e.g. sin(), cos())
why would it be included? The answer becomes obvious when using 1dd on 1ilaAc . The fortran support library has
dependencies on the math library, so our FORTRAN executable inherits that dependency too.

Tmaat | gep U’

U __ca_aed@@Imse _2.1.3

U _likc _start meind@dIBC 2.0
U ab_lio

U ewsle

U edt@@IBC 2.0

U fexit

U f init

U f s=stag
U f setsig

I —fpic for SO’s, =fPIC for DLL’s

babel-0.9.6 Doc Last Modified September 8, 2004

14.4 SIDL Library Issues

125

U s.stp
U s.wsle

rm (and grep) shows us 11 symbols that are were left undefined in our final hello world application. A little more
nm—greping about will help us find that symbols starting with £_ are defined in libg2c.

14.4 SIDL Library Issues

As mentioned in Section 5.5, the Babel toolkit includes the SIDL runtime library. The library provides a base interface,
class, and exception as the foundation. This is how Babel provides object-oriented features to non-object-oriented
languages. In order to support the runtime system and build the SIDL library, it also provides DLL and Loader classes.

Babel generated code depends critically on keloeel _aaifig.h to correctly define a lot of platform specific details.
One detail that changes too frequently to encode in alael _aafig.h is whether or not the software is being com-
piled is position independent code (PIC). This detail is commonly added to the compilation instruction using the flags
(e.g. =fPIC IPIC 2). The first flag tells the compiler to generate position independent code. The second defines
the preprocessor macro PIC . Looking now at keleel _axfig.h , we see that either ST, DINMMIC _TIERARY or
SIIL, _SIATIC _LIERARY are defined depending on whether or not PIC is defined.

As described in Section 14.3.1, Babel tends to focus on static libraries and dynamic linked libraries; not worrying
much about shared libraries. The main reason is that for every last drop of performance, people would want static
libraries. To support Java and Python (and the CCA model) dynamic loading is required. There’s no real benefit to
doing shared libraries that can’t be dynamically loaded, so in developing Babel, we focus on the other two linkage
situations.

14.5 SCL Files for Dynamic Loading

If you generate a dynamic-linked library containing implementations of SIDL classes, you must also generate a SIDL
Class List file (SCL file). An SCL file contains metadata about zero or more dynamic-linked libraries; for each

dynamic-linked library, the SCL file has the list of SIDL classes implemented in that library. The sidl .Icecer.firdlilyary

method searches SCL files when trying to find the implementation (or some other aspect) of a SIDL class.

The SCL file is an XML file with three kinds of elements. The top level element is SC1 which contains zero or more
lilvary elements. The likxyary element has several attributes, and it contains zero or more Class elements. The
lilyary element has three required attributes, Ui, Sagee and resolution |, and two optional attributes, b
and el . The uril is a local filename including path or a network Url indicating where the library is stored.
The sa0e attribute allows developers to suggest whether the library should be loaded in a lacal or the gldal
namespace. The developer can suggest 1azy or IO~ symbol resolution using the sa0@e attribute. The ndb and
el are optional message digests to confirm that the library has not been modified or replaced. The Class element
has two required elements, rare and desC . The rene field is the name of the class, and d&sC indicates what kind of
information is held in the library. Each class contained in the dynamic-linked library should be listed in the SCL file.
For now, the only desC values with standardized meanings of icr/inpl , Java and pythay/inpl . iar/irpl
indicates the dynamic-linked library contains the IOR object and implementation for the class, and J&va indicates
that the library has the Java JNI wrapper object code. pythary/inpl has the Python skeletons and implementation
libraries.

Here is an the SCL file for the SIDL runtime library installed in /usr/local

<l versiaeE"1.0" >

<>

ddlyary urd="/Awsr/loal/lily/lisidl . 18" soope'gldaal" resoluticn=" o >
«lass reme"'SIL.BasClass" Ao/l />
<class rawe"SIL.ClassTnfor" dese=iar/inpl" />

Cass raedSILOL desetiad/Aigdl" A
<lass rae?SILIck" decMar/imd" A
<class rare"SIL.Boolean" esemiy=vo\ />
<dass rame"SIL.Craracter™ e S

2The actual command to the compiler varies, <fPIC is understood by GCC

babel-0.9.6 Doc Last Modified September 8, 2004

126

Building Portable Polyglot Software

«lass rEe="SITL.Doblednplex” el S
<lass rae"SIL.Dable” e " />

«lass rEme"SIIL.FloatCaplex" etma" S
<lass rae="SIL.Flcat" =" />

<lass rame="SIL. Tntecer™ T A

<lass rae"SIL.Iag" EsTma" S

<lass rae="SIL.Qeage" e ma" S

<lass rame"SIML. ST Bosctian” deseMar/inpl" />
<dass rae="SIIL.Striry" [o=Seriy= T UNYOS

</likyary>

</scl>

It’s worth noting that the Uri can be a libtool metadata file (.1a) when the library is located on the local file system
or a dynamic-linked library file (.SO or another machine dependent suffix). You cannot have a libtool .1a when the
library is remote (e.g., £30: or Itdgo:) because libtool expects the files references in the .12 file to be local and in
particular directories.

14.6 Deployment of Babel Enabled Libraries

At this point, there is no standard — or even recommended — model for deploying Babel enabled libraries. Below
are a few examples of how our developer-customers are currently packaging their code.

Server Source Only With this option your users are expected to have Babel installed on their system. In this mode,
developers simply include a SIDL file and their corresponding implementation files. The user in this case must
build the software, call Babel to generate the client bindings in the language of choice, and link it all together
into a final application.

Client and Server Source This option tries to hide Babel as much as possible. In this mode, the developer pre-
generates many different client language bindings and distributes them along with their code and the sources for
the Babel runtime library. Then the user has a “batteries included” package that’s ready to run out of the box.
The user may not even be aware that Babel has been used unless they pay careful attention to how the package
was built.

Server Libraries Only Finally, in this mode only the SIDL file and the precompiled shared library files are dis-
tributed. This is not an open-source solution, though users still need to build the language bindings to access the
shared library.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 15

Troubleshooting

Contents
151 Introduction i o i i i i i e 127
152 Common Errors o i i i i i i e i et e e e e e e e e e e e e 127
153 Common Warnings v v v v v v v v vt i ittt et ettt e 127

15.1 Introduction

This appendix provides an overview of common problems that Babel users have encountered. Additional insights may
be found in Chapter 16.

15.2 Common Errors

This section focuses on common errors encountered by Babel users. The errors have been separated into those related
to SIDL parsing, XML parsing, and compilation.

SIDL Parsing Errors

e Babel: Error: when trying to resolve remaining args...Error : AnArgumentfails to resolve as a symbol or file.
For a symbol, Babel attempts to find it in the repository(ies) specified on the command line or, if none specified,
in the default repository. Check the repository being used to ensure that XML exists for the appropriate version
of the symbol. If it is not present, generate the XML for it first then try again.

XML Parsing Errors
Compilation Errors
15.3 Common Warnings

This section focuses on common warnings encountered by Babel users. Again, warnings have been separated into
those related to SIDL parsing, XML parsing, and compilation.

SIDL Parsing Warnings

e Babel: Warning: When creating repository...File Repository+Fileis not a repository directory”. First verify
that the specified directory is actually a repository directory. That is, that it contains symbol interfaces defined

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

128 Troubleshooting

by XML files. If not, correct the repository option then try again.

XML Parsing Warnings

Compilation Warnings

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Chapter 16

Lessons Learned

Contents

16.1 Introduction i i i ittt e e e e e e e 129
16.2 Compilation ConsistencyisKey i 129

16.1 Introduction

This appendix focuses on providing tips, tricks, and advice submitted by Babel/SIDL users. We have generally pro-
vided the information verbatim.

16.2 Compilation Consistency is Key

Steve Smith, 24 September 2001

Basically ”be consistent” is the biggest lesson we found.

When compiling C++ codes, you may have conflicts if you use different compile options. Under KCC we found
-no_exceptions caused problems if parts were compiled with/without the flag. There are most likely other compile
flags which turn features on/off which would cause similar problems. This caused a core dump immediately when
core file was loaded. This is somewhat obvious but if you are linking together several different codes from a variety
of developers you need to examine the compile flags very carefully. This problem is probably more likely with C++
due to the greater number of code generation options (e.g. RTTI, exceptions etc).

A much more subtle problem occurred when we had a C shared library which called functions in a C++ shared
library. We initially used gcc to create the C shared library and KCC to create the C++ shared library. The application
would core dump when a dynamic cast was attempted. This was solved by using the ”cc” compiler wrapper that is
part of the KCC distribution (which uses the native ”cc”). So you need to be aware of not only what is in your .so and
how it is compiled but all the .so’s that you are using.

If you have several versions of a library, say during a debugging process, make sure you are using the correct
versions of things. The ”1dd” command is very useful for making sure you getting the shared libraries that you think
you should be linking to. Along these lines, keep your LD _LIBRARY _PATH as simple as possible when debugging.

In retrospect this does not look like a large number of problems, but figuring out the second problem took a
long time since I focused on how the C++ library was being created rather than where the real problem was being
introduced. It wasn’t until after I had exhausted a long list of other potential conflicts that I started messing with the C
library compilation.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

130 Lessons Learned

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Part IV

Appendices

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Appendix A

Reserved Words

Contents
A Introduction i i i i i it it it e ettt 133
A2 Reserved Words i v i it it i it it i ettt o oo a o asaeeas 133
A.3 Suggested Things ToAvoid0 it ittt it ittt eneenns 133

A.1 Introduction

This appendix lists SIDL’s reserved words. Other words and constructs that are problematic in particular language
bindings are also listed.

A.2 Reserved Words

Table A.1 lists all the words that are part of the SIDL grammar and cannot be used as a package, enum, interface,
class, or argument name.

A.3 Suggested Things To Avoid

Since SIDL maps onto many other languages there are a great number of words and constructs that are harmless in
SIDL, but cause great trouble in generated language bindings. We list known problems in Table A.2.
In addition, the following should be avoided:

e Reserved words in all of the supported languages. This is a long list only some of which appear here.
e Methods with the same name as a class (this is a constructor in C++).

e Packages, Classes, Interfaces, Methods or Arguments that differ only by case. Not all languages are case
sensitive but, since Babel’s focus is language interoperability, Babel must make allowances.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

134

Reserved Words

Table A.1: SIDL Reserved Words

RESERVED WORD | ROLE
axstract optional modifier for class
array | datatype
baol | builtin datatype
dar | builtin datatype
class | user defined datatype
apy | (future) argument modifer
domplex | builtin datatype
doble | builtin datatype
a1m | user defined datatype
edtars | inheritance mode
famplex | builtin datatype
firal | package and method modifier
float | builtin datatype
inplarats inheritance mode
Inplamatsall inheritance mode
Inport bring other packages into current scope
in | argument mode
inait | argument mode
int | builtin datatype
Iinterface user defined datatype
lozal | (future) method modifier
Iay | builtin datatype
aenay (future) method modifier
gage | builtin datatype
at | argument mode
Jeze e scoping construct
static | method modifier
String | builtin datatype
throns | exception declaration
Versial | assign version number to package
woid | declares method as not returning a type

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

A.3 Suggested Things To Avoid

135

Table A.2: Other words/constructs to avoid

WORD C | C++ | Java | Python word C || C++ | Java | Python
abstract X lambda X
and X X long X X X

and_eq X mutable X

asm X X namespace X

assert X native X

auto X X new X X

bitand X not X X
bitor X not_eq X

bool X null X

boolean X operator X

break X X X X or X X
case X X X or_eq X

catch X X package X

char X X X pass X
class X X print X
compl X private X X

const X X X protected X X
const_cast X public X X

continue X X X X raise X
def X register X X

default X X X reinterpret_cast X

del X return X X X X
delete X short X X X

do X X X signed X X

double X X X sizeof X X

dynamic_cast X static X X X

elif X static_cast X

else X X X X strictfp X

enum X X struct X X

except X super X

exec X switch X X X

explicit X synchronized X

export X template X

extends X this X X

extern X X throw X X

false X X throws X

final X transient X

finally X X true X X

float X X X try X X X
for X X X X typedef X X

friend X typeid X

from X typename X

global X union X X

goto X X X unsigned X X

if X X X X using X

implements X virtual X

import X void X X X

inline X volatile X X X
instanceof X wchar_t X

int X X X while X X X X
interface X Xor X

is X Xor_eq X

babel-0.9.6 Doc Last Modified September 8, 2004

9:11 a.m.

136 Reserved Words

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Appendix B

SIDL. Grammar

Contents

B.1 Introduction

B.2 Backus-Naur Form

B.1 Introduction

This appendix provides an overview of the Scientific Interface Definition Language (SIDL) grammar. For simplicity,

the grammar is described in extended BNF.

B.2 Backus-Naur Form

The grammar described here was extracted from the JavaCC productions defined in the Babel source code. Since the
comments associated with the productions appeared to be sufficiently descriptive, they have been retained to serve as

the explanation of the key productions.

/%
* Te followirg Iexical tkas are igored
*
/
XP : {
< mwn >
I < "\I-l" >
I < "\I-" >
| < "\t" >
| < u//" ("’[u\n",u\r"])* ("\l’l" | u\r" | n\rmu) >
I < "/**/" >
| < "/*" (N[ll*l’])+ i ("*" | N["*"’"/"] (N["*"])* "*")* "/" >
{ deddComent (imece, inot stream.oetBaginlire(),
| : inott stream.oetfdline()) ; }
< nwrn >
I < "]" >
}
/%
* Tre follawing lexdical states defire the trasitias rmeesssary to
* marse doanetation comrEnts. Doanetation caomats my Jgoear
* aytere in te file, althooch tey ae aly ssed if tey pesed
* gefinition o method prodctias. Doourentation amgts are
*

raoesated by "geeoial tdes" in the tdken list.

babel-0.9.6 Doc Last Modified September 8, 2004

9:11 a.m.

138

SIDL Grammar

*/
SFECTAL TKEN s |

< TOMENT : "/" > : BRGIN DOC GOMVENT
}

<BGIN DOC CMVEND> XP : |

< mn >
| < "\t" >
| <™ > : [FEALT
I < ("\rl" | "\I" | "\r\\[]") > : m_m_mm
[<™ > + IN DBOC GOMVENT
}
<INE) DOC GOMVEND> XP : {
< mn >
I < "\t" >
| < ™M > : [EEALLT
| < Wk (" ")’?> : :IN_]:D:_CH\/I\/_ENI'
[<™ > + IN DOC COMVENT
}
<IN DOC AMVEND> FFCTAL TCKEN :
< MRS { trinvatch(ratcheditken) ;

<N] N > { ittt Ten)
)

<IN BoC GOMVEND> MRE : {

: LINE D0C GCOMVENT

<[] >

}

/%
*/ﬂefdhﬂg]@mdsareﬂel@d@ltd@smt}esm%m.
*

TKEN : {

< T ABSIRCT : destract" >
| < TAASS : "dlass" >
| < TaPY : "oy >
| < TINM e >
| < T EXIENDS "sxtads" >
| < TIMRKT : "inport" >
| < TIN " >
| < T INOUT : "o >
| < TFINAL : "Hel" >
| < T IVELRVENIS : "nplavents" >
| < T IVELEMENIS ALL : "inplaetsall" >
| < T INIFREACE : "interface" >
| < TIOCAL : "loal" >
| < TOWRY : "aeey" >
| < TQOT "ot >
| < TERGE D "decEe" >
| < TREVUIRE : e >
| < T SIATIC ¢ "statid" >
| < T THRWS : "rows" >
| < T VERSIN : "ersion" >
| < TWID : "aid" >
| < TARAY : "amy" >
| < T BIOEAN : "o >
| < TR : "dar" >

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

B.2 Backus-Naur Form 139

| < T DOVHLEX : "doplex" >

| < TDOHE : "ol >

| < TFCMHEX : "faopled" >

| < TFH®AT : "o >

| < TINT s " >

| < TIOG : "oy >

| < TEXJE g >

| < TSIRING : "Strirg" >

| < T _IDENITFIER : <[IFTTFR> (<T IFTTER> | <T DIGTT> ["M* >
| < TVERSINSIRING @ <I INEFR> ("." <IINEFR)+ >
| < TINIEFR (™) (KT DIGI>)+ >
| < TDIGIT "oy >

| < T_LE["]ER . [llal’_lVZ’|’|lHl_llZl’] >

| < TACE AEE HL L

| < TAGE JRY M o>

| < TAOCE FFREN M >

| < TOMA LIPS

| < TEJRS e >

| < TENARGE s>

| < TCEENARY s>

| < T AN RN "M >

| < T SMIGCOIN HELHUDS

| < TSR ">

| < T GIIMNMAIR : "columraja” >

| < TRWMIR : "rovegja” >

| < TCAIHAL T[] >

}

Jrx
* A S Seecification aarains zero ar nmoe vesin podcotias follosed
* by zero ar moe inport prodctias followd by 7o o moe mdae

* godcotias followd by the edof-file. Befae lewvirg the geecification
* gxye, reohe all rfeerss in the spdol tadle.

*/

Seecification = (Regure)* (Inpxt)* (Bdkae)F <ERB

JAx
* A SIL Reypire prodcotion begins with a "eguire" tden ad is followed
* by a sgeed idatifer, a "asia" tdken, ad a version nder. Te
* goyed idatifier mst ke ot cefined. Te vesion nner is geecified
* in e ggeal fam "WIN2..W' wee Vi is a noegptive intecer.

*/

TROIRS> Saqpeddartifier

TVERSIS (T INEFR> | <TVERSINSENG) <TSMIOIO
/**

* A SIL Ipot podction begins with an "inpot” tden ad is followed
* by a sged idatifier which is gdaelly follaed by a "ersia tden
* ad a version nrder. Tre soged idatifier mst ke defired ad it mst
* e a wdae. Te vwasion nnber is spcified in te ggearal fam

* W2, " were Vi ois a momegtive integr. A prtiallar edae
*my aly ke irchwoed in ae inpot stataet. Te inpart Edar mae
* is adkd to te dfalt sarch wth. A te ad of te mre, ay inpot
* statarets tet wee ot wsd o rexole a syl rae are adpat as

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

140 SIDL Grammar

Tprt =

< IMRRD> Sogeedlcattifier

[<TVERSIO® (<C INIEEFR> | <T VERSION SIRING>)] < FMICTON>
Jrx

* The STL dee seecifiction begins with a "edar" tden followed by
* a sged idattifier. Te rew dae raegae bgins with an geen axly
*b:ace, a =t o z=o o mxe dEfinitias, ad a cdce arly bae. Te
* closing arly baee may ke follomd by an ogotiaml samicolon. Tre =dae
*le"Itij_er_‘ mst hae a vasin defired for it, ad it mst ot e e
* geviasly defired as a syl ar vl as a fowad refaare. Te @mrat
*of te edar mst itelf ke a pdar ad mst lae been defired. Te
* gyiols within the arly lraces will ke defired within te wdere sooe.
*
/

PBdae :=
[<TFINN>] <TBKE> Sooedldatifier
[<T VERSION> (<T INIKFR> | <T VERSION SIRING>)]
<T (BEN dRY> (Definition) <L AoFE dRY> [< SMICION>]
/**
* A S, Definition prodction axsists of a class, intefae, eaeumeated
* e, a Edae.
*/
Definiticn = (Class | Fam | Interface | Pdae)
/**

A S class seecification begins with an ootiaml dstract keywad
followd by tte class tken followed by an idetifier. The adstract
kepword is regured if ad aly if there are dstract metods in te
class. Tre class kepwod is followed by an idatifer. Tre idatifier
Srirg mey ot e been peviaxsly dfired, alttooh it mey leve leen
wed as a fovad refaace. Te idatifier strdng may e pecesded
by a doorentation comEt. A cdlass may otigelly exad avter dass;
if o class is soecified, then the class will atomtically extad te
SIIL. kae class (uless it is itself the SIL ase class). Then fErse
the inplaetsall ad inplemats classs. Te interfacss parssd drdrg
inplarents-all ae sawd In a st ad ten all toe metoks ae definsd
a te ed o the cdlass definitim. Tre methods hlok begins with an
g ardydyace followd by z=o a maxe mettoks followd by a cdose
* arlydyae ad gotiael sadcolo.

*

/

* ok ok ok ok ok ok ok % % %

Class

[<IPBSIRPC]>] <TAASS Idatifier

[<EXENS> Sogpedidatifier]

[<T IVEIRVENIS ALT> AddInterface (<TCOMBA> Addhterface]

[< IVELREVENIS> Jisslipusarces) (<TCME> Iddnterface Y]

<T CFEN ARY> (Clasdvetiad)y* <L Ao dRY> [<T SMICION>]
/**

Te SIL eweation seecification begins with an "enm' tden follawed by
an idatifier. Te ewreatar list begins with an geen arxly s, a st
of ae o noe dfinitias, ad a cleee arly lkrae. Te dosing arly

brace may ke followed by an gotdael — sadicolon. Te eusaticn sydwol

idatifier mst e a vasion defired for it, ad it mst ot lse ke
pevdosly defired as a sydool. Favard refearess are ot allowd far

gas the list of eumation sydwols ad their godarel wales.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m. I

* ok ok ok ok K * F

B.2 Backus-Naur Form 141

*/

Fim =

<ITINM> Idatifier <EGENJRY> Fhureratar (<CCOMBE> Fhneatar)*
<T JCE dRY> [< SMICION]

/%

Te SIIL eumatr seecification axsists o an idatifier followed
an gtiarl assigmat stateret beyimirg with an egmels ad follosd
by an integer wvalle. This ratire adk the rew eumeratiol’ sydol to
the list ad then r=tas.

g

*
*
*
*

*/
Fimerator 1= Icatifier [<TFKJAS < INIKFR>]

A
i
|
ir
i}
g
%

M interfare may e an ettads bhlok aosisting of
a come-sgErated sgEre of interfaces. Te nmettoks blak begins with
anq:marly—bﬂje falowed by zzro o moe netftods followd by a close
arlylyace ad gasl sancolo. Itafaes my ke peeskd by a

coarmentatian comeLt. Te idatifier sring may ot hae keen peviosly
cefired, althooh it my hae leen wsd as a fovard refaace. If te
interface doss ot extad aother interface, then it mst extad te ese
S interface (nless, o aorse, this is the definition for the ase

* ok ok ok ok ok ok ok ok

iy

<T_INIEREACE> Ioatifier [<[EXIENDS> Addterfae
(<TOMA> Addhterfae)*]
<T CEEN ARY> (InterfacMetdod)* <L dOsE dRY> [<T IMCIN>]

Jrx

* This podction parsss te et sogoed idatifier ad walidates thet
* e rae edists ad is an interface sydool. Then eexch of its netaods
* are deded for wlidity with the edsting methods. If emything

* deks at, then te rew intefae is adkd to the existing dojct.
*/

Addntexrface 1= Sogeedldatifier

§<

E:

This podction rss the SOIL mettod descrdption for a dlass method.

A cdlass method may start with dsstract, fimel, o static. M erx is
thron if the method hes alreedy leen defired in the class doject o if
the method mae is the sae as the dass mae. M arr is alo tdron
if ametdod hes been defired in a et class ad (1) the sigsbres

d ot metch, (2) either of te methods is static, (3) te exdsting nethod
is firel, a (4) te rew method is dstract bt the edsting metod wes
ot aostract.

* ok ok ok ok Kk * F

*/
Clasdvethad = [(<TZBSIRCD | <TFINAL> | <TSIATIC>)] Methd

Jrx

* This method pErsss a SIL nmettod ad then deks weter it an ke
* ated to the interface doject. A graxr is thronn if the method hes
* alreedy lbeen adkd to the intefae dopct a if te metdhod e is
* e e as te inteface maE. M arxx is alo tron if a pedas
* methad was defired with the sae rae bt a differet sigsetre.

*

/

InterfacMethad 1= Methad

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

142 SIDL Grammar

* Tre

*arlqij:aﬁlargmethst,mcptjaalcomuﬁcatjm rmdjf_'ner, ard
*mqﬂaalﬂmcla:se. Te rem typelnay_kE\de(mrgtum
* gpe) a ay welid SIL type. Tre method is hilt plee by plece.

*/
Method :i=
(<TWOD> | [<CAP>] Bee()) Ioatifier [<T ITENITFTER>]
<T (FFN PAREN> [At (<TCMA Agueat)*] <TACE RN
[<TICA> | <TO\E/\PX>] [<TROWS> Sogeedloatifier

Mogmet = [<ITQP>] (<IN | T | <TINOD>) TByee Idatifier

* A ST tyee aysists of ae of te stadad hailt<n tpss (oxlen,
* dar, dooplex, dolle, fanplex, float, int, lag, gege, ad st),
* a werdefired e (Itefass, dass, a em), o an axay. This
* podcotian prses te e ad pdss te resulting tyee dojct an
* e to of the agumt stack.

*Pare an aray castnct ad peh te resdlting tyee ad adedng an too of
* e stak. Qily dimesias ae trooch MXZRRAY DIM (inclusive) are
*
*/)
Aray =
<TARRAYS> <L (BENAGHE> Tre [<<TAOMA (< INEFR-
[<TOMR> (<T O MATR> | <T ROWMATR>)]
| (<TCOIMNMATR>| < KON MATR>))] <TdOoE ANEE>

/%
* This podcotion parses a sogeed idetifier ad wverdfies thet it is
* eitter a fowerd rwfeere o a sydol tet may ke sl as a bee
* (either an enm, an interface, o a class).

*/

Sdol e = Sogeedldatifier

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

B.2 Backus-Naur Form 143

/**
* Al SIL soged raes ae of e ggeral fom "D (. ID). Each
* jdatifier 1D is a string o letters, nnbers, ad udescaes that

* mst begin with a letter. Te s rexclticn geatar "." sgarates
* e idamtifiers in a rawe.

*/

Soqeedldatifier = Icatifier (<[LSITEE> Iarifier)*

/%

* A S idatifier mst start with a letter ad may ke follawed by ay
* nnoer of letters, nnbers, o uderscaes. It ngy ot ke a resered
*wrd in ay of the SIL inplawetation lagees (eg., C a CH).

*/

Idatifier :i= <[TTENITFTER>

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

144 SIDL Grammar

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Appendix C

Extensible Markup Language (XML)

Contents

C.d Introduction i i i i i i it it it et e et et e et et et 145
C.2 SIDL Document Type Declaration(DTD) 0. 145

C.1 Introduction

This appendix describes the XML representation of SIDL interfaces. Since the format of an XML file is dictated by a
Document Type Declaration (DTD) file, the description will focus on the DTD associated with SIDL.

C.2 SIDL Document Type Declaration (DTD)

Babel relies on several DTDs to describe and enforce the layout of conformant XML files. The DTD of primary
importance for Babel is SIIL.Axd because it describes the requisite tags and attributes corresponding to SIDL files.
The contents of the DTD are given below.

<l versiaeE"1.0" encoding=UTF-8"2>

<!—
File: STL.atd
Pdace: S XL
Cooyridhnt: (c) 200 Te Regts o the Unvasity o Glifamia
Release: Nae: S
Revisian: Q#) S$Id: SIrdd,yv 1.2 2004/01/28 19:32:28 gpaly Ep $

Description: DD far the SOIL XL dadmse raaesstation

Cpoyrght (c) 20002002, Tre Regats of the Unversity of Gilfomia.
Prodroed at the lawere Livemoe MNtiael laboatay.

Witten by te Copoats Tean <capoents@lnl.gor

URL-CTIE-2002-0c4

All ridghts reserved.

This file is @t of Bel. Bxr moe infametio, e

itz / fwaw. 111 .gov/CASC/canprents/ Please reed the QPRET file
for Qr Notiee ad the LINE file for te QU Iesser Gaeral Rblic
License.

This progran is free software; you aan redisdoate it ad/ar nodify it
ucer the tams of the QU Iesser Gaeral Rilic Licese (s pdolided Ly

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

146 Extensible Markup Language (XML)

te Free Software Foudation) vesion 2.1 dated BEoary 1990

This pogran is distrhited in the hgee thet it will ke weful, bt
WTHUT AY WRRAY; witot een te MDD WRALY &
MRCEANIARILITY a FTINES FR A ERIJIAR HBREFE. S tte tams ad
caditiaos o the QU Ilessser Gaeral Rilic Licese for moe details.
Yu doidd hae receed a apy o the QU Iessr Gaeral Rblic Licese
alag with this pogarny if not, wdte to the Fee Software Foudhtion,
Ic., 9 Taple Plae, Sute 30, Bstn, M 2111-1307 TA

This file desrdbes the DD for a SOIL syl rmaesated in XL fomet.
Te root elamt is <Sypdwob.

HHEIC ID "//Q®//SIL Snbool DD vL.1//EN"

—>

<l—

Sydol - Eleret

Syl is te moot eleet for all SIL XML sdema. Te Symol catains a
SyrdcolNare (fully gelified sypbol rae ad wesioy), Mahkl, CGnet,
ad ae o Cass, Bureratiom, Interface, a Bdae.

—>

<IN[TIY % sydols "Class | Fineration | Iterfae | Rdae™

<!HEMNI' Syiol (SydolNare, Metachta, Cowet, (Ssyools;))>

<!—

SolNare Elaat
ASyTbo]l\Hrerqx&eaﬂ:saﬁﬂlyqﬁhﬁajsyrboerrealqgmmits
versio. It is of the faom:

GnoNare rare"sidl .SoreaEe" versiae"1.3.4" />

—>

HBRRET Snolae BEYS
<IATOIST SpntolNae rawe AR #REJVIRD
version (RA H#REURD>

<!l—
Metacsta Elawat

Te Miachta elaet antains ay uwseful desrdptve data dooe the sydool.
Te tie ad date of aeatim is required, it all oder infometion is
ootiaal.]}edateardtmemstfoﬂoﬂtkeIS}%Ol stardard. Te
atries in te meteachta elamt are (key,vale airs.

—

<HEMNI' Metzchta — (Metedatafhtry)*>
<IATMIST Metachta date (AR #REURED>

<!EIEMENT Metachtebry BPIY>
<IATILIST Metachtebry key RRA H#REURD

<!l—

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

C.2 SIDL Document Type Declaration (DTD) 147

Comet elaats sypxt a vy sinple HIML description wing the
hml-lite.dsd HIM. sdoset. See himil-lite.dtd for moe deails.
—

<INITIY % hmil-lite REIC "-//®//SIL HM. DD 1.0/ "hml-lite.dd™
Shml-lite;

<IEIEEMNI' Cowmeat Shtml-blok;>

<=

PBdar Elaat

Te Pdar eclaat antains the sydeols that exist within a dece.
In the PadeosSyndol elaet, rmoe tet the mare is rwlabdwe to te
pdae (ths, sidlCass is rgesated by Cass within wdae sidl).

Amﬁﬁlalatmbtemmtﬂnspedegelsrmtmmt I
dfalts to tme to hadle od XM files. In pevios wvasias, all
Edars wee arreatrat.

—>

<HEMNIT Pdar (RadkeosSndol)*™>
<IAIMLIST Pdee firel (fAlse | te) "™

<!—

If the vesion atdrdbte it povided, te spdol hes te sae vesion
asﬂemtajmrgpaja}eﬂnslstogoudekﬁd@\ardcmmmknhty with
pevios releassd vasias o the DD, Sowedhy the vasion may becoe
RIRED, o always irchue it

—

<HBRET RdagSnbol — BPIYS

NTIST PdegpSmol e (RRA HREQUIRED
tye (dass | enm| irterface | mdar) #REURD
wersion AR #IVPLIED>

<l—
Fimeration Elamt

Te Fueratin elawt oasists of a cwllectin of Faeatar elamats
that desrdle a relatie syl rawe, its integer valle, ad weter te
valle wes assiged by te parser o in the SIL it file.

—>

<|HEVNT Fhmeration (Freratar)+>

<HEVENT Fhnerator WPIY>

<IATOIST Fhinerakr rae A H#REJJIRED
valie AIA H#REIRED
franser (Bl | twe) #HRQJRD>

<l—
Class Elawet

Te Cass elaet arsists o a dass extaoed by this dass, a blok

of irterfaces Inplereted by this dass, ad a blok of methoks declared
a oefired by this dass. The methoks hlok doess ot irclue nethods

declared ar cefired by parats. Te clamts AllRarartlterfases ad
AllParentClassss inchice all prats of this class.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

148 Extensible Markup Language (XML)

—>

<IFIEMNI' Class (Exterds, TIplaratRlak,

<IATIIST Class dostract (false | te) #REURD>
<FIRVENT Extarks (SydolNae)?>
<HRVE InplawetBlok (SyntolNae) >

<!—
Interface Elewat

Te Tterfar elamt arstsis o a blok of intafaces tat this

interface extads (elawmt ExtadRlok) ad a kblok o metods

declared by this interface (elaat MedodBlok). Te metdoks hblok

elamt atains aly tose metod declarsd o redeclared by this

interface ad doss rot ik all those methods defired by te
—>

<!FIRVENT Interface (ExtarosBlok, AllParentInterfaces, MethoosRlok)>
<!HEMNT ExterosBlok (SyrdoINare) *>

<—
AllParentClasses ad AllRParentInterfaces Elarents

Tree elamts ddfire a @lleticn of z=o a moe Snolae elaets
that are the mrat dasses ad et intefasess o a dass o inteface.
—

<EIEMNI' AllParentClasses (SyndcoNae) *>
<|HEVNI AllParaetlnterfaces (SyndoolNare) *>

<l—
MethodRlock Elarent

Tre MtodRlock celaent dfires a allection o z=@o o moe nethods
thet kelag to a SIL interfae o class.
—>

<!HEVENT MethodsBlok (Method)*>

<l—
Methcd Elawet

Te Mtdod elamt defires a sirgle method in a class o interface.

Te method is cefired by a reim e (e Tyee elawmt), a r=m

e (e oy atribte of Methad), a methad rae, an agumeat list,

a trows dase, dfiniticn moe nodifiers, ad comnication noce
—>

<IEIRVENT Method (Comert, Type, Acgunetlist, Thromslist)>
<IATIIST Method shortrae TRA

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

C.2 SIDL Document Type Declaration (DTD)

149

etasion XA #REUIRED
apy (Bl | e #REUIRED
definition (romel | dsstract | firel | static) #REUIRED
aomnication (mamel | lo=Al | ceay) HREIRED>

<HEEN Amguentlist (Brguvent)*>

<!FIEMENT' Throaslist (SyndoolNare)™>

<!—

Agmat Elawat

—>

<!EIRVENT Aguet (Tyee)>

<IATIIST Aguet o (Else | te) H#REUIRED
mce (In | dimut | ak) #REUJIRD
rae ORA HREURD>

<!—

Tye Elaat

Te Tye elamt describes a S e, which may ke a bhaltHn e
sch as bwleen o int, an amay, @ a werdefirsd sydool. If the
bpe desription is a pdmitive tyee, then o sboelaets are allowed.
If te e is a sydol, ten the sigle sboelamt mst ke a sydol

rare.

If e e is an amay, then the simgle sbelamt mst ke

an aray elagt

—>

<!ELEMENT
<!ATTLIST

<!ELEMVENT
<!ATTLIST

Tre tre (vad | booleen | cder | coplex | dokle |
faoplex | fleat | intepr | lag |
oezeis | strirg | sydol | aoay) HREUIRED>
Aray (Tyoe)>
Aray dim JRRA #REIRED

ader (ungeecified | columrajor | rovrajar) #REURED>

Babel assumes that comments will conform to the HTML-lite comment format. So, Babel relies on comert.ctd
to validate whether SIDL documentation comments follow the HTML-lite comment format, which is described in

hml-lite.dd

. The most current versions of all of these DTDs can also be found in the source distribution in the

laloel /canpi ler/gov/11nl Aeecel /dds directory.
NOTE: Any XML interface description that complies with the SIDL DTD can be used as input to Babel.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

150 Extensible Markup Language (XML)

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Appendix D

Glossary

abstract
Abstract is a SIDL reserved word. It is an optional modifier for both class es and nettiad s. An abstract method is

a method that has no implementation, it’s a way of declaring a method that every subclass must implement for itself.
An abstract class has one or more abstract methods, and therefore cannot be instantiated.

array

An array is a fixed size, numerically indexed, set of variables. Babel glue code can handle arrays for you in such a
way that arrays may be shared by differing languages.

BLAS

Basic Linear Algebra Subprograms. BLAS is a famous library for doing matrix and vector algebra. More information
may be found at: http://www.netlib.org/blas/

BNF

BackusNaur Form. BNF is a formal way to describe computer languages and other formal languages.

bool
bool is a data type built into SIDL. It stores 1 bit of data, i.e. it is either true or false. For efficiency sake, the underlying

storage of bool is not 1 bit. bool is a short form of the word boolean.

borrowed arrays

A borrowed array is a SIDL array that does not manage its own data. The data is provided by some third party, who is
also in charge of deallocating the data. It is useful for sending data through Babel, but the developer must beware in
case the third party deallocates the array data before the program has finished with it.

CCA

Common Component Architecture http://www.ccaforum.org/

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

152

Glossary

char

char is a data type built into SIDL. It stores 1 byte of data, or enough for 1 ASCII character. char is a short form of the
word character.

class

class is a SIDL reserved word. A class is a prototype for a particular kind of object. In SIDL a class definition only
defines methods. Methods may be static or instance methods. (They are instance methods by default.) If any instance
method in a class is declared abstract, the class cannot be instantiated as an abject, and is called an abstract class.
Otherwise, it can be instantiated and is called a concrete class.

concrete class

A concrete class is a class where all the class’s instance methods have implementations. (ie. there are no abstract
methods) A concrete class may be instantiated as an object.

COM

Common Object Model http://www.microsoft.com/ Microsoft’s IDL based language interoperability suite.

component

Components are “plug-and-play” software libraries designed with standard, clearly defined interfaces. They are the
epitome of modular design. Because components communicate only through well-defined interfaces, when an appli-
cation needs to be modified, a single component can be modified (or exchanged for a similar component), without fear
of disturbing the other components making up the application.

component architecture
A component architecture is the specifics of how setting up a system for programming with components. For example,

how components are imported and how they communicate are some of the questions that must be answered in a
component architecture design.

copy

copy is a SIDL reserved word. It is planned that in future version of babel it will be used as a parameter modifier for
parameters passed to RMI functions, currently however, this feature is unimplemented.

CORBA
Common Object Request Broker Architecture http://www.omg.org CORBA allows different programs by different

vendors to communicate though an IDL interface specification. In CORBA this glue code is called the “Broker.”

dcomplex

dcomplex is a data type built into SIDL. The name is short for “double complex.” It stores a complex number via 2
64-bit floating point variables, one for the real part, and one for the imaginary part.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

153

dense
A dense array is an array where all the dimensions are “densely packed,” or, in terms of memory addressing, there are
no “spaces” between array elements. For example, if a one-dimensional SIDL array of 10 elements is created, it will
be densely packed. However, if a slice of the array is taken with a stride of 2, the resulting array will use the same
data as the original array. However, the new array will be only five elements long, and will only consist of the even
elements of the original array. This is not densely packed. Example:

Array 1: 0123456789

Array2: 0-2-4-6-8-
developer
There are two anticipated user types for Babel, both are kinds of programmers. The person referred to as the “devel-

oper” is the person developing a Babelized library. The “user” is the person who writes a program using a Babelized
library.

DLL

Dynamically Linked Library. A type of library that can be linked to dynamically at runtime by passing its name as a
string to the dlopen() function.

double

double is a data type built into SIDL. It is a 64-bit floating point number.

DTD

Document Type Definition. Defines the grammar of the XML files. http://www.w3.0rg/2002/xmlspec/

dynamic linking

The action of dynamically linking to DLLs at runtime.

enum

enum is a reserved word in SIDL. It is used for defining enumerations. In Babel, enumerations are a way of binding
integer constants to names.

enumeration

In Babel, enumerations are a way of binding integer constants to names. See subsection 5.3.

exception

The idea of an exception is that if a method encounters a problem it cannot handle, it interrupts its execution and
“throws” and exception. Hopefully some function up the call stack will “catch” the exception and know what to do
about the problem. It is a useful form of error handing that SIDL supports. Exception is not a reserved word in SIDL

(but throw is).

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

154

Glossary

extends
extends is a SIDL reserved word. It is used to declare “like-type” inheritance. For example, a class may extend another

class, or an interface may extend multiple interfaces, but a class cannot extend an interface, nor can an interface extend
a class.

external stubs
When building a Babelized library, its also important to note if your code has dependencies to other Babel types not in
your library. These types often appear as base classes, argument types, or even exception types. Your library will need

stubs corresponding to all these types, so it is best to put these in your library as well. We call these external stubs.
See subsection 14.2.3

external types

External Types are variable or object types that are not defined in the current class. In a class foo.Bar, sidl.Integer, or
sidl.BaseClass would be external types.

fcomplex

fcomplex is a data type built into SIDL. The name is short for “float complex.” It stores a complex number via 2 32-bit
floating point variables, one for the real part, and one for the imaginary part.

final

final is a SIDL reserved word. It is a method modifier. A final method is inherited by subclasses, but its implementation
can never be overwritten. It is the “final” version of the implementation.

float

float is a data type built into SIDL. It is a 32-bit floating point number. float is short for floating point.

full name
Overloaded Babelized methods called from non-object orientated languages, such as C and FORTRAN 77, have 2

method names. The full name consists of the concatenation of the package name, class name, method name and type
extension. The short name is missing the type extension. See subsection 5.6.

fundamental types

Fundamental types are the basic types that SIDL supports natively. bool, int, char, long, float, double, fcomplex,
dcomplex, opaque, and string.

glue

Most of the code that Babel generates is “glue” code. “Glue” code sits between the caller and the implementation to
allow communication between them. We use the term glue to refer to the stub, IOR, and skel files.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

155

HTML

Hypertext Markup Language http://www.w3.org/MarkUp/

implementation

In Babel, the implementation is the code placed in the server side Impl files. It is the code that Babel used glue code
to allow you to call to.

implements

implements is a SIDL reserved word. It is used when a class inherits from one or more interfaces. However, in this
case the word “to implement” is not quite taken seriously. If a class implements an interface it inherits its methods,
and may be cast to that interface, but if the programmer actually wished to implement any of the interface methods, he
must redeclare them in the SIDL class. Any un-redeclared method is assumed abstract and will not appear in the Impl
files. If there are any abstract methods in a class, that class is automatically abstract.

implements-all

implements-all is a SIDL reserved word. It takes the place of “implements.” It is used when a class inherits from
one or more interfaces, and the programmer definitely wants to write implementation code for each method in the
named interfaces. If the programmer uses “implements-all” he does not have to redeclare the interface methods. See
Section 5.6

import

import is a SIDL reserved word. It is used to bring other packages into scope. Packages may be accompanied by a
version number.

m

in is a SIDL reserved word. Each parameter passed though Babel must be declared as in, out, or inout. Each of these
modes has certain rules and implication associated with it. In means “pass this variable by value to the implementa-
tion.” See Section 5.2.

independent arrays

Independent arrays are arrays that manage their own data. When all the references to an independent are deleted, the
array data is garbage collected. The other kind of array is a borrowed array.

inheritance

In normal object-oriented programming, inheritance is the ability of a “super” or “parent” class or interface to pass its
characteristics (methods and instance variables) on to its subclasses, allowing subclasses to reuse these characteristics.

Of course, in SIDL we cannot define instance variables, so in SIDL inheritance only refers to method inheritance.
In SIDL inheritance is is declared with the reserved words extars and Inplamats

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

156

Glossary

inout

inout is a SIDL reserved word. Each parameter passed though Babel must be declared as in, out, or inout. Each of
these modes has certain rules and implication associated with it. Inout means “pass this variable by reference to the
implementation. The implementation may do whatever it wants with the reference, but it should return something.
Possibly a new variable.” See Section 5.2.

instance method

An instance method is a method that must be associated with an object instance. The methods probably rely on some
state in the instance, so they cannot be divorced from it. In Object Orientated languages, you call these methods on an
instance, in Babelized non-OO languages like C, you pass an instance in as the first argument to one of these methods.
int

int is a data type built into SIDL. It is a 32-bit integer variable int is short for integer.

int32 t and int64 t

The ANSI C standard way of declaring an integer that is definitely 32 or 64 bits.

interface

An interface is a declaration of a set of methods with no information given about their implementation. All interface
methods are abstract. An interface cannot be instantiated. However, a class may inherit from multiple interfaces. The
purpose of interfaces is to give objects that are conceptually similar but internally different a common interface so that
code may treat them the same, or seamlessly exchange them.

interprocess

Interprocess means “between processes.” It is normally used to refer to “interprocess communication,” where two or
more processes find some way to communicate. Interprocess communication is one of the goals of babel with RMI.

IOR

Intermediate Object Representation. IOR code is where Babel does all its work maintaining arrays, Babel objects,
reference counting, etc.

JNI

Java Native Interface. The JNI is what allows Java to call to C and C++. It is referred to as calling native code because
while Java runs in a virtual machine, but C and C++ run on the real machine, or run “natively.”

language interoperability

Language interoperability is Babel’s main purpose. Language interoperability technology allows different computer
languages to call each other methods and communicate despite problems with calling conventions and differing vari-
able types.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

157

local

A method (or other identifier) is considered local if it is defined or declared in the current class or method. Sometimes
a more specific term like, “local to the method” or “local to the class” is used.

long

long is a data type built into SIDL. It is a 64-bit integer variable long is short for long integer. Note: Python sometimes
has trouble with longs, see Section 11.7 for more details.

method
Method is the word commonly used in Java for what is called, in some other languages, a function, subroutine, or
procedure. Methods are a piece a code that is called by a name. Instance methods depend on an object instance, and

are allowed to read and manipulate that objects data. A static method does not depend on an instance, and therefore
can only access class data.

namespace

A namespace is a way of logically divvying up globally accessible names. This helps in avoiding conflicts between
globally accessible methods, classes, data, etc. They are mainly a feature of C++.

non-strided

A non-strided array is a dense array. See the glossary entry for dense.

Object model

The Object Model is the of rules that regulates the definition, creation, and use of classes and objects in a language.
To read about the SIDL object model see Section 5.6

OMG

Object Management Group http://www.omg.org/

oneway

oneway is a SIDL reserved word. It is currently unimplemented, but it planned to be used as a method modifier.

opaque

opaque ia a data type build into SIDL. The word opaque is an adjective meaning “not transparent.” In SIDL, an opaque
is a 64-bit variable that cannot be touched or modified by the holder. It is normally used to hold pointers that cannot
be understood by the current language or in the current context.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

158

Glossary

out

out is a SIDL reserved word. Each parameter passed though Babel must be declared as in, out, or out. Each of these
modes has certain rules and implication associated with it. Out means “pass this (null) variable by reference to the
implementation. The implementation is expected to fill the reference with a new variable to be passed back to the
client.” See Section 5.2.

package

A package is a container and namespace for conceptually linked classes and interfaces. Generally it is good practice
to have one package per SIDL file.

PIC

Position Independent Code is for making dynamically loadable libraries. PIC contains and extra level of indirection to
allow the correct methods to be found dynamically at runtime.

preprocessing

Code preprocessing is a step, prior to compilation, where various simple, automatic code modifications are made.
For example, int C, #include files are included, and #define macros are textually duplicated throughout the code. In
some cases, such as Babel FORTRAN 90, method names are “mangled” to reduce their size under the method name
character limit.

private data

Private data is data that is only accessible locally, inside an object. In Babel, all Babel object data is private and cannot
be accessed by other SIDL objects.

process

A process is a running program that exists in its own memory space and can therefore run in parallel with other
processes.

reference counting

Reference counting is the form of garbage collection used in Babel. Each object keeps a “reference count.” When
that count reaches zero, the object is destroyed and the memory reclaimed. In some languages teh counting is handled
automatically, in some, like C, the developer must explicitly add and subtract from the reference count. (Using the
functions addRef and deleteRef.) The internal implementation of deleteRef literally has an if statement that says “If
the count is 0, free this memory,” so if the reference count of an object goes below one, all references to the object are
immediately invalid.

reverse engineering

Reverse Engineering is the practice of inspecting the behavior of an existing program to understand more about how
it works. Babel does not support this, or any forms of inspecting or modifying compiled code.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

159

shared library

A shared library is a set of methods that may be used by multiple different programs without recompilation of the
library.

short name

Overloaded Babelized methods called from non-object orientated languages, such as C and FORTRAN 77, have 2
method names. The full name consists of the concatenation of the package name, class name, method name and type
extension. The short name is missing the type extension. See subsection 5.6.

SIDL

Scientific Interface Definition Language. The language used by Babel to describe how Babel glue code should be
generated. See Chapter 5.
single process

A single process program is a program that only uses one process to complete its work. One of the features of Babel is
that it is able to facilitate language interoperability in a single process, which saves the extra overhead of interprocess
communication.

skeleton

The Babel skeleton code is the opposite of the Babel stub code. The Stub code facilitates the method call from client
to IOR, and the skeleton code facilitates the method call from IOR to implementation.

SO

Shared Object. A Unix catch all term for shared and dynamically loadable libraries.

SPMD

Single Program Multiple Data. The term used to describe parallel programs that use multiple processes running the
same code working on different data to solve a problem.

state (of an object)

Object state refers to the data that an object holds. For example, if an object holds one integer, that integer holds the
objects state. It is assumed that instance methods modify or use an object’s state in some way. If a method does not
use the object state in any way, it should probably be a static method.

static

A static method is a method that does not depend on an object instance to run. It should have no need of any data of
any particular object, it should only depend on the data that is passed into it. As such, unlike instance methods, it does
not need to run on an instance of the class it is associated with. In Babelized C, this means the first argument to the
function is not an object instance. In Java, this means the function not called on an object, but referenced by the class
name.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

160

Glossary

static linking

Static linking refers to the practice of linking code at compile time, rather than dynamically at runtime. It has a speed
advantage over dynamically linked code, but lack flexibility.

string

string is a data type built into SIDL. It stores a set of characters. It has no predefined length.

stub

The Babel stub code is the opposite of the Babel skeleton code. The Stub code facilitates the method call from client
to IOR, and the skeleton code facilitates the method call from IOR to implementation.

SWIG

Simplified Wrapper and Interface Generator http://www.swig.org/ SWIG is a language interoperability tool that is not
IDL based, but has certain other drawbacks.

tarball

Tarball is a common way to refer to a set of directories and files organized into a single file using the Unix tar command.
It is often gzipped.

throws

throws is a SIDL reserved word. It is used the tell SIDL that a method may throw the named SIDL exception, and
code should be generated to pass it to the client.

type

A type describes what sort of information a variable stores, and usually how much space that information takes up.
Classes and interfaces are user defined types, there are also fundamental types like int and bool.

URL

Uniform Resource Locater. Often thought of as a pointer to a web resource.

user

There are two anticipated user types for Babel, both are kinds of programmers. The person referred to as the “devel-
oper” is the person developing a Babelized library. The “user” is the person who writes a program using a Babelized
library.

version

version is a reserved word in Babel that is used to declare a version for a given package, or to declare what version of
a given package should be used.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

161

virtual

Virtual is the opposite of final. All SIDL methods are virtual by default. A virtual method is a method that may be
overridden in subclasses.

VM

Virtual Machine

void

a reserved word in Babel, used to state that a function has no return type.

VPATH

If you want to build software in a separate directory from where the tarball was untarred, this is called a “VPATH
build”. VPATH builds are useful if you want to build Babel multiple times with various compilers, flags, or you have
a shared file system across multiple platforms. It separates the code you generate from things that you were given.

XML

Extensible Markup Language. http://www.w3.org/XML/ A standardized data exchange format.

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

162 Glossary

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

Bibliography

[1] Babel homepage. htgo:///www. 11Nl .qov/CASC/carporents/ kel il .

[2] David E. Bernholdt, Wael R. Elwasif, James A. Kohl, and Thomas G. W. Epperly. A component architecture
for high-performance computing. In Proceedings of the Workshop on Performance Optimization via High-Level
Languages (POHLL-02), New York, NY, June 2002.

[3] CCAFE homepage. httip://nw.cca—fanm.ary/ Teallan/c cfe .

[4] Bradford Cobb, Gary Hook, Christopher ~ Strauss, Ashok Ambati, Anita Govind-
jee, Wayne Huang, and Vandana Kumar. AIX linking and loading mechanisms.
hit: /A1 Tlam.can/servers/esd/ pdfs/a ix 1l.qadf |, May 2001.

[5] Common Component Architecture (CCA) Forum homepage. hitgo: //wnww.cca-fonm.arg

[6] Tammy Dahlgren, Tom Epperly, and Gary Kumfert. Babel User’s Guide. CASC, Lawrence Livermore National
Laboratory, version 0.8.4 edition, April 2003.

[7] Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press, Redmond, WA, 1998.

[8] Eric Eide, Jay Lepreau, and James L. Simister. Flexible and optimized IDL compilation for distributed appli-
cations. In Proceedings of the Fourth Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers, 1998.

[9] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification, July 1996. Available at
httpe: // ava.sn.can

[10] Michi Hennig and Steve Vinoski. Advanced CORBA Programming with C++. Professional Computing. Addison-
Wesley, 1999.

[11] International Organization for Standardization, Geneva. ISO/IEC 14882 Standard for the C++ Programming
Language, 1998.

[12] Bill Janssen, Mike Spreitzer, Dan Larner, and Chris Jacobi. ILU Reference Manual. Xerox Corporation, Novem-
ber 1997. Available at fijo://fp.are. xerax.can/ppdy/ily/ilu. htrl .

[13] Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing language dependencies from a scientific
software library. In 10th SIAM Conference on Parallel Processing, Portsmouth, VA, March 2001.

[14] Scott Meyers. More Effective C++: 35 New Ways to Improve your Programs and Designs. Professional Com-
puting. Addision-Wesley, 1996.

[15] Scott Meyers. Effective C++: 50 Specific Ways to Improve your Programs and Designs. Professional Computing.
Addision-Wesley, 2 edition, 1998.

[16] Microsoft Corporation. Component Object Model Specification (Version 0.9), October 1995. See
hit: /A i crosoft .can/cledev/al exa/t itle. html .

[17] Object Management Group. The Common Object Request Broker: Architecture and Specification, February
1998. Available at hitpo: //ww.arg.arg/caria

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

164

BIBLIOGRAPHY

[18] SciDAC: Scientific Discovery through Advanced Computing. hitgo: /. science.doe.gov/scicece
[19] SCIRun homepage. httgo: //www. s . utah.edu

[20] John Shirley, Wei Hu, and David Magid. Guide to Writing DCE Applications. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1994.

[21] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3 edition, 1997.
[22] U.S. Department of Energy (DOE) homepage. httjo: //wwi.erexay.gov

[23] Norm Walsh. DocBook. O’Reilly, 2000.

[24] XCAT homepage. httip://mnw.extrare. irdiara.edy/xcat

babel-0.9.6 Doc Last Modified September 8, 2004 ~ 9:11 a.m.

