
Babel
Users’ Guide

TAMARA DAHLGREN THOMAS EPPERLY GARY KUMFERT

ii

Disclaimer

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.

This document was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.

Release Information

Babel Users’ Guide (this document) UCRL-MA-145991
Babel Source Code (associated software) UCRL-CODE-2002-054

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Babel
Users’ Guide

TAMARA DAHLGREN THOMAS EPPERLY GARY KUMFERT

Center For Applied Scientific Computing
Lawrence Livermore National Laboratory

P.O. Box 808
Livermore, California, USA

April 3, 2003

iv

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Preface

This document applies to Babel 0.8.4. It, like the software it documents, is a work in progress.
– The Babel Development Team

Babel in a Nutshell

Babel is a tool that enables software written in different languages to communicate. It accomplishes this task by
using an Interface Definition Language (IDL) similar to COM and CORBA. Babel relies on the Scientific Interface
Definition Language (SIDL) that is specifically tuned for scientific applications. By expressing software interfaces, or
APIs1, in SIDL the appropriate glue code stubs and skeletons can be generated to facilitate language interoperability.
Features unique to SIDL are:

• Dynamic multi-dimensional arrays

• Complex numbers (e.g. 2 + 3i)

• In-process optimizations

• Special directives for large-scale parallel distributed programming (future)

• Syntax for specifying interface behavior (future)

Babel enables true object-oriented techniques even in non object-oriented languages. The object model that SIDL
supports is similar to Java and Objective C where a class can extend at most one class, but implement many interfaces.
In C++ speak, an interface is simply a class of all pure-virtual methods. Furthermore, if library developers want
object-oriented features but are required to be 100% ANSI C compliant, Babel can meet those constraints. Although
the Babel code generator is implemented in Java, the runtime libraries and generated files for C bindings are 100%
ANSI C compliant.

Babel can be used as the basis for a component framework, but it is not a complete framework by itself. We’ve
added a tiny CCA-compliant framework, called Decaf, in our examples/ directory. Decaf demonstrates how Babel can
be used to implement a component framework.

SIDL is also a useful communications tool for code development teams since it only expresses the public API.
That is, implementation details, which often prove distracting during collaborative design, can be safely avoided by
restricting discussions to the interfaces described in SIDL. Furthermore, since SIDL is simple and clean it can be used
by Computer Scientists, Math Programmers, and Application Scientists to debate APIs even using only email.

Scope of this Manual

This document is intended as an introduction and tutorial on the use of Babel tools for the generation and use of
component software. The Babel tools were designed specifically for scientific applications, therefore most of the
examples and exercises here also deal with scientific applications.

This manual assumes the reader is a programmer who is proficient in two or more of the following languages: C,
C++, FORTRAN 77, FORTRAN 90, Java, or Python. Furthermore, this manual assumes the reader is familiar with the

1Application Programming Interfaces

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

vi Preface

SPMD2 programming model that pervades the scientific computing community. Knowledge of and experience with
MPI programming is helpful, but not strictly required.

Getting the Software

Babel source is available free of charge on the web. Developed by the Components Project at the Lawrence Livermore
National Laboratory Center for Applied Scientific Computing (CASC), it is licensed under the Lesser GNU Public
License (LGPL). See the source distribution for details.

The Babel distribution is published on Alexandria along with software components available for use with Babel.
Alexandria is a software component repository that is also built by the Components Project at CASC. You can access
Alexandria on the web from the following URL:

http://www-casc.llnl.gov

Readers may also be interested in viewing the Components Project home page at

http://www.llnl.gov/CASC/components

Conventions

The following typographic conventions are used throughout this manual.

Italic is used for file and command names. It is also used to highlight com-
ments in examples and to define terms the first time they appear in a
document.

Constant Width is used in examples to show the text that is generated, and in regular
text to show operators, variables, and the output from commands or
programs.

Constant Slanted is used for displaying for SIDL source code. We use a separate font to
distinguish SIDL code from generated code.

Constant Bold is used to show user’s modifications to generated code and in examples
to show user’s actual input at a terminal.

Sans Serif Slanted is used in examples to show variables for which a context-specific sub-
stitution should be made. The variable filename, for example, would
be replaced by the actual filename.

Additionally, we may use specific blocks of text as sidebars to call the readers attention to particular information.
Here’s one kind.

Rationale: Often when listing restrictions or requirements, we find it helpful to also explain and document the
rationale behind a design decision. In time, the context in which the rationale was based may become irrelevant,
making the rationale blocks very useful for understanding when to change a decision.

We Appreciate Your Feedback

We have tested and verified the information in this manual. Nonetheless, features may have changed or oversights may
exist. Please contact us with any issues, corrections, or suggestions for future versions of this manual through snail
mail at:

2Single Program Multiple Data

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

vii

Components Project
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L–365
Livermore, CA 94551

or through email to:

components@llnl.gov

To find out more about Babel, feel free to subscribe to one or more of the associated distribution lists given below.

• babel-announce@llnl.gov is a moderated email forum to which anyone can subscribe (though no-one
can post). This is a low-volume alternative for people who want to know about releases and major announce-
ments.

• babel-dev@llnl.gov is an open discussion forum about Babel for serious babel users who want to talk
about the internal workings of the tools. Anyone can subscribe or send email to this list.

• babel-users@llnl.gov is an open discussion forum about Babel for users. Anyone can subscribe or send
email to this list.

To subscribe, simply send email to majordomo@lists.llnl.govwith the appropriate line(s):

subscribe babel-announce [email-address]
subscribe babel-dev [email-address]
subscribe babel-users [email-address]

where you can explicitly state your email address in email-address or, if you leave email-address blank, majordomo
will use your email ReplyTo: field.

Acknowledgments

Project Alumni

• Melvina Blackgoat

• Nathan Dykman

• Scott Kohn

• Brent Smolinski

Alpha Testers

• Andy Cleary

• Jeff Painter

• Cal Ribbens

Shared Software

Babel depends on its share of third-party software. Some is redistributed with the code, some not. They all deserve
mention (and some require it).

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

viii Preface

• JavaCC is used to generate the SIDL Parser. This is owned by Sun Microsystems with WebGain as the “care-
taker” through a partnership with Sun. JavaCC can be downloaded and used in most situations at no cost
(http:///www.webgain.com/products/java cc). There are licensing restrictions on redistribution,
modifying, etc.

• gnu.getopt is an implementation of GNU Getopt in Java and is distributed with Babel as a JAR file. It can be
downloaded (along with sourcecode) from either the GNU website

http://www.gnu.org/software/java/packages.html

or the author’s website

http://www.urbanophile.com/arenn/hacking/download.html.

The following is the copyright notice for gnu.getopt:

/**
/* Getopt.java -- Java port of GNU getopt from glibc 2.0.6
/*
/* Copyright (c) 1987-1997 Free Software Foundation, Inc.
/* Java Port Copyright (c) 1998 by Aaron M. Renn (arenn@urbanophile.com)
/*
/* This program is free software; you can redistribute it and/or modify
/* it under the terms of the GNU Library General Public License as published
/* by the Free Software Foundation; either version 2 of the License or
/* (at your option) any later version.
/*
/* This program is distributed in the hope that it will be useful, but
/* WITHOUT ANY WARRANTY; without even the implied warranty of
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/* GNU Library General Public License for more details.
/*
/* You should have received a copy of the GNU Library General Public License
/* along with this program; see the file COPYING.LIB. If not, write to
/* the Free Software Foundation Inc., 59 Temple Place - Suite 330,
/* Boston, MA 02111-1307 USA
/**/

The text for the GNU Library GPL is available at http://www.gnu.org/copyleft/library.html.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Contents

Preface v

1 Introduction 1
1.1 Babel Facilitates Language Interoperability . 1
1.2 Scientific Interface Definition Language (SIDL) . 3
1.3 Benefits to Customers . 3
1.4 Beyond Babel’s Scope . 3
1.5 Summary . 4
1.6 Organization . 4

I Foundations 5

2 Hello World Tutorial 7
2.1 Introduction . 7
2.2 Writing the SIDL File . 7
2.3 Writing the Implementation . 8
2.4 Writing the Client . 9
2.5 Final Remarks . 10

3 SIDL Basics 11
3.1 Introduction . 11
3.2 SIDL Files . 11
3.3 Fundamental Types . 15
3.4 Arrays . 17
3.5 SIDL Runtime . 36
3.6 Objects . 43
3.7 XML Repositories . 45

4 Babel Basics 47
4.1 Introduction . 47
4.2 Babel is a Compiler . 47
4.3 Command Line Options . 47

5 Building Portable Software 51
5.1 Introduction . 51
5.2 Dynamic vs. Static Linking . 51
5.3 SIDL Library Issues . 52
5.4 Deployment of Babel Enabled Libraries . 52

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

x CONTENTS

II Supported Language Bindings 53

6 C Bindings 55
6.1 Introduction . 55
6.2 Basic Types . 55
6.3 Header files . 55
6.4 Mapping for classes, interfaces and arrays . 56
6.5 Calling SIDL methods from C . 57
6.6 Implicitly defined methods . 58
6.7 Invoking Babel to generate C bindings . 59
6.8 Invoking Babel to generate C implementations . 59

7 C++ Bindings 61
7.1 Introduction . 61
7.2 Basic Types . 61
7.3 SIDL C++ Header Suffix . 61
7.4 SIDL’s Main C++ Header File . 61
7.5 Calling Methods from C++ . 62
7.6 Implementing SIDL Classes in C++ . 64
7.7 Accessing SIDL Arrays From C++ . 64

8 FORTRAN 77 Bindings 67
8.1 Introduction . 67
8.2 Basic Types . 67
8.3 Calling Methods From FORTRAN 77 . 68
8.4 Implementing Classes in FORTRAN 77 . 70
8.5 Accessing SIDL Arrays From FORTRAN 77 . 71
8.6 FORTRAN 77 objects with state . 72

9 FORTRAN 90 Bindings 75
9.1 Introduction . 75
9.2 Basic Types . 75
9.3 Calling Methods From FORTRAN 90 . 76
9.4 Implementing Classes in FORTRAN 90 . 79
9.5 Accessing SIDL Arrays From FORTRAN 90 . 81

10 Java Bindings 83
10.1 Introduction . 83

11 Python Bindings 85
11.1 How to Create a SIDL Object in Python . 85
11.2 How to Cast SIDL Objects in Python . 85
11.3 How to Call Methods from Python . 86
11.4 Building Python Extension Modules . 86
11.5 Setting up to Run Python . 87
11.6 Notes . 87
11.7 How to Implement SIDL Objects in Python . 88

12 SIDL Backend 91
12.1 Introduction . 91
12.2 Purpose . 91
12.3 Generated versus Original SIDL files . 91
12.4 XML File Comparison . 93
12.5 Babel Command Line Options . 93

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

CONTENTS xi

13 XML Backend 95
13.1 Introduction . 95
13.2 Purpose . 95
13.3 Basic Structure . 95
13.4 Command Line Options . 101

III Appendices 103

A Acronyms 105
A.1 Introduction . 105

B SIDL Grammar 107
B.1 Introduction . 107
B.2 Backus-Naur Form . 107

C Extensible Markup Language (XML) 115
C.1 Introduction . 115
C.2 SIDL Document Type Declaration (DTD) . 115

D Lessons Learned 121
D.1 Introduction . 121
D.2 Compilation Consistency is Key . 121

E Troubleshooting 123
E.1 Introduction . 123
E.2 Common Errors . 123
E.3 Common Warnings . 123

Bibliography 125

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

xii CONTENTS

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 1

Introduction

Contents

1.1 Babel Facilitates Language Interoperability . 1

1.2 Scientific Interface Definition Language (SIDL) . 3

1.3 Benefits to Customers . 3

1.4 Beyond Babel’s Scope . 3

1.5 Summary . 4

1.6 Organization . 4

1.1 Babel Facilitates Language Interoperability

Babel was conceived, designed, and built to solve a problem; namely, to make scientific software libraries equally
accessible from all of the standard languages. Hence, its goal is language interoperability. The vision goes far beyond
calling BLAS1 implemented in FORTRAN 77 from a C program. At its heart, Babel lets programmers use their tool
of choice in developing complete applications using components implemented in one or more distinct programming
languages.

For instance, let us say that an application scientist is running a sophisticated C++ code from a Python scripting
environment. This can already be easily accomplished with technologies like SWIG. Now let’s say that the simulation
is showing some erratic behavior and the application scientist wants to extend the ConvergenceCheck class to also
report some information to a log file. Let’s also assume that this application scientist doesn’t want to write a new C++
class much less rewrite the current application. What this individual wants to do is derive and utilize a new class in
Python from the C++ ConvergenceCheck class. Thus, the C++ simulation code will now have to invoke a method
on a class implemented in Python, which then dispatches back to the C++ base class after doing its additional logging.
This is an example of a capability that Babel provides that is outside the scope of SWIG.

Figure 1.1 lists many of the primary languages that are of interest to scientific simulation software developers and
users. The good news is that there is a path from each language to every other; meaning that calling from one to
another is possible. However, the technologies to get from one language to another vary widely and are fraught with
pitfalls.

Babel works by providing the technology to define and support the multi-language interoperation of a common
subset of functionality through programming language-neutral interface specifications. See Fig. 1.2 to see a graphical
representation of the supported languages. It is important to note that this common functionality subset is far from a
lowest common denominator solution in that Babel actually adds functionality when it is lacking in the host language.

1BLAS: Basic Linear Algebra Subroutines

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

2 Introduction

JNI
Native
SWIG

Platform Dependent

C

C++

f77

f90

Python

Java

Figure 1.1: Language Interoperability Using Current Technology.

C

C++

f77

f90

Python

Java

Figure 1.2: Language Interoperability Using Babel.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

1.2 Scientific Interface Definition Language (SIDL) 3

1.2 Scientific Interface Definition Language (SIDL)

In order to support multi-language interoperability, Babel relies on the specification of interfaces in the Scientific
Interface Definition Language (SIDL) (pronounced “SIGH-dull”). SIDL is similar to COM and CORBA IDLs, but was
designed with an emphasis on scientific computing. Specifically, SIDL currently supports dynamic multi-dimensional
arrays and has built-in complex numbers. It will acquire a set of directives to aid in the description of massively
parallel distributed objects and additional syntax for specifying interface behavior.

When it comes to deciding what programming idioms to support across all languages and which ones to reject,
SIDL strikes a careful balance between minimalism and completeness. It is not a lowest common denominator solu-
tion. SIDL is minimal to keep the learning curve as low as possible. It is complete so developers do not feel constrained
in how to express their solutions.

SIDL is object-oriented. Its object model closely resembles that of Java and Objective C. In this model there is
single inheritance of implementation and multiple inheritance of interfaces. It supports the typical notions of virtual,
static, and final methods. SIDL also provides a basic set of features by defining and implementing the basic types for
interfaces, classes and exception. All types implicitly inherit from these basic types.

SIDL has a complete set of fundamental data types, from booleans to double precision complex numbers. It also
supports more sophisticated types such as enumerations, strings, objects, and dynamic multi-dimensional arrays2 3.

SIDL is still a work in progress. Of particular research interest are directives that will be added for parallel
distributed object interaction and features to specify behavioral semantics associated with the interfaces.

1.3 Benefits to Customers

Babel has two types of customers: developer and user. The developer implements a library that will be used by one
or more users. Since one goal of the developer is to increase their customer base, the developer writes a SIDL file that
effectively publishes the interface to their software in a platform and language neutral manner. The user, on the other
hand, may not care or even know that they are interacting with a library through Babel.

Babel provides some features that benefits user and developer alike. The most important aspect to note here is that
all Babel objects are reference counted. This feature is critical to encapsulate the memory allocation library (e.g. C’s
malloc/free or C++’s new/delete) used in the implementation of the object. Users never need concern themselves with
when to free up a resource, they only declare when they’re done with their reference to that resource. Developers are
free to use different memory allocation subsystems in different parts of their code if need be.

1.4 Beyond Babel’s Scope

The language interoperability problem is a large one, and though the Babel tools address much of it, there is still a lot
that is beyond the scope of our tool. Babel is at its heart a code generator and a runtime library. Consequently, the
following features are currently limitations of the Babel tool kit:

Reverse engineering is not supported. That is, there is no support for inspecting or modifying compiled code. In
addition, scanning existing software to generate SIDL wrappers is not supported. There are other groups who
are pursuing a C++ to SIDL converter. Since SIDL contains different information than what is in a C++ header
file, however, such a converter cannot be fully automated without additional help.

Library compatibility is limited. Since Python and Java dynamically load libraries into their virtual machines, using
these languages requires the ability to build shared libraries. In general, building shared libraries (particularly
from C++) is difficult and error prone. This is compounded by the fact that compiler vendors have no standard
way of doing this, and many tools that help building shared libraries don’t support C++. One can build a
legitimate shared library that still won’t work because there are unresolved symbols, or the library was loaded
in the wrong mode.

Compiler compatibility is limited. Since the C++ standard does not specify a binary interface and uses a lot of
hashing in their symbol tables, there have been no attempts to get libraries from dissimilar C++ compilers to

2Arrays of enums are not yet supported.
3Some language bindings may not be mature enough to fully support all types.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

4 Introduction

work together. Similarly, although we support FORTRAN 77 and FORTRAN 90, all libraries of Fortran code
must be compiled with the same compiler. . . again because of the lack of a standard binary interface.

Despite the aforementioned limitations, Babel does facilitate the development of language interoperable software.
However, issues of robust packaging, building, and deployment of language interoperable software still loom on the
horizon.

1.5 Summary

Babel consists of a set of tools that are intended to be used for facilitating language interoperability in the scien-
tific computing community. Using interfaces for libraries or components specified in Scientific Interface Definition
Language (SIDL) files, Babel can generate corresponding XML representations as well as the source code for the
corresponding stubs, intermediate object representations, and implementation skeletons. The generated source code
then becomes the foundation for the glue code that is used for language interoperability between callers of libraries
and components.

In addition to providing generated code that automatically handles mapping fundamental data type parameters asso-
ciated with calls between different languages, Babel has built-in support for complex numbers and multi- dimensional
arrays. Additional benefits include object reference counting to facilitate memory management.

Finally, Babel’s primary goal is to facilitate the development of language interoperable libraries and components.
Hence, support for reverse engineering is not provided. Given that Babel has been developed by a research team,
there are also limitations associated with shared library and programming language-specific compiler interoperability
support that have been looked into but probably will not be addressed in the foreseeable future. Regardless, Babel
has proven to be useful to its stakeholders to the point that it is becoming an integral part of the Common Component
Architecture (CCA). Refer to papers and presentations on our web site for more information.

1.6 Organization

The remainder of this document is separated into two parts; namely, foundations and supported language bindings.
Part I is devoted to describing the SIDL and the Babel tools. It starts with a tutorial to gently introduce the reader
to the development of glue code from both the implementation (or server) and user (or client) sides. The following
chapter introduces SIDL and Babel basics. Finally, a chapter on advanced topics, such as linking options, is provided.

Part II describes the language bindings currently supported by Babel. At this point, most of the bindings are
programming languages. In which case, most have both client- and server-side bindings. However, Babel also supports
textual language backends. At this time, Extensible Markup Language (XML) and Scientific Interface Definition
Language (SIDL) are the only to textual backends that are supported.

Appendices are included to provide more information on topics such as acronyms, the SIDL Grammar, and SIDL
XML. In addition, sections are included that provide advice and tips on troubleshooting.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Part I

Foundations

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 2

Hello World Tutorial

Contents

2.1 Introduction . 7
2.2 Writing the SIDL File . 7
2.3 Writing the Implementation . 8
2.4 Writing the Client . 9
2.5 Final Remarks . 10

2.1 Introduction

This tutorial guides you through the process of writing the classic “Hello World!” example using the Babel tools. In the
process, it attempts to teach you how to write a Scientific Interface Definition Language (SIDL) interface description
file, generate the library implementation in C++, and write a C main program to call the library. It also illustrates the
process for writing a Makefile to compile and link the library and program.

2.2 Writing the SIDL File

The “Hello World!” program will be written in a directory called hello/ and place the client library in a subdirectory
hello/lib/:

% mkdir hello
% cd hello
% mkdir lib

The first step is to write a SIDL file. Recall that SIDL is an interface definition language (IDL) that describes the
calling interface for a scientific library. It is used by the Babel tools to generate glue code that hooks together different
programming languages. A complete description of SIDL can be found in Chapter ??.

For this particular application, we will write a SIDL file that contains a class World in a package Hello. Method
getMsg() in class World returns a string containing the traditional computer greeting. Using your favorite text editor,
create a file called hello.sidl in the hello/ directory containing the following:

package Hello version 1.0 {
class World {

string getMsg();
}

}

The package statement provides a scope (or namespace) for class World, which contains only one method, getMsg().
The version clause of the statement identifies this as version 1.0 of the Hello package.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

8 Hello World Tutorial

2.3 Writing the Implementation

We will write the implementation in the lib/ subdirectory of hello/. The first step is to run the Babel shell script to
generate the library implementation code for the SIDL file. We will implement the library in C++. The simplified
command to generate the Babel library code (assuming Babel is in your PATH) is 1:

% babel -sC++ -olib ../hello.sidl

In this Babel command, the “-sC++” flag, or its long form “--server=C++”, indicates that we wish to generate
C++ bindings for an implementation2. The “-olib” flag, or its long form “--output-dir=lib”, defines the root
directory of where the generated code should be placed.

This command will generate a large number of C and C++ header and source files. It is often surprising to
newcomers just how much code is generated by Babel. Rest assured, each file has a purpose and there is a lot of
important things being done as efficiently as possible under the hood.

Files are named after the fully-qualified class-name. For instance, a package Hello and class World would have
a fully qualified name (in SIDL) as Hello.World. This corresponds to file names beginning with Hello World3.
For each class, there will be files with IOR, skel or impl appended after the fully qualified name. IOR files are
always in ANSI C (source and headers), containing Babel’s Intermediate Object Representation. Impl files contain the
actual implementation, and can be in any language that Babel supports, in this case, they’re C++ files. Impl files are
the only files that a developer need look at or touch after generating code from the SIDL source. Skel files perform
translations between the IORs and the Impls. In some cases (like Fortran) the Skels are split into a few files: some
in C, some in the Impl language. In the case of C++, the Skels are pure C++ code wrapped in extern "C" {}
declarations. If the file is neither an IOR, Skel, nor Impl, then it is likely a Stub. Stubs are the proxy classes of Babel,
performing translations between the caller language and the IOR. Finally, the file babel.make is a Makefile fragment
that will simplify writing the Makefile necessary to compile the library. You may ignore the babel.make file if you
wish.

The only files that should be modified by the developer (that’s you since you’re implementing Hello World) are
the “Impls”, which are in this case files ending with Impl.hh or Impl.cc Babel generates these implementa-
tion files as a starting point for developers. These files will contain the implementation of the Hello library. Every
implementation file contains many pairs of comment “splicer” lines such as the following:

std::string
Hello::World_impl::getMsg()
throw ()
{

// DO-NOT-DELETE splicer.begin(Hello.World.getMsg)
// Insert code here...
// DO-NOT-DELETE splicer.end(Hello.World.getMsg)

}

Any modifications between these splicer lines will be saved after subsequent invocations of the Babel tool. Any
changes outside the splicer lines will be lost. This splicer feature was developed to make it easy to do incremental
development using Babel. By keeping your edits within the splicer blocks, you can add new methods to the hello.sidl
file and rerun Babel without the loss of your previous method implementations.

For our hello application, the implementation is trivial. Add the following return statement between the splicer
lines in the lib/Hello World Impl.cc file:

std::string
Hello::World_impl::getMsg()
throw ()
{

// DO-NOT-DELETE splicer.begin(Hello.World.getMsg)

1For information on additional command line options, refer to Section 4.3.
2You can also try the “--help” flag to list all of the Babel command-line options.
3Note: dots are converted to underscores for file naming.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

2.4 Writing the Client 9

return std::string("Hello World!");
// DO-NOT-DELETE splicer.end(Hello.World.getMsg)

}

To keep the Makefile simple, we will use some GNU Make features. This Makefile may not work with other
make implementations. The GNU gcc and g++ compilers are used in this example. The following Makefile in the lib/
subdirectory will compile the library files and create a shared library named libhello.so:

.cc.o:
g++ -fPIC -I$(HOME)/babel/include -c $<

.c.o:
gcc -fPIC -I$(HOME)/babel/include -c $<

include babel.make
OBJS = ${IMPLSRCS:.cc=.o} ${IORSRCS:.c=.o} \

${SKELSRCS:.cc=.o} ${STUBSRCS:.cc=.o}

libhello.so: ${OBJS}
g++ -shared -o $@ ${OBJS}

clean:
${RM} *.o libhello.so

You do not necessarily need to create a shared library for this example; you may generate a standard static library
(e.g., libhello.a). However, in general, you must generate a shared library if you will be calling your library from
Python or Java. To create the shared library archive libhello.so, simply execute make as follows:

% cd lib/
% make libhello.so

2.4 Writing the Client

We will write the client in the main hello/ subdirectory. The main program will be written in C. File hello.c is as
follows:

#include <stdio.h>
#include "Hello_World.h"

int main(int argc, char** argv)
{
Hello_World h = Hello_World__create();
char* msg = Hello_World_getMsg(h);
printf("%s\n", msg);
Hello_World_deleteRef(h);
free(msg);

}

This code creates the Hello World object, calls the getMsg() method, prints the ubiquitous saying, decrements the
reference count for the object, and frees the message string.

There are a few details worth noting here. The C bindings generate function names by combining packages, classes,
and method names with underscores (e.g. Hello World getMsg(). Whenever you see double underscores in
Babel generated symbols, they indicate something built-in to (and sometimes specific to) the language binding. The
create() method is built-in to every instantiable class defined in SIDL, triggering the creation of Babel internal

data structures as well as the constructor of the actual object implementation.
To generate the C glue code necessary to call the library, we run the Babel tool again, this time specifying C as the

target language:

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

10 Hello World Tutorial

% babel --client=C hello.sidl

or simply

% babel -cC hello.sidl

The “-cC” flag, or its equivalent long-form “--client=C”, tells the Babel code generator to create only the C
stub calling code, not the entire library implementation. The library libhello.so already contains the necessary IOR,
skeleton, and implementation object files. We compile the hello program using the following GNU Make Makefile:

.c.o:
gcc -I$(HOME)/babel/include -Ilib -c $<

include babel.make
OBJS = hello.o ${STUBSRCS:.c=.o}

hello: ${OBJS}
gcc ${OBJS} -o $@ \

-Rlib -Llib -lhello \
-R$(HOME)/babel/lib -L$(HOME)/babel/lib -lsidl

clean:
${RM} *.o hello

Note that the “-R” flags tell the dynamic library loader where to find the hello and sidl shared libraries. You
could achieve the same behavior through environment variables such as LD LIBRARY PATH. On some machines
and compilers (notably linux-gcc-3.0) the -R flag is no longer supported, so you will have to modify the appropriate
environment variable to find the shared library.

Finally, we make the executable and run it:

% make hello
% ./hello
Hello World

2.5 Final Remarks

Congratulations! You are now ready to develop a parallel scalable linear solver package.
The preceding process may seem to be the most complicated way to write the world’s simplest program but, of

course, the same process will also work for significantly more complex applications. “Hello World” is small enough to
experiment with in the language of your choice. Parallel, multithreaded, scientific simulation codes are another matter
entirely.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 3

SIDL Basics

Contents

3.1 Introduction . 11

3.2 SIDL Files . 11
3.3 Fundamental Types . 15

3.4 Arrays . 17
3.5 SIDL Runtime . 36

3.6 Objects . 43

3.7 XML Repositories . 45

3.1 Introduction

This chapter describes the basics of the Scientific Interface Definition Language (SIDL). The goal is to provide suf-
ficient information to enable most library and component developers to begin using SIDL to wrap their software. It
begins with an overview of SIDL files followed by an introduction to the fundamental data types. More complex topics
such as the object arrays, exceptions, objects, and the XML repository are then addressed.

3.2 SIDL Files

SIDL files are human-readable, language- and platform- independent interface specifications for objects and their
methods. Babel reads these files to generate the appropriate programming language bindings. These bindings, in the
form of stub, intermediate object representation (IOR), and implementation skeleton sources, provide the basis for
language interoperable software using Babel. In addition, SIDL files are used to populate the XML symbol reposi-
tory that can serve as an alternate source of interface specifications during the generation of programming language
bindings.

Basic Structure

The basic structure of a SIDL file is illustrated below.

package <identifier> [version <version>]
{
interface <identifier> [<inheritance>]
{

[<type>] <identifier> ([<parameters>]) [throws <exception>];
.
.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

12 SIDL Basics

.

[<type>] <identifier> ([<parameters>]) [throws <exception>];
}

class <identifier> [<inheritance>]
{

[<type>] <identifier> (<parameters>) [throws <exception>];
.
.
.

[<type>] <identifier> ([<parameters>]) [throws <exception>];
}

package <identifier> [version <version>]
{

.

.

.
}

}

The main elements are packages, interfaces, classes, methods, and types. For a more detailed description, refer to
Appendix B.

Packages provide a mechanism for specifying name space hierarchies. That is, it enables grouping sets of interface
and/or class descriptions as well as nested packages. Identified by the package keyword, packages have a scoped
name that consists of one or more identifiers, or name strings, separated by a period (”.”). A package can contain
multiple interfaces, classes and nested packages. By default, packages are now re-entrant. In order to make them
non-reentrant, they must be declared as final.

Interfaces define a set of methods that a caller can invoke on an object of a class that implements the methods.
Multiple inheritance of interfaces is supported, which means an interface can be derived from one or more
interfaces.

Classes also define a set of methods that a caller can invoke on an object. A class can extend only one other class
but it can implement multiple interfaces. So we have single inheritance of classes and multiple inheritance of
interfaces.

Methods define services that are available for invocation by a caller. The signature of the method consists of the
return type, identifier, optional parameters, and optional exceptions. Each parameter has a type and a mode. The
mode indicates whether the value of the specified type is passed from caller to callee (in), from callee to caller
(out), or both (inout). Each exception that a method can throw when it detects an error must be listed.

Types are used to constrain the the values of parameters, exceptions, and return values associated with methods. SIDL
supports basic types such as int, bool, and long as well as strings, complex numbers, and arrays.

Comments and Doc-Comments

SIDL has the same commenting style as C++/Java and even has a special documentation comment (so called doc-
comment) similar to those used in Javadoc. One can embed comments anywhere in their SIDL file. Documentation
comments should immediately preceed the class, interface, or method with which they are associated. Babel replicates
documentation comments in the files it generates. It does not replicate plain comments.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.2 SIDL Files 13

/*
* 1. This is a multi-line comment.
*
*/

// 2. This comment fits entirely on a single line.

/* 3. This comment can fill less than a line. */

/** 4. This is a documentation comment. */

/**
* 5. Documentation comments can span
* multiple lines without the beginning
* space-asterisk-space combinations
* getting in the way.
*/

Consider the above SIDL file fragment.

1. This comment is a regular multi-line comment that is delimited by a slash-star , star-slash (“/*”, “*/”) pair.

2. This is a single-line comment that starts with a double slash “//” and continues to the end of the line.

3. This comment is the same as # 1 except that it is completely contained on a single line. It can be embedded in
the middle of a line anywhere a space naturally occurs.

4. This is a documentation comment. In keeping with Javadoc, Doc++, and other tools, it is delimited by slash-star-
star and star-slash (“/**”, “*/”) combinations. Documentation comments are important because their contents
are preserved by Babel in the corresponding generated files. Doc-comments must directly precede the interface,
class, or method that they document.

5. This is a multi-line variant of a doc-comment. Note that initial asterisks on a line are assumed to be for human
readers only and are discarded by Babel when it reads in the text. The multi-line doc-comment is the preferred
way of documenting SIDL.

Packages and Versions

This section needs to be brought up-to-date now that we have revised versioning (which includes import
�

�

�

�
WARNING:

and require statements) and introduced re-entrant package support.

SIDL has both a packaging and versioning mechanism built in. Packages are essentially named scopes, serving
a similar function as Java packages or C++ namespaces. Versions are decimal separated integer values where it is
assumed larger numbers imply more recent versions.

The outtermost SIDL package has a version number assigned to it. By default that version is 0. All classes and
interfaces in that package get that same version number. If subpackages are specified, they can have their own version
number assigned. If a package is declared without a version, it can only contain other packages. That is, it cannot
declare interfaces or classes.

package mypkg {

}

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

14 SIDL Basics

This SIDL file represents the minimum needed for each and every SIDL file. The package statement defines a scope
where all classes within the package must reside. Since no version clause is included, the version number defaults to
0.

Packages can be nested. This is shown in the example below. The version numbers assigned to all the types is
determined by the package, or subpackage, in which it resides. In the design of the SIDL file, remember that some
languages get very long function names from excessively nested packages or excessively long package names.

package mypkg version 1.0 {

package thisIsAReallyLongPackageName {
}

package this version 0.6 {
package is {

package a {
package really {

package deeply version 0.4 {
package nested {
package packageName version 0.1 {
}

}
}

}
}

}
}

}

There is a bug/feature in Babel which allows sub-packages to be broken into separate files, but you’d still
�

�

�

�
Advanced:

have to run Babel on all the files at the same time. Here’s how it works.
First define the outtermost package in a file.
package mypkg version 2.0 {

}

Then define a sub-package in a second file.
package mypkg.subpkg version 2.0 {

}

Note that both files begin with the identical version statement. Now as long as you run Babel on both
SIDL files at the same time (with the outtermost one first on the commandline), all is fine.

This works because the package statement takes a scoped identifier as an argument. As long as Babel
knows that a package mypkg exists, it can handle a new package called subpkg. Version statements
require an identifier for the outtermost package. Since packages cannot have dots “.” in their names, the
only dots in version statements should appear at the numbers, not the package names.

Running the second file without the first will (and should) generate an error since the enclosing pack-
age was not declared. Use of this bug/feature should be used judiciously.

External types can be expressed in one of two ways. The fully scoped external type can be used anywhere in the
class description. Alternatively, an import statement can be used to put the type in the local package-space. Below
is a sample SIDL file, that should help bring all of these concepts together.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.3 Fundamental Types 15

Table 3.1: SIDL Types

SIDL TYPE SIZE (BITS)
bool 1
char 8
int 32
long 64
float 32
double 64
fcomplex 64
dcomplex 128
opaque 64
string varies
enum 32
interface varies
class varies
array<Type,Dim> varies

require pkgA version 1.0; // restrict pkgA to 1.0

import pkgB; // import pkgB.B to my space

require pkgC version 2.0; // restrict pkgC to version 2.0

package mypkg version 2.0 {
class foo {

setA(A); // imported from pkgA, must be pkgA.A-v1.0
setB(B); // imported from pkgB, must be pkgB.B, no version restriction
setC(pkgC.C); // must be pkgC.C-v2.0
setD(pkgD.D); // no version restriction

}
}

3.3 Fundamental Types

Table 3.1 briefly shows the different data types that are supported in Babel. Refer to each chapter for the lan-
guage specific bindings for each SIDL type. The “S” in SIDL stands for “Scientific.” This emphasis is reflected
in the fundametal support for complex numbers (fcomplex and dcomplex) and dynamic multidimensional arrays
(array<Type,Dim>).

C++ developers looking at the SIDL syntax for arrays, might think that SIDL is a templated IDL, but this is not
so. Although the syntax for SIDL arrays looks like a template, it is specific only to the array type. Developers cannot
create templated classes or methods in SIDL.

Rationale: Although C++ templates are a very powerful programming mechanism, they apply only to C++. For
Babel to implement similar hashing routines, method names in languages other than C++ would become prohibitively
(thousands of characters) long. Moreover, this C++ template hashing mechanism is compiler specific so while C++
is very good at hiding the expanded template names (unless there is an error to report) we would have to add babel
C++ bindings on a compiler by compiler basis.

Discussion of the various types is broken up into sections. Numeric types such as bool, char, int, long,
float, double, fcomplex, and dcomplex are discussed in SubSection 3.3. Discussion of strings is found in
SubSection 3.3. A brief justification for the opaque type is in SubSection 3.3. Information about enumerated types is
presented in SubSection 3.3 which concludes our discussion of fundamental types and this section. Information about
extended types such as Interfaces and Classes (Section 3.6) and Arrays (Section ?? follow thereafter.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

16 SIDL Basics

Numeric Types

The SIDL types bool, char, int, long, float, double, fcomplex, and dcomplex are the smallest and
easiest data types to transfer between languages transparently. They all have a fixed size and can just as resonably be
copied as passed by reference.

Most languages natively support all of these data types (though perhaps less so with complex types). There are a
few notable exceptions that may be of interest.

ANSI C does not define the size of int and long, only that the latter be at least as big as the former. As of the
C99 standard, there are types int32 t and int64 t that are signed integers that explicitly support a fixed number
of bits. Most compilers already have these symbols defined appropriately in sys/types.h (pre C99 standard) or
inttypes.h.

Python defines its int and long to be equivalent to C, and therefore suffers the same platform dependent integer
size problem with less flexibility for a workaround. It is not uncommon for regression tests involving longs and Python
to fail on certain platforms. Python 2.2 has a patch to make SIDL long support better.

Strings

Strings are an interesting datatype because they are fundamental to many pieces of software, but represented dif-
ferently by practically every single programming language. Strings can have a high overhead to support language
interoperability because there is invariably so much copying involved.

FORTRAN 77 and 90 support for strings is limited to a predetermined buffer size. Since the results of a string
assignment into that buffer in FORTRAN does not propagate the length of the string, trailing whitespace is always
trimmed for any string begin passed out from a FORTRAN implementation.

Opaque

The opaque type is dangerous, and rarely useful. However, there are particular times when an opaque type is the only
way to solve a problem. When a SIDL file uses an opaque type, Babel guarantees only bits will be relayed exactly
between caller and callee. If there is a need to pass more information than an opaque provides, than the developer can
simply pass a pointer to that information.

Use of a opaque carries a heavy penalty. When Babel matures enough to support distributed computing, any
method calls with opaque in the argument list (or return type) will be restricted to in-process calls only.

Rationale: Since opaque is typically used for a pointer to memory, this sequence of bits has no meaning outside
of its own process space.

Enumerations

An enumeration is typically used in programming languages to specify a limited range of states to enable dealing with
them by names instead of hard-coded values. For language interoperability purposes — especially to support this
concept on languages with no native support — we’ve had to create specific rules for the integer values associated
with enumerated types.

package enumSample version 1.0 {

// undefined integer values
enum color {

red, orange, yellow, green, blue, violet
};

// completely defined integer values
enum car {

/**
* A sports car.
*/

porsche = 911,
/**

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 17

* A family car.
*/

ford = 150,
/**
* A luxury car.
*/

mercedes = 550
};

// partially defined integer value
enum number {

notZero,// This non-doc comment will not be retained.
notOne,
zero=0,
one=1,
negOne=-1,
notNeg

};
}

Above is a sample of enumerations taken directly from our regression tests. It defines a package enumSample
that contains three enumerations. C/C++ developers will find the syntax very familiar. When defining an enumeration,
the actual integer values assigned can be undefined, completely defined, or partially defined.

SIDL defines the following rules for adding integer values to enumerated states that don’t have a value explicitly
defined.

1. Error if two states are explicitly assigned the same value

2. Assign all explicit values to their named state.

3. Assign smallest unused non-negative value to first unassigned state in enumeration.

4. Repeat 3 until all states have assigned (unique) values.

To verify the application of these rules, the enumSample.number enumeration will have the following values
assigned to its states: NotZero=2, NotOne=3, zero=0; one=1, negOne=-1, notNeg=4.

3.4 Arrays

One of the features that separates SIDL and BABEL from Microsoft’s COM/DCOM and the OMG’s CORBA is
support for multi-dimensional arrays. SIDL is designed to serve the high performance computing community, so we
anticipate that both SIDL object developers and object clients may require direct access to the underlying array data
structure to try to optimize instruction pipelining or cache performance. The purpose of this document is to describe
the functional API to the SIDL array data structure and the underlying data structures. This presentation will focus on
the C API for arrays because it is the basis for the other language APIs, so they will likely reflect its idiosyncrasies.

SIDL arrays can be “row-major” or “column-major”, really. They are not parallel array classes, and not particularly
sophisticated, but they are very, very general. These are meant to generalize the array types built into many languages,
not to provide a general array component that everyone will use. It is expected for parallel array libraries to build on
top of the array type presented into SIDL.

SIDL Language Features

As of release 0.6.5, interface defintions can specify that an array argument or return value must have a particular
ordering for a method. The type array<int, 2, row-major> indicates a dense, 1 two-dimensional array of
32 bit integers in row-major order; and likewise, the type array<int, 2, column-major> indicates an dense

1meaning nonstrided

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

18 SIDL Basics

array in column-major order. Some numerical routines can only provide high performance with a particular type of
array. The ordering is part of the interface definition to give clients the information they need to use the underlying
code efficiently. The ordering specification is optional.

For one-dimensional arrays, specifying row-major or column-major allows you to specify that the array
must be dense, that is stride 1. Otherwise, for one-dimensional arrays row-major and column-major are identical.

If you pass an array into a method and the array does not have the specified ordering, the skeleton code will make a
copy of the array with the required ordering and pass the copy to the method. This copying is necessary for correctness,
but it will cause a decrease in performance. The implementor of the method can count on an incoming array to have
the required ordering.

For out parameters and return values, an ordering specification means that the method promises to return an array
with the specified ordering. The implementation should create the out arrays with the proper ordering; because if it
does not, the skeleton code will have to copy the outgoing array into a new array with the required ordering.

For inout parameters, an ordering specification means the ordering specification will be enforced by the skeleton
code for the incoming and outgoing array value.

At the time of writing this, the ordering constraints are enforced for Python implementation because Python uses
Numeric Python arrays, so BABEL cannot control the array ordering as fully. The Python skeletons do force outgoing
arrays (i.e., arrays passed back from Python) to have the required ordering.

Independent and borrowed arrays

There are two main kinds of arrays: independent and borrowed. The independent arrays owns and manages its data. It
allocates space for the array elements when the array is created, and it deallocates that space when the array is finally
destroyed.

The borrowed array does not own or manage its data. It borrows its array element data from another source that
it cannot manage, and it only allocates space for the index bounds and stride information. The rationale for borrowed
arrays is to allow data from another source to temporarily appear as a SIDL array without requiring data be copied.

If you slice an independent array, the resulting array is also considered independent even though it borrows data
from the original independent array. The resulting array can still manage its data by retaining a reference to the original
array; hence, its element data cannot disappear until the resulting array is destroyed. If you slice a borrowed array,
the resulting array is also borrowed because like its original array, it doesn’t manage the underlying data.

The Life of an Array

The existence of borrowed arrays causes the arrays to deviate from the normal reference counting pattern. Arrays are
reference counted. An array’s resources are reclaimed when the reference count goes to zero. However, a borrowed
array’s array element data will disappear whenever the source of the borrowed data determines that it should regardless
of the reference count in corresponding the SIDL array. This behavior means that developers should consider any SIDL
array that they did not create themselves, for example incoming arguments to methods, as potential borrowed arrays.
When a method wants to keep a copy of an array that might be a borrowed array, it should use the smartCopy
method documented below.

Here are some rules of thumb about the use of borrowed arrays:

• The creator of a borrowed array should guarantee that the data for the borrowed array will exist through the
duration of any method calls using the borrowed array.

• Methods should not return a borrowed array as a return value or out parameter unless the method can guarantee
that the array element data will be available until the process shuts down.

• There is a neglible performance cost when using smartCopy when the array is not borrowed, and there is a
huge correctness benefit when the array is borrowed.

The Language Bindings

The C++ binding for array provides access to the C API in case you need to take the gloves off and revel in the data
directly. But the C++ binding also provides a templated wrapper class to provide a more natural look and feel for C++
programmers.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 19

Table 3.2: SIDL types to array function prefixes

SIDL TYPE ARRAY FUNCTION PREFIX VALUE TYPE
bool SIDL bool SIDL bool
char SIDL char char
dcomplex SIDL dcomplex struct SIDL dcomplex
double SIDL double double
fcomplex SIDL fcomplex struct SIDL fcomplex
float SIDL float float
int SIDL int int32 t
long SIDL long int64 t
opaque SIDL opaque void *
string SIDL string char *

The Python binding for arrays involves copying SIDL arrays to/from Numeric Python arrays. Arrays in Python
don’t have the SIDL methods available. They just have the Numeric Python API available.

The FORTRAN 77 API mimics the C API; all the C functions have been FORTRANified and have f appended to
their names. The FORTRAN 90 API uses function overloading to allow programmers to use the short array method
names.

The Array API

In the following presention, we use the SIDL int type; however, everything in this section applies to all types except
where noted. The basic types are in the SIDL namespace. Table 3.2 shows the prefix for SIDL base types and the
actual value type held by the array...

For arrays of interfaces or classes, the name of the array function prefix is derived from the fully qualified type
name. For example, for the type SIDL.BaseClass, the array functions all begin with SIDL BaseClass. For
SIDL.BaseInterface, they all begin with SIDL BaseInterface.

When you add an object or interface to an array, the reference count of the element being overwritten is decre-
mented, and the reference count of the element being added is incremented. When you get an object or interface from
an array, the caller owns the returned reference.

For arrays of strings when you add a string to any array, the array will store a copy of the string. When you retrieve
a string from an array, you will receive a copy of the string. You should SIDL String free the returned string
when you are done with it.

When you create an array of interfaces, classes, or strings, all elements of the array are initialized to NULL. Other
arrays are not initialized. When an array of interfaces, classes, or strings is destroyed, it releases any held references
in the case of objects or interfaces. In the case of strings, it frees any non-NULL pointers.

The name of the data structure that holds the array if int is struct SIDL int array. For some types, the
data structure is an opaque type, and for others, it is defined in a public C header file.

Here are the functions one-by-one:

/* C */
struct SIDL_int__array*
SIDL_int__array_createCol(int32_t dimen,

const int32_t lower[],
const int32_t upper[]);

//
// C++
static SIDL::array<int>
SIDL::array<int>::createCol(int32_t dimen,

const int32_t lower[],
const int32_t upper[]);

C

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

20 SIDL Basics

C FORTRAN 77
subroutine SIDL_int__array_createCol_f(dimen, lower, upper, result)
integer*4 dimen
integer*4 lower(dimen), upper(dimen)
integer*8 result

!
! FORTRAN 90
subroutine createCol(lower, upper, result)
integer (selected_int_kind(9)), dimension(:), intent(in) :: lower, upper
type (SIDL_int_a), intent(out) :: result

! dimension of result is inferred from the size of lower

This method creates a column-major, multi-dimensional array in a contiguous block of memory. dimen should
be strictly greater than zero, and lower and upper should have dimen elements. lower[i] must be less than
or equal to upper[i]-1 for i ≥ 0 and i < dimen. If this function fails for some reason, it returns NULL.
lower[i] specifies the smallest valid index for dimension i, and upper[i] specifies the largest. Note this defini-
tion is somewhat un-C like where the upper bound is often one past the end. In SIDL, the size of dimension i is 1 +
upper[i] - lower[i].

The function makes copies of the information provided by dimen, lower, and upper, so the caller is not obliged
to maintain those values after the function call.

For FORTRAN, the new array is returned in the last parameter, result. A zero value in result indicates that
the operation failed. For Fortran 90, you can use the function not null to verify that result is a valid array.

/* C */
struct SIDL_int__array*
SIDL_int__array_createRow(int32_t dimen,

const int32_t lower[],
const int32_t upper[]);

//
// C++
static SIDL::array<int>
SIDL::array<int>::createRow(int32_t dimen,

const int32_t lower[],
const int32_t upper[]);

C
C FORTRAN 77

subroutine SIDL_int__array_createRow_f(dimen, lower, upper, result)
integer*4 dimen
integer*4 lower(dimen), upper(dimen)
integer*8 result

!
! FORTRAN 90
subroutine createRow(lower, upper, result)
integer (selected_int_kind(9)), dimension(:), intent(in) :: lower, upper
type(SIDL_int_a), intent(out) :: result

! dimension of result is inferred from the size of lower

This method creates a row-major, multi-dimensional array in a continguous block of memory. Other than the
difference in the ordering of the array elements, this method is identical to createCol.

/* C */
struct SIDL_int__array*
SIDL_int__array_create1d(int32_t len);

// C++
static SIDL::array<int>
SIDL::array<int>::create1d(int32_t len);

C FORTRAN 77

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 21

subroutine SIDL_int__array_create1d_f(len, result)
integer*4 len
integer*8 result

! FORTRAN 90
subroutine create1d(len, result)
integer (selected_int_kind(9)), intent(in) :: len
type(SIDL_int_a), intent(out) :: result

This method creates a dense, one-dimensional vector of ints with a lower index of 0 and an upper index of len− 1.
This is defined primarily as a convenience for C and C++ programmers. If len ≤ 0, this routine returns NULL.

/* C */
struct SIDL_int__array*
SIDL_int__array_create2dCol(int32_t m, int32_t n);

// C++
static SIDL::array<int>
SIDL::array<int>::create2dCol(int32_t m, int32_t n);

C FORTRAN 77
subroutine SIDL_int__array_create2dCol_f(m, n, result)
integer*4 m, n
integer*8 result

! FORTRAN 90
subroutine create2dCol(m, n, result)
integer (selected_int_kind(9)), intent(in) :: m, n
type(SIDL_int_a), intent(out) :: result

This method creates a dense, column-major, two-dimensional array of ints with a lower index of (0, 0) and an upper
index of (m − 1, n − 1). If m ≤ 0 or n ≤ 0, this method returns NULL. This is defined primarily as a convenience
for C and C++ programmers.

/* C */
struct SIDL_int__array*
SIDL_int__array_create2dRow(int32_t m, int32_t n);

// C++
static SIDL::array<int>
SIDL::array<int>::create2dRow(int32_t m, int32_t n);

C FORTRAN 77
subroutine SIDL_int__array_create2dRow_f(m, n, result)
integer*4 m, n
integer*8 result

! FORTRAN 90
subroutine create2dRow(m, n, result)
integer (selected_int_kind(9)), intent(in) :: m, n
type(SIDL_int_a), intent(out) :: result

This method creates a dense, row-major, two-dimensional array of ints with a lower index of (0, 0) and an upper
index of (m − 1, n − 1). If m ≤ 0 or n ≤ 0, this method returns NULL. This is defined primarily as a convenience
for C and C++ programmers.

/* C */
struct SIDL_int__array *
SIDL_int__array_slice(struct SIDL_int__array *src,

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

22 SIDL Basics

int32_t dimen,
const int32_t numElem[],
const int32_t *srcStart,
const int32_t *srcStride,
const int32_t *newStart);

//
// C++
array<int>
SIDL::array<int>::slice(int dimen,

const int32_t newElem[],
const int32_t *srcStart = 0,
const int32_t *srcStride = 0,
const int32_t *newStart = 0);

C
C FORTRAN 77

subroutine SIDL_int__array_slice_f(src, dimen, numElem, srcStart,
$ srcStride, newStart)
integer*8 src, result
integer*4 dimen
integer*4 numElem(srcDimen), srcStart(srcDimen)
integer*4 srcStride(srcDimen), newStart(dimen)

!
! FORTRAN 90
subroutine slice(src, dimen, numElem, srcStart, srcStride, newStart)
type(SIDL_int_a), intent(in) :: src
type(SIDL_int_a), intent(out) :: result
integer (selected_int_kind(9)), intent(in) :: dimen
integer (selected_int_kind(9)), intent(in), dimension(:) :: &

numElem, srcStart, srcStride, newStart

This method will create a sub-array of another array. The resulting array shares data with the original array. The
new array can be of the same dimension or potentially less than the original array. If you are removing a dimension,
indicate the dimensions to remove by setting numElem[i] to zero for any dimension i that should go away in the
new array. The meaning of each argument is covered below.

src the array to be created will be a subset of this array. If this argument is NULL, NULL will be returned. The
returned array borrows data from src, so modifying one array modifies both. In C++, the this pointer takes
the place of src.

dimen this argument must be greater than zero and less than or equal to the dimension of src. An illegal value will
cause a NULL return value.

numElem this specifies how many elements from src should be in the new array in each dimension. A zero entry
indicates that the dimension should not appear in the new array. This argument should be an array with an
entry for each dimension of src. If srcStart[i] + numElem[i]srcStride[i] > upper[i] or srcStart[i] +
numElem[i]srcStride[i] < lower[i] for src, NULL will be returned.

srcStart this parameter specifies which element of src will be the first element of the new array. If this argument is
NULL, the first element of src will be the first element of the new array. If non-NULL, this argument provides
the coordinates of an element of src, so it must have an entry for each dimension of src. If srcStart[i] <

lower[i] or srcStart[i] > upper[i] for src, NULL will be returned.

srcStride this argument lets you specify the stride between elements of src for each dimension. For example with a
stride of 2, you could create a sub-array with only the odd or even elements of src. If this argument is NULL,
the stride is taken to be one in each dimension. If non-NULL, this argument should be an array with an entry
for each dimension of src.

newLower this argument is like the lower argument in a create method. It sets the coordinates for the first element
in the new array. If this argument is NULL, the values indicated by srcStartwill be used. If non-NULL, this
should be an array with dimen elements.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 23

Assuming the method is successful and the return value is named newArray, src[srcStart] refers to the same
underlying element as newArray[newStart].

If src is not a borrowed array (i.e., it manages its own data), the returned array can manage its by keeping a
reference to src. It is not considered a borrowed array for purposes of smartCopy.

/* C */
struct SIDL_int__array*
SIDL_int__array_borrow(int32_t* firstElement,

int32_t dimen,
const int32_t lower[],
const int32_t upper[],
const int32_t stride[]);

//
// C++
void
SIDL::array<int>::borrow(int32_t* firstElement,

int32_t dimen,
const int32_t lower[],
const int32_t upper[],
const int32_t stride[]);

C
C FORTRAN 77

subroutine SIDL_int__array_borrow_f(firstElement, dimen, lower, upper,
$ stride, result)
integer*4 firstElement(), dimen, lower(dimen), upper(dimen)
integer*4 stride(dimen)
integer*8 result

!
! FORTRAN 90
subroutine borrow(firstElement, dimen, lower, upper, stride, &

result)
integer (selected_int_kind(9)), intent(in) :: firstElement, dimen
integer (selected_int_kind(9)), dimension(:), intent(in) :: lower, upper,&

stride
type(SIDL_int_a), intent(out) :: result

This method creates a proxy SIDL multi-dimensional array using data provided by a third party. In some cases,
this routine can be used to avoid making a copy of the array data. dimen, lower, and upper have the same meaning
and constraints as in SIDL int array createCol. The firstElement argument should be a pointer to the
first element of the array; in this context, the first element is the one whose index is lower.

stride[i] specifies the signed offset from one element in dimension i to the next element in dimension i.
For a one dimensional array, the first element has the address firstElement, the second element has the address
firstElement + stride[0], the third element has the address firstElement + 2 * stride[0], etc.
The algorithm for determining the address of the element in a multi-dimensional array whose index is in array ind[]
is as follows:

int32_t* addr = firstElement;
for(int i = 0; i < dimen; ++i) {
addr += (ind[i] - lower[i])*stride[i];

}
/* now addr is the address of element ind */

Note elements of stride need not be positive.
The function makes copies of the information provided by dimen, lower, upper, and stride. The type of

firstElement is changed depending on the array value type (see Table 3.2).

/* C */
struct SIDL_int__array*

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

24 SIDL Basics

SIDL_int__array_smartCopy(struct SIDL_int__array *array);

// C++
void
SIDL::array<int>::smartCopy();

C FORTRAN 77
subroutine SIDL_int__array_smartCopy_f(array, result)
integer*8 array, result

! FORTRAN 90
subroutine smartCopy(array, result)
type(SIDL_int_a), intent(in) :: array
type(SIDL_int_a), intent(out) :: result

This method will copy a borrowed array or increment the reference count of an array that is able to manage its own
data. This method is useful when you want to keep a copy of an incoming array. The C++ method operates on this.

/* C */
void
SIDL_int__array_addRef(struct SIDL_int__array* array);

// C++
void
SIDL::array<int>::addRef() throw (NullIORException);

C FORTRAN 77
subroutine SIDL_int__array_addRef_f(array)
integer*8 array

! FORTRAN 90
subroutine addRef(array)
type(SIDL_int_a), intent(in) :: array

This increments the reference count by one. In C++, this method should be avoided because the C++ wrapper class
manages the reference count for you.

/* C */
void
SIDL_int__array_deleteRef(struct SIDL_int__array* array);

// C++
void
SIDL::array<int>::deleteRef() throw (NullIORException);

C FORTRAN 77
subroutine SIDL_int__array_deleteRef_f(array)
integer*8 array

! FORTRAN 90
subroutine deleteRef(array)
type(SIDL_int_a), intent(out) :: array

This decreases the reference count by one. If this reduces the reference count to zero, the resources associated with
the array are reclaimed. In C++, this method should be avoided because the C++ wrapper class manages the reference
count for you.

/* C */
int32_t

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 25

SIDL_int__array_get1(const struct SIDL_int__array* array,
int32_t i1);

// C++
int32_t
SIDL::array<int>::get(int32_t i1);

C FORTRAN 77
subroutine SIDL_int__array_get1_f(array, i1, result)
integer*8 array
integer*4 i1, result

! FORTRAN 90
subroutine get(array, i1, result)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1
integer (selected_int_kind(9)), intent(out) :: result

This method returns the element with index i1 for a one dimensional array. The return type of this method is the
value type for the SIDL type being held (see Table 3.2). This method must only be called for one dimensional arrays.
For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call deleteRef()
when they are done with the reference unless it is NULL). For arrays of strings, the client owns the returned string (i.e.,
the client is obliged to call free on the returned pointer unless it is NULL). There is no reliable way to determine from
the return value cases when i1 is out of bounds.

/* C */
int32_t
SIDL_int__array_get2(const struct SIDL_int__array* array,

int32_t i1,
int32_t i2);

// C++
int32_t
SIDL::array<int>::get(int32_t i1, int32_t i2);

C FORTRAN 77
subroutine SIDL_int__array_get2_f(array, i1, i2, result)
integer*8 array
integer*4 i1, i2, result

! FORTRAN 90
subroutine get(array, i1, i2, result)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2
integer (selected_int_kind(9)), intent(out) :: result

This method returns the element with indices (i1, i2) for a two dimensional array. The return type of this method
is the value type for the SIDL type being held (see Table 3.2. This method must only be called for two dimensional
arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call deleteRef
when they are done with the reference unless it is NULL). For arrays of strings, the client owns the returned string (i.e.,
the client is obliged to call free on the returned pointer unless it is NULL). There is no reliable way to determine from
the return value cases when i1, i2 are out of bounds.

/* C */
int32_t
SIDL_int__array_get3(const struct SIDL_int__array* array,

int32_t i1,
int32_t i2,
int32_t i3);

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

26 SIDL Basics

// C++
int32_t
SIDL::array<int>::get(int32_t i1, int32_t i2, int32_t i3);

C FORTRAN 77
subroutine SIDL_int__array_get3_f(array, i1, i2, i3, result)
integer*8 array
integer*4 i1, i2, i3, result

! FORTRAN 90
subroutine get(array, i1, i2, i3, result)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3
integer (selected_int_kind(9)), intent(out) :: result

This method returns the element with indices (i1, i2, i3) for a three dimensional array. The return type of this
method is the value type for the SIDL type being held (see Table 3.2). This method must only be called for three
dimensional arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
deleteRef() when they are done with the reference unless it is NULL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to call free() on the returned pointer unless it is NULL). There is no reliable
way to determine from the return value cases when i1, i2, i3 are out of bounds.

/* C */
int32_t
SIDL_int__array_get4(const struct SIDL_int__array* array,

int32_t i1,
int32_t i2,
int32_t i3,
int32_t i4);

// C++
int32_t
SIDL::array<int>::get(int32_t i1, int32_t i2, int32_t i3, int32_t i4);

C FORTRAN 77
subroutine SIDL_int__array_get4_f(array, i1, i2, i3, i4, result)
integer*8 array
integer*4 i1, i2, i3, i4, result

! FORTRAN 90
subroutine get(array, i1, i2, i3, i4, result)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3, i4
integer (selected_int_kind(9)), intent(out) :: result

This method returns the element with indices(i1, i2, i3, i4) for a four dimensional array. The return type of
this method is the value type for the SIDL type being held (see Table 3.2). This method must only be called for four
dimensional arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
deleteRef() when they are done with the reference unless it is NULL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to call free() on the returned pointer unless it is NULL). There is no reliable
way to determine from the return value cases when i1, i2, i3, or i4 are out of bounds.

/* C */
int32_t
SIDL_int__array_get(const struct SIDL_int__array* array,

const int32_t indices[]);

// C++
int32_t
SIDL::array<int>::get(const int32_t indices[]);

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 27

C FORTRAN 77
subroutine SIDL_int__array_get_f(array, indices, result)
integer*8 array
integer*4 indices(), result

! FORTRAN 90
subroutine get(array, indices, result)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), dimension(:), intent(in) ::indices
integer (selected_int_kind(9)), intent(out) :: result

This method returns the element whose index is indices for an array of any dimension. The return type of this
method is the value type for the SIDL type being held (see Table 3.2). This method can be called for any positively
dimensioned array. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
deleteRef() when they are done with the reference unless it is NULL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to call free() on the returned pointer unless it is NULL). There is no reliable
way to determine from the return value cases when indices has an element out of bounds.

/* C */
int32_t
SIDL_int__array_set2(const struct SIDL_int__array* array,

int32_t i1,
int32_t value));

// C++
int32_t
SIDL::array<int>::set(int32_t value, int32_t i1);

C FORTRAN 77
subroutine SIDL_int__array_set1_f(array, i1, value)
integer*8 array
integer*4 i1, value

! FORTRAN 90
subroutine set(array, i1, value)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, value

This method sets the value in index i1 of a one dimensional array to value. The type of the argument value is
the value type for the SIDL type being held (see Table 3.2). This method must only be called for one dimensional
arrays. For arrays of objects and interfaces, the array will make its own reference by calling addRef() on value, so
the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so the client
retains ownership of the value pointer.

/* C */
int32_t
SIDL_int__array_set2(const struct SIDL_int__array* array,

int32_t i1,
int32_t i2,
int32_t value));

// C++
int32_t
SIDL::array<int>::set(int32_t value, int32_t i1, int32_t i2);

C FORTRAN 77
subroutine SIDL_int__array_set2_f(array, i1, i2, value)
integer*8 array

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

28 SIDL Basics

integer*4 i1, i2, value

! FORTRAN 90
subroutine set(array, i1, i2, value)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, value

This method sets the value in index (i1, i2) of a two dimensional array to value. The type of the argument value
is the value type for the SIDL type being held (see table 3.2). This method must only be called for two dimensional
arrays. For arrays of objects and interfaces, the array will make its own reference by calling addRef() on value, so
the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so the client
retains ownership of the value pointer.

/* C */
int32_t
SIDL_int__array_set3(const struct SIDL_int__array* array,

int32_t i1,
int32_t i2,
int32_t i3,
int32_t value));

// C++
int32_t
SIDL::array<int>::set(int32_t value, int32_t i1, int32_t i2, int32_t i3);

C FORTRAN 77
subroutine SIDL_int__array_set3_f(array, i1, i2, i3, value)
integer*8 array
integer*4 i1, i2, i3, value

! FORTRAN 90
subroutine set(array, i1, i2, i3, value)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3, value

This method sets the value in index (i1, i2, i3) of a three dimensional array to value. The type of the argument
value is the value type for the SIDL type being held (see table 3.2). This method must only be called for three
dimensional arrays. For arrays of objects and interfaces, the array will make its own reference by calling addRef()
on value, so the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so
the client retains ownership of the value pointer.

/* C */
int32_t
SIDL_int__array_set4(const struct SIDL_int__array* array,

int32_t i1,
int32_t i2,
int32_t i3,
int32_t i4,
int32_t value));

//
// C++
int32_t
SIDL::array<int>::set(int32_t value, int32_t i1, int32_t i2,

int32_t i3, int32_t i4);
C
C FORTRAN 77

subroutine SIDL_int__array_set4_f(array, i1, i2, i3, i4, value)
integer*8 array
integer*4 i1, i2, i3, i4, value

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 29

!
! FORTRAN 90
subroutine set(array, i1, i2, i3, i4, value)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3, i4, value

This method sets the value in index (i1, i2, i3, i4) of a four dimensional array to value. The type of the
argument value is the value type for the SIDL type being held (see table 3.2). This method must only be called
for four dimensional arrays. For arrays of objects and interfaces, the array will make its own reference by calling
addRef() on value, so the client retains its reference to value. For arrays of strings, the array will make a copy of
the string, so the client retains ownership of the value pointer.

/* C */
void
SIDL_int__array_set(struct SIDL_int__array* array,

const int32_t indices[],
int32_t value);

// C++
void
SIDL::array<int>::set(int32_t value, const int32_t indices[]);

C FORTRAN 77
subroutine SIDL_int__array_set_f(array, indices, value)
integer*8 array
integer*4 indices()

! FORTRAN 90
subroutine set(array, indices, value)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in), dimension(:) :: indices
integer (selected_int_kind(9)), intent(in) :: value

This method sets the value in index indices for an array of any dimension to value. The type of the argument value
is the value type for the SIDL type being held (see table 3.2). For arrays of objects and interfaces, the array will make
its own reference by calling addRef() on value, so the client retains its reference to value. For arrays of strings, the
array will make a copy of the string, so the client retains ownership of the value pointer.

/* C */
int32_t
SIDL_int__array_dimen(const struct SIDL_int__array *array);

// C++
int32_t
SIDL::array<int>::dimen() const;

C FORTRAN 77
subroutine SIDL_int__array_dimen_f(array, result)
integer*8 array
integer*4 result

! FORTRAN 90
integer (selected_int_kind(9)) dimen(array)
type(SIDL_int_a) :: array

This method returns the dimension of the array.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

30 SIDL Basics

/* C */
int32_t
SIDL_int__array_lower(const struct SIDL_int__array *array, int32_t ind);

// C++
int32_t
SIDL::array<int>::lower(int32_t ind) const;

C FORTRAN 77
subroutine SIDL_int__array_lower_f(array, ind, result)
integer*8 array
integer*4 ind, result

! FORTRAN 90
integer (selected_int_kind(9)) function lower(array, ind)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)) :: ind

This method returns the lower bound on the index for dimension ind of array.

/* C */
int32_t
SIDL_int__array_upper(const struct SIDL_int__array *array, int32_t ind);

// C++
int32_t
SIDL::array<int>::upper(int32_t ind) const;

C FORTRAN 77
subroutine SIDL_int__array_upper_f(array, ind, result)
integer*8 array
integer*4 ind, result

! FORTRAN 90
integer (selected_int_kind(9)) function upper(array, ind)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: ind

This method returns the upper bound on the index for dimension ind of array. If the upper bound is greater than or
equal to the lower bound, the upper bound is a valid index (i.e., it is not one past the end).

/* C */
int32_t
SIDL_int__array_stride(const struct SIDL_int__array *array, int32_t ind);

// C++
int32_t
SIDL::array<int>::stride(int32_t ind) const;

C FORTRAN 77
subroutine SIDL_int__array_stride_f(array, ind, result)
integer*8 array
integer*4 ind, result

! FORTRAN 90
integer (selected_int_kind(9)) function stride(array, ind)
type(SIDL_int_a), intent(in) :: array
integer (selected_int_kind(9)) :: ind

This method returns the stride for a particular dimension. This stride indicates how much to add to a pointer to get
for the current element this the particular dimension to the next.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 31

/* C */
SIDL_bool
SIDL_int__array_isColumnOrder(const struct SIDL_int__array *array);

// C++
bool
SIDL::array<int>::isColumnOrder() const;

C FORTRAN 77
subroutine SIDL_int__array_isColumnOrder_f(array, result)
integer*8 array
logical result

! FORTRAN 90
logical function isColumnOrder(array)
type(SIDL_int_a), intent(in) :: array

This method returns a true value if and only if array is dense, column-major ordered array. It does not modify
the array at all.

/* C */
SIDL_bool
SIDL_int__array_isRowOrder(const struct SIDL_int__array *array);

// C++
bool
SIDL::array<int>::isRowOrder() const;

C FORTRAN 77
subroutine SIDL_int__array_isRowOrder_f(array, result)
integer*8 array
logical result

! FORTRAN 90
logical function isRowOrder(array)
type(SIDL_int_a), intent(int) :: array

This method returns a true value if and only if array is dense, row-major ordered array. It does not modify the
array at all.

/* C */
void
SIDL_int__array_copy(const struct SIDL_int__array *src,

struct SIDL_int__array *dest);

// C++
void
SIDL::array<int>::copy(const SIDL::array<int> &src);

C FORTRAN 77
subroutine SIDL_int__array_copy_f(array, dest)
integer*8 array, dest

! FORTRAN 90
subroutine copy(array, dest)
type(SIDL_int_a), intent(in) :: array
type(SIDL_int_a), intent(in) :: dest

This method copies the contents of src to dest. For the copy to take place, both arrays must exist and be of the
same dimension. This method will not modify dest’s size, index bounds, or stride; only the array element values of
dest may be changed by this function. No part of src is changed by this method.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

32 SIDL Basics

If dest has different index bounds than src, this method only copies the elements where the two arrays overlap.
If dest and src have no indices in common, nothing is copied. For example, if src is a 1-d array with elements
0-5 and dest is a 1-d array with element 2-3, this function will copy element 2 and 3 from src to dest. If dest had
elements 4-10, this method could copy elements 4 and 5.

/* C */
struct SIDL_int__array *
SIDL_int__array_ensure(const struct SIDL_int__array *src,

int32_t dimen,
int ordering);

// C++
void
SIDL::array<int>::ensure(int32_t dimen, int ordering);

C FORTRAN 77
subroutine SIDL_int__array_ensure_f(src, dimen, ordering, result)
integer*8 src, result
integer*4 dimen, ordering

! FORTRAN 90
subroutine ensure(src, dimen, ordering, result)

type(SIDL_int_a), intent(in) :: src
type(SIDL_int_a), intent(out) :: result
integer (selected_int_kind(9)) :: dimen, ordering

This method is used to obtain a matrix with a guaranteed ordering and dimension from an array with uncertain
properties. If the incoming array has the required ordering and dimension, its reference count is incremented, and it is
returned. If it doesn’t, a copy with the correct ordering is created and returned. In either case, the caller knows that the
returned matrix (if not NULL) has the desired properties.

This method is used internally to enforce the array ordering constraints in SIDL. Clients can use it in similar ways.
The ordering parameter should be one of the constants defined in enum SIDL array ordering (e.g. SIDL general order,

SIDL column major order, or SIDL row major order). If you pass in SIDL general order, this rou-
tine will only check the dimension of the matrix.

/* C */
int32_t *
SIDL_int__array_first(const struct SIDL_int__array *src);

// C++...Is there an equivalent here?

C FORTRAN 77
subroutine SIDL_int__array_access_f(array, ref, lower, upper,

$ stride, index)
integer*8 array
integer*4 lower(), upper(), stride(), index
integer*4 ref()

! FORTRAN 90
subroutine access(array, ref, lower, upper, stride, index)
type(SIDL_int_a) :: array
integer (selected_int_kind(9)), intent(in), dimension(:) :: &

lower, upper, stride
integer (selected_int_kind(9)), intent(out) :: index
integer (selected_int_kind(9)), intent(in), dimension(:) :: ref

This method provides direct access to the element data. Using this pointer and the stride information, you can
perform your own array accesses without function calls. This method isn’t available for arrays of strings, interface and
objects because of memory/reference management issues.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 33

The FORTRAN versions of the method return the lower, upper and stride information in three arrays, each with
enough elements to hold an entry for each dimension of array. Because FORTRAN 77 does not have pointers, you
must pass in a reference array, array. Upon exit, ref(index) is the first element of the array. The type of ref
depends on the type of the array.

While calling the FORTRAN direct access routines, there is a possibility of an alignment error be-
�

�

�

�
WARNING:

tween your reference pointer, ref. The problem is more likely with arrays of double or dcomplex;
although, it could occur with any type on some future platform. If index is zero on return, an align-
ment error occured. If an alignment error occurs, you may be able to solve it by recompiling your
FORTRAN files with flags to force doubles to be aligned on 8 byte boundaries. For example, the
-malign-double flag for g77 forces doubles to be aligned on 64-bit boundaries. An alignment er-
ror occurs when (char *)refminus (char *)SIDL int array first(array) is not integer
divisible by sizeof(datatype) where ref refers to the address of the reference array.

Here is an example FORTRAN 77 subroutine to output each element of a 1-dimensional array of doubles using the
direct access routine. The FORTRAN 90 version of the code is very similar except for the type mappings, of course.

C This subroutine will print each element of an array of doubles
subroutine print_array(dblarray)
implicit none
integer*8 dblarray
real*8 refarray(1)
integer*4 lower(1), upper(1), stride(1), index, dimen, i
if (dblarray .ne. 0) then

call SIDL_double__array_dimen_f(dblarray, dimen)
if (dimen .eq. 1) then

call SIDL_double__array_access_f(dblarray, refarray,
$ lower, upper, stride, index)

if (index .ne. 0) then
do i = lower(1), upper(1)

write(*,*) refarray(index + (i-lower(1))*stride(1))
enddo

else
write(*,*) ’Alignment error occured’

endif
endif

endif
end

For a 2-dimensional array, the loop and array access is

do i = lower(1), upper(1)
do j = lower(2), upper(2)

write(*,*) refarray(index+(i-lower(1))*stride(1)+
$ (j - lower(2))*stride(2))

enddo
enddo

Suppose you are wrapping a legacy FORTRAN application and you need to pass a SIDL array to a FORTRAN
subroutine. Further suppose there is a FORTRAN 77 and FORTRAN 90 version of the subroutine. For example, the
FORTRAN 77 subroutine has a signature such as:

subroutine TriedAndTrue(x, n)
integer n
real*8 x(n)

C insert wonderful, efficient, debugged code here
end

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

34 SIDL Basics

The FORTRAN 90 subroutine has basically the same signature as follows:

subroutine TriedAndTrue(x, n)
integer (selected_int_kind(9)) :: n
real (selected_real_kind(17, 308)) :: x(n)

! insert wonderful, efficient, debugged code here
end subroutine TriedAndTrue

Here is one way to wrap this method using SIDL. First of all, the SIDL method definition specifies that the array
must be a 1-dimensional, column-major ordered array. This forces the incoming array to be a dense column.

static void TriedAndTrue(inout array<double,1,column-major> arg);

Given that method definition in a class named Class and a package named Pkg, the implementation of the wrapper
should look something like the following for FORTRAN 77:

subroutine Pkg_Class_TriedAndTrue_fi(arg)
implicit none
integer*8 arg

C DO-NOT-DELETE splicer.begin(Pkg.Class.TriedAndTrue)
real*8 refarray(1)
integer*4 lower(1), upper(1), stride(1), index
integer n
call SIDL_double__array_access_f(arg, refarray,

$ lower, upper, stride, index)
if (index .ne. 0) then

c we can assume stride(1) = 1 because of column-major specification
n = 1 + upper(1) - lower(1)
call TriedAndTrue(refarray(index), n)

else
write(*,*) ’ERROR: array alignment’

endif
C DO-NOT-DELETE splicer.end(Pkg.Class.TriedAndTrue)

end

Similarly, it should look something like the following for FORTRAN 90, where the include statements are required
at the top of the Impl file to ensure proper handling of subroutine names that have automatically been mangled by the
Babel compiler:

#include "Pkg_Class_fAbbrev.h"
#include "SIDL_BaseClass_fAbbrev.h"
#include "SIDL_BaseInterface_fAbbrev.h"
! DO-NOT-DELETE splicer.begin(_miscellaneous_code_start)
#include "SIDL_double_fAbbrev.h"
! DO-NOT-DELETE splicer.end(_miscellaneous_code_start)
.
.
.
subroutine Pkg_Class_TriedAndTrue_mi(arg)
! DO-NOT-DELETE splicer.begin(Pkg.Class.TriedAndTrue.use)
use SIDL_double_array
! DO-NOT-DELETE splicer.end(Pkg.Class.TriedAndTrue.use)
implicit none
type(SIDL_double_a) :: arg

! DO-NOT-DELETE splicer.begin(Pkg.Class.TriedAndTrue)
real (selected_real_kind(17,308)), dimension(1) :: refarray
integer (selected_int_kind(8)), dimension(1) :: low, up, str
integer (selected_int_kind(8)) :: index, n

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.4 Arrays 35

call access(arg, refarray, low, up, str, index)
if (index .ne. 0) then

! We can assume stride(1) = 1 because of column-major specification
n = 1 + upper(1) - lower(1)
call TriedAndTrue(refarray(index), n)

else
write(*,*) ’ERROR: array alignment’

endif
! DO-NOT-DELETE splicer.end(Pkg.Class.TriedAndTrue)
end subroutine Pkg_Class_TriedAndTrue_mi

The C Macro API

For all the SIDL basic types except string, there is a C macro API for those who fear the function overhead of the
C function API. When efficiency is not a concern, I recommend using the function API, but the C macro API is
preferrable to the direct access to the data structure. The macro API is not available for arrays of strings, interfaces or
objects because the issues associated with memory and object reference management.

The macro API is very similar to the function API; however, a single set of macros applies to all the supported
array types. The macro names are independent of the type of array you’re accessing.

SIDLArrayDim(array)

Return the dimension of array.

SIDLLower(array,ind)

Return the lower bound on dimension ind.

SIDLUpper(array,ind)

Return the upper bound on dimension ind.

SIDLStride(array,ind)

Return the stride for dimension ind. The stride is the offset between elements in a particular dimension. It can be
positive or negative. It is in terms of number of value types (i.e., it’s 1 means contiguous regardless of what data type).

SIDLArrayElem1(array, ind1)
SIDLArrayElem2(array, ind1, ind2)
SIDLArrayElem3(array, ind1, ind2, ind3)
SIDLArrayElem4(array, ind1, ind2, ind3, ind4)

Provide access to one, two, three and four dimensional array elements. This macro can appear on the left hand
side of an assignment or on the right hand side in an expression. These macros blindly assume that the dimension and
indices are correct.

The C Data Structure

If even the macro interface is not fast enough for you, you can access the internal data structure for all the basic types
except string. You cannot access the internal data structure for arrays of strings, interfaces and objects.

The basic form of the C data structure for type XXXX is:

struct SIDL_XXXX__array {
<value type for XXXX> *d_firstElement;
int32_t *d_lower;
int32_t *d_upper;
int32_t *d_stride;
int32_t d_dimen;
SIDL_bool d_borrowed;

};

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

36 SIDL Basics

The string “<value type for XXXX>” should be replaced by something like SIDL boolfor an array of bool,
int32 t for any array of int, double for an array of double, int64 t for an array of long, etc. (See Table 3.2)

d dimen tells the dimension of the multi-dimensional array. d lower, d upper, and d stride each point to
arrays of d dimen int32 t’s. d lower[i] provides the lower bound for the index in dimension i, and
d upper[i] provides the upper bound for the index in dimension i. Both the lower and upper bounds are
valid index values; the upper bound is not one past the end.

d borrowed is true if the array does not managed the data that d firstElement points too, and it is false
otherwise. This mainly influences the behavior of the destructor.

Clients should not modify d lower, d upper, d stride, d dimen, d borrowed or (in the case of point-
ers) the values to which they point.

d stride[i] determines how elements are packed in dimension i. A value of 1 means that to get from element j
to j+1 in dimension i, you add one to the data pointer. Negative values for d stride can be used to express
a transposed matrix. The definition also allows either column or row major ordering for the data, and it also
allows treating a subsection of an array as an array.

The data structure was inspired by the data structure used by Numeric Python; although, in Numeric Python, the
stride is in terms of bytes. In SIDL, the stride is in terms of number of objects. One can convert to the Numeric Python
view of things by multiplying the stride by the sizeof the value type.

3.5 SIDL Runtime

Inheritance

There is a small collection of interfaces and classes that are defined by the SIDL runtime library. Some of these objects
are implicitly inherited by objects and classes.

All classes that do not explictly extend another class implicitly extend SIDL.BaseClass. All interfaces that do
not explicitly extend another interface implicitly extendSIDL.BaseInterface. Furthermore,SIDL.BaseClass
implements SIDL.BaseInterface. This means that all classes can be cast to a SIDL.BaseClass and all ob-
jects can be cast to SIDL.BaseInterface.

All exceptions must explicitly inherit from SIDL.BaseException. If a method in SIDL claims to throw an
object that does not inherit from SIDL.BaseException, this is an error and will be reported by Babel.

Interfaces

The SIDL runtime library provides three sets of interfaces:

Base The base class, interface, and exception upon which all Babel-enabled software builds.

Library Handler The DLL and Loader classes facilitate dynamic loading of objects at runtime.

Introspection The ClassInfo interface and ClassInfoI class enable checking meta-data associated with a class.

The interfaces for the runtime library, as described in SIDL, are:

//
// File: sidl.sidl
// Release: $Name: $
// Revision: @(#) $Revision: 1.2 $
// Date: $Date: 2003/03/19 16:15:53 $
// Description: SIDL interface description for the basic SIDL run-time library
//
// Copyright (c) 2001, The Regents of the University of Calfornia.
// Produced at the Lawrence Livermore National Laboratory.
// Written by the Components Team <components@llnl.gov>

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.5 SIDL Runtime 37

// UCRL-CODE-2002-054
// All rights reserved.
//
// This file is part of Babel. For more information, see
// http://www.llnl.gov/CASC/components/. Please read the COPYRIGHT file
// for Our Notice and the LICENSE file for the GNU Lesser General Public
// License.
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License (as published by
// the Free Software Foundation) version 2.1 dated February 1999.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
// conditions of the GNU Lesser General Public License for more details.
//
// You should have recieved a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

/**
* The <code>SIDL</code> package contains the fundamental type and interface
* definitions for the <code>SIDL</code> interface definition language. It
* defines common run-time libraries and common base classes and interfaces.
* Every interface implicitly inherits from <code>SIDL.BaseInterface</code>
* and every class implicitly inherits from <code>SIDL.BaseClass</code>.
*
*/
package SIDL version 0.8.2 {

/**
* Every interface in <code>SIDL</code> implicitly inherits
* from <code>BaseInterface</code>, and it is implemented
* by <code>BaseClass</code> below.
*/

interface BaseInterface {

/**
* <p>
* Add one to the intrinsic reference count in the underlying object.
* Object in <code>SIDL</code> have an intrinsic reference count.
* Objects continue to exist as long as the reference count is
* positive. Clients should call this method whenever they
* create another ongoing reference to an object or interface.
* </p>
* <p>
* This does not have a return value because there is no language
* independent type that can refer to an interface or a
* class.
* </p>
*/

void addRef();

/**
* Decrease by one the intrinsic reference count in the underlying
* object, and delete the object if the reference is non-positive.
* Objects in <code>SIDL</code> have an intrinsic reference count.
* Clients should call this method whenever they remove a

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

38 SIDL Basics

* reference to an object or interface.
*/

void deleteRef();

/**
* Return true if and only if <code>obj</code> refers to the same
* object as this object.
*/

bool isSame(in BaseInterface iobj);

/**
* Check whether the object can support the specified interface or
* class. If the <code>SIDL</code> type name in <code>name</code>
* is supported, then a reference to that object is returned with the
* reference count incremented. The callee will be responsible for
* calling <code>deleteRef</code> on the returned object. If
* the specified type is not supported, then a null reference is
* returned.
*/

BaseInterface queryInt(in string name);

/**
* Return whether this object is an instance of the specified type.
* The string name must be the <code>SIDL</code> type name. This
* routine will return <code>true</code> if and only if a cast to
* the string type name would succeed.
*/

bool isType(in string name);

/**
* Return the meta-data about the class implementing this interface.
*/

ClassInfo getClassInfo();
}

/**
* Every class implicitly inherits from <code>BaseClass</code>. This
* class implements the methods in <code>BaseInterface</code>.
*/

class BaseClass implements BaseInterface {
/**
* <p>
* Add one to the intrinsic reference count in the underlying object.
* Object in <code>SIDL</code> have an intrinsic reference count.
* Objects continue to exist as long as the reference count is
* positive. Clients should call this method whenever they
* create another ongoing reference to an object or interface.
* </p>
* <p>
* This does not have a return value because there is no language
* independent type that can refer to an interface or a
* class.
* </p>
*/

final void addRef();

/**
* Decrease by one the intrinsic reference count in the underlying
* object, and delete the object if the reference is non-positive.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.5 SIDL Runtime 39

* Objects in <code>SIDL</code> have an intrinsic reference count.
* Clients should call this method whenever they remove a
* reference to an object or interface.
*/

final void deleteRef();

/**
* Return true if and only if <code>obj</code> refers to the same
* object as this object.
*/

final bool isSame(in BaseInterface iobj);

/**
* Check whether the object can support the specified interface or
* class. If the <code>SIDL</code> type name in <code>name</code>
* is supported, then a reference to that object is returned with the
* reference count incremented. The callee will be responsible for
* calling <code>deleteRef</code> on the returned object. If
* the specified type is not supported, then a null reference is
* returned.
*/

BaseInterface queryInt(in string name);

/**
* Return whether this object is an instance of the specified type.
* The string name must be the <code>SIDL</code> type name. This
* routine will return <code>true</code> if and only if a cast to
* the string type name would succeed.
*/

bool isType(in string name);

/**
* Return the meta-data about the class implementing this interface.
*/

final ClassInfo getClassInfo();
}

/**
* Every exception inherits from <code>BaseException</code>. This class
* provides basic functionality to get and set error messages and stack
* traces.
*/

class BaseException {

/**
* Return the message associated with the exception.
*/

string getNote();

/**
* Set the message associated with the exception.
*/

void setNote(in string message);

/**
* Returns formatted string containing the concatenation of all
* tracelines.
*/

string getTrace();

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

40 SIDL Basics

/**
* Adds a stringified entry/line to the stack trace.
*/

void add[Line](in string traceline);

/**
* Formats and adds an entry to the stack trace based on the
* file name, line number, and method name.
*/

void add(in string filename, in int lineno, in string methodname);
}

/**
* The <code>DLL</code> class encapsulates access to a single
* dynamically linked library. DLLs are loaded at run-time using
* the <code>loadLibrary</code> method and later unloaded using
* <code>unloadLibrary</code>. Symbols in a loaded library are
* resolved to an opaque pointer by method <code>lookupSymbol</code>.
* Class instances are created by <code>createClass</code>.
*/

class DLL {

/**
* Load a dynamic link library using the specified URI. The
* URI may be of the form "main:", "lib:", "file:", "ftp:", or
* "http:". A URI that starts with any other protocol string
* is assumed to be a file name. The "main:" URI creates a
* library that allows access to global symbols in the running
* program’s main address space. The "lib:X" URI converts the
* library "X" into a platform-specific name (e.g., libX.so) and
* loads that library. The "file:" URI opens the DLL from the
* specified file path. The "ftp:" and "http:" URIs copy the
* specified library from the remote site into a local temporary
* file and open that file. This method returns true if the
* DLL was loaded successfully and false otherwise. Note that
* the "ftp:" and "http:" protocols are valid only if the W3C
* WWW library is available.
*/

bool loadLibrary(in string uri);

/**
* Get the library name. This is the name used to load the
* library in <code>loadLibrary</code> except that all file names
* contain the "file:" protocol.
*/

string getName();

/**
* Unload the dynamic link library. The library may no longer
* be used to access symbol names. When the library is actually
* unloaded from the memory image depends on details of the operating
* system.
*/

void unloadLibrary();

/**
* Lookup a symbol from the DLL and return the associated pointer.
* A null value is returned if the name does not exist.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.5 SIDL Runtime 41

*/
opaque lookupSymbol(in string linker_name);

/**
* Create an instance of the SIDL class. If the class constructor
* is not defined in this DLL, then return null.
*/

BaseClass createClass(in string sidl_name);
}

/**
* Class <code>Loader</code> manages dyanamic loading and symbol name
* resolution for the SIDL runtime system. The <code>Loader</code> class
* manages a library search path and keeps a record of all libraries
* loaded through this interface, including the initial "global" symbols
* in the main program. Unless explicitly set, the search path is taken
* from the environment variable SIDL_DLL_PATH, which is a semi-colon
* separated sequence of URIs as described in class <code>DLL</code>.
*/

class Loader {

/**
* Set the search path, which is a semi-colon separated sequence of
* URIs as described in class <code>DLL</code>. This method will
* invalidate any existing search path.
*/

static void setSearchPath(in string path_name);

/**
* Return the current search path. If the search path has not been
* set, then the search path will be taken from environment variable
* SIDL_DLL_PATH.
*/

static string getSearchPath();

/**
* Append the specified path fragment to the beginning of the
* current search path. If the search path has not yet been set
* by a call to <code>setSearchPath</code>, then this fragment will
* be appended to the path in environment variable SIDL_DLL_PATH.
*/

static void addSearchPath(in string path_fragment);

/**
* Load the specified library if it has not already been loaded.
* The URI format is defined in class <code>DLL</code>. The search
* path is not searched to resolve the library name.
*/

static bool loadLibrary(in string uri);

/**
* Append the specified DLL to the beginning of the list of already
* loaded DLLs.
*/

static void addDLL(in DLL dll);

/**
* Unload all dynamic link libraries. The library may no longer
* be used to access symbol names. When the library is actually

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

42 SIDL Basics

* unloaded from the memory image depends on details of the operating
* system.
*/

static void unloadLibraries();

/**
* Look up the secified symbol name. If the symbol name cannot be
* found in one of the already loaded libraries, then the method will
* search through the library search path. A null is returned if the
* symbol could not be resolved.
*/

static opaque lookupSymbol(in string linker_name);

/**
* Create an instance of the specified SIDL class. If the class
* constructor cannot be found in one of the already loaded libraries,
* then the method will search through the library search path. A null
* object is returned if the symbol could not be resolved.
*/

static BaseClass createClass(in string sidl_name);
}

/**
* This provides an interface to the meta-data available on the
* class.
*/

interface ClassInfo {
/**
* Return the name of the class.
*/

string getName();

/**
* Get the version of the intermediate object representation.
* This will be in the form of major_version.minor_version.
*/
string getIORVersion();

}

/**
* An implementation of the <code>ClassInfo</code> interface. This provides
* methods to set all the attributes that are read-only in the
* <code>ClassInfo</code> interface.
*/

class ClassInfoI implements-all ClassInfo {
/**
* Set the name of the class.
*/

final void setName(in string name);

/**
* Set the IOR major and minor version numbers.
*/

final void setIORVersion(in int major, in int minor);
}

}

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.6 Objects 43

3.6 Objects

One of the strategies that SIDL uses to enforce language interoperability is to define an object model that it supports
across all language bindings. This enables real object-oriented programming in non OO languages such as C and
FORTRAN 77. This also means that the inheritance mechanisms inside real OO languages may be circumvented.

Contrary to newer scripting languages such as Python and Ruby, not everything in SIDL is an object. Only classes
(abstract or not) and interfaces are objects. Everything else (e.g. arrays, enums, strings, ints) is something other than
an object and therefore outside the scope of this Section.

Babel’s Object Model

SIDL defines three types of objects: interfaces, classes, and abstract classes. A SIDL interface is akin to a
Java interface or a C++ pure abstract base class. It is an object that defines methods (aka member functions), but
carries no implementation of those methods. A class by comparision is always concrete; meaning that there is an
implementation for each of its methods and it can be instantiated. An abstract class falls somewhere between
an interface and a class. It has at least one method unimplemented, so it cannot be instantiated, but it also may
have several methods that are implemented and these implementations can be inherited.

SIDL supports multiple inheritance of interfaces and single inheritance of implementation. This is a strategy
found in other OO languages such as Java and ObjectiveC. The words to distinguish these two forms of inheritance are
extends and implements. Interfaces can extend multiple interfaces, but they cannot implement anything. Classes
can extend at most one other class (abstract or not), but can implement multiple interfaces.

We display a small SIDL file below and finish this SubSection with a discussion of its details.

package object version 1.0 {

interface A {
void display();
void printMe();

}

abstract class B implements A {
void display();

}

class C extends B {
void printMe();

}

class D implements-all A {
}

}

object.A is an interface that has two methods display() and print(). Both of these methods take no
arguments and return no value. (We will discuss arguments and return values in the next section.) Since object.A
is an interface, there is no implementation associated with it, and Babel will not generate any implementation code
associated with it.

object.B is an abstract class that inherits from object.A. Since it redeclares the display() method, Babel
will generate the appropriate code for an implementation of this method only. It will not generate code for the other
inherited method print() (since it wasn’t declared in the SIDL file) and it will not generate constructors/destructors
since the class is abstract.

object.C is a class that extends the abstract class object.B it then lists only the unimplemented method
print(), implying that it will use the implementation of display() it inherited from its parent.

object.D is also a class that uses the implements-all directive. This is identical to using implements
and then listing all the methods declared in the interface. The implements-all directive was added to SIDL
as a convenience construct and to save excessive typing in the SIDL file. By virtue of the implements-all
directive, object.D will provide its own implementation of all of object.A’s methods, namely display() and
print().

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

44 SIDL Basics

Methods on Objects

Methods in SIDL are virtual by default. This means that the actual binding of a method invokation to an actual
implementation is determined at runtime, based on the concrete type of the object.

SIDL currently defines three modifiers to methods that change their default behavior.

• final : Final methods are the opposite of virtual. While they may still be inherited by child classes, they
cannot be overridden.

• static : Static methods do not depend on an instance. In non-OO languages, this means that the typical
first argument of an instance is removed. In OO languages, these are mapped directly to an Java or C++ static
method.

• oneway : reserved for future use.

Parameter Passing

Each parameter in a method call obeys the following syntax

[(modifier)] (mode) (type) (name)

Where (mode) is one of in, out, or inout; (type) is any SIDL recognized type; and (name) is any non-
reserved word2. The (modifier) is optional, and currently unimplemented. SIDL currently reserves the word
copy for future use as an parameter modifier, and may add others in the future3.

For new users, the parameter’s mode (e.g. in, out, or inout) is perhaps the most troublesome. On the surface,
it’s easy to explain that in parameters are passed into the code, out parameters come out, and inout parameters do
both. However, there are some deeper issues that users need to be aware of.

1. in does not mean const.

2. inout may destroy the input instance and replace it with a completely new one.

3. Types created on the stack should never be passed as an inout argument, since the implementation may want
to destroy it.

Method Overloading

Method overloading is the object-oriented practice of defining more than one method with the same name in a class.
Doing so allows the convenient reuse of a method name when, for example, the underlying implementations differ
based on the types of the arguments. Actually, support for overloaded methods typically relies on the signature of each
method to ensure uniqueness. In this case, the signature consists of the method name along with the number, types,
and ordering of its arguments.

Since Babel supports languages that do not support method overloading, a mechanism for generating unique names
was needed. These are typically generated by compilers based on hashing the argument types into the method name.
However, developers often manually address this with far fewer characters than would be used by a compiler. Conse-
quently, it was determined it would be more efficient to leave the task of identifying the unique name to the developer.
Therefore, Babel allows the specification of the base, or short, method name along with an optional method name
extension as illustrated in the SIDL file below for the getValue method.

package Overload version 1.0 {

class Sample {
int getValue ();
int getValue[Int](in int v);
double getValue[Double](in double v);

}
}

2Refer to Section ?? for the list of reserved words
3Babel is still pre-1.0 after all!

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

3.7 XML Repositories 45

Thus, the full method name is the concatenation of the short name followed by the name extension. When gen-
erating code for supported languages, Babel makes use of either the short or full method name as appropriate for the
language(s) involved. For those that support method overloading, such as C++ and Java, Babel relies only on the short
method name, thus ignoring the extension. For the rest, like C, Fortran, and Python, Babel must make use of the full
name to ensure methods are uniquely identified.

In the example above, the first method specification takes no arguments so has no name extension. This is accept-
able because there are no potentially conflicting methods at this point for any programming language supported by
Babel. The second method, with the user-defined name extension of Int, takes a single int argument, resulting in
the unique method name getValueInt. The last method, with a user-defined name extension of Double, takes a
single double argument, resulting in the unique method name of getValueDouble. Examples of calling overloaded
methods from Babel-supported languages can be found in the respective language binding chapters.

3.7 XML Repositories

Even though SIDL is currently the primary input format for Babel, it is not the only format Babel understands. For
type repositories (similar in function to include directories for C/C++ headers) the preferred language to articulate
types is XML.

Babel has the capabilities to convert SIDL files into XML files adhering to the SIDL.dtd. This capability is
explained further in Chapter 13. The XML files in these repositories can be included in subsequent runs quickly since
all the external references were resolved by Babel during their creation. A SIDL file may refer to unresolved types.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

46 SIDL Basics

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 4

Babel Basics

Contents

4.1 Introduction . 47

4.2 Babel is a Compiler . 47

4.3 Command Line Options . 47

4.1 Introduction

This chapter describes Babel and its command line options.

4.2 Babel is a Compiler

Babel is a compiler. It takes symbols and their interfaces as input and generates either code or a given textual repre-
sentation. These interfaces may be specified in either Scientific Interface Definition Language (SIDL) or Extensible
Markup Language (XML). The form the output takes depends upon the options specified on the command line. Refer
to the Section 4.3 for details on command line options. More information on the supported bindings can be found in
Part II of this document.

4.3 Command Line Options

The entire Babel code generator is written in Java and compiled into a jar file. For convenience, a small script called
babel is provided that should set the appropriate environment variables and invoke the Java Virtual Machine on the
jar file. To test that the script and jar file are working together properly, simply type babel --help.

Using Babel

Babel requires exactly one of the following mutually exclusive arguments on the command line.

• --help : Print options to stdout.

• --version : Print version of Babel.

• --xml : Generate XML equivalent of SIDL file. Deprecated; see text option.

• --text=form : Generate text equivalent (”sidl” or ”xml”) of associated package(s).

• --client=lang : Generate client, or proxy, classes to access library.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

48 Babel Basics

• --server=lang : Generate the server and client classes to implement the library.

• --parse-check : Check the SIDL file only.

• --generate-sidl-stdlib : Regenerate the Babel runtime library.

By far, the three most common uses of Babel will be to generate the Client-side proxies, Server-side implementations,
and XML associated with the SIDL file. The last option is essentially used internally when the Babel runtime library
is being developed.

Additionally, there are a few supplemental arguments that complete the picture.

• --output-directory=dir : Specifies the root directory associated with the generated files. The default
setting is the current working directory.

• --generate-subdirs : Generates files in a directory tree matching the packaging scope of the SIDL
file. This is on by default for languages that have this requirement, such as Java and Python, but off by default
for languages that have no such requirement. Hence, code generation for only the latter languages (e.g. C, C++,
F77, F90) is effected by this option.

• --repository-path=path : Specifies a semicolon separated list of directories, or URLs1 to search for
XML Type descriptions. The need for these XML types is to resolve references in the SIDL file. This option can
be used multiple times on the same command line. If appropriate, the Babel script adds the default repository
path to the command line before dispatching to the Java Virtual Machine.

• --no-default-repository : Prohibits the use of the default repository in resolving symbols.

• --suppress-timestamp : Suppresses the insertion of meta-information that could result in generated
files that would otherwise not differ from prior executions on the same, unchanged input file. Typically Babel
inserts meta-information such as creation time into files it generates. Although this information is useful, it does
result in the creation of excessive changes when using version control systems.

• --exclude=regex : This options can be used multiple times. Each time you add a regular expression
that will be used to exclude symbols from code generation. No code or XML will be generated for any symbol
matching the user provided regular expression. This command line option requires version 1.4.0 or later of the
Java runtime environment.

• --comment-local-only : This option reduces the amount of comments in stub C header files. It will
only include the doc comments for locally defined method. It will not include doc comments for inherited
methods.

Long and Short Forms

So far, we’ve shown described the long forms of command line arguments, starting with two hyphens “--”. There are
also short forms for many of the more frequently used commands. See Table 4.1 for details.

Examples

To create a new XML version of a SIDL file, you are free to use the following deprecated command:

% babel -x -omydepot mystuff.sidl

However, it would be better if you got used to using the new version:

% babel -tXML -omydepot mystuff.sidl

To exclude code generation for types whose name begins with “MPI.”, use the following command:

1URLs have colons in them, so this path has to be semi-colon separated, even though UNIX paths are traditionally colon separated.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

4.3 Command Line Options 49

Table 4.1: Command Line Arguments.

SHORT FORM LONG FORM NOTES
-h --help Print options to stdout.
-v --version Print version of Babel.
-tform --text=form Generate text.
-x --xml Deprecated. Generate XML.
-clang --client=lang Generate client classes.
-slang --server=lang Generate server and client classes.
-p --parse-check Only check parsing of the SIDL file.

--generate-sidl-stdlib Regenerate the Babel runtime library.
-odir --output-directory=dir Root directory to contain generated files.
-g --generate-subdirs Generate sources in directory tree matching

SIDL packaging.
-Rpath --output-directory=path Use specified XML repository(ies) to resolve

symbols.
-eregex --exclude=regex Do not generate output for matching symbol(s).

--no-default-repository Do not use the default repository to resolve
symbols.

--suppress-timestamp Suppress time-related metadata generation.
--comment-local-only Reduce doc comments in C stub header.

% babel -sC++ --exclude=’ˆMPI\.’ mystuff.sidl

Now suppose a developer wants to implement a library in C++ that corresponds to these types in the SIDL file.

% babel -sC++ mystuff.sidl

Alternatively, the developer could also create C++ implementation files based on the XML repository. In this case, a
list of symbols to be implemented would need to be specified. Assuming that all of the types are in a package called
“mystuff”, the following command can be issued:

% babel -sC++ -Rmydepot mystuff

Now suppose a second developer wants to extend this software. A second SIDL file is created then the implemen-
tation files in FORTRAN 90 are generated with the following command:

% babel -sf90 -Rmydepot newstuff.sidl

Finally, a user can download both SIDL files and create their Python bindings to use both libraries with the following
command:

% babel -cPython -Rhttp://localhost/mystuff/mydepot;http://www.otherhost.com/newstuff
mystuff newstuff

To generate SIDL files for each package based on the XML stored in the repository, the following command
command is used:

% babel -tSIDL -Rhttp://localhost/mystuff/mydepot;http://www.otherhost.com/newstuff
mystuff newstuff

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

50 Babel Basics

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 5

Building Portable Software

Contents

5.1 Introduction . 51

5.2 Dynamic vs. Static Linking . 51

5.3 SIDL Library Issues . 52

5.4 Deployment of Babel Enabled Libraries . 52

5.1 Introduction

This chapter addresses issues related to building portable software using Babel. It begins with a description of linking
options followed by issues specifically related to building the SIDL libraries. Finally, a discussion of the current
standards for deploying your software is discussed.

5.2 Dynamic vs. Static Linking

Most UNIX users are very comfortable with statically linked libraries (e.g. libXXX.a). Most are aware of “shared
object files” in UNIX (with the form libXXX.so) though few actually build them. Even fewer still are familiar
with dynamically linked libraries, called DLL’s in Microsoft (after the common .dll suffix), which involve actually
selecting and loading dynamic libraries at run time based on their string name. This section serves as a quick overview
of how Babel handles both static and dynamic libraries, including runtime loading.

Linkers and Position Independent Code (PIC)

In a static library, the linker simply copies needed compilation units from the library to the executable. The static
library can subsequently be deleted with no adverse affects to the executable. This also causes common libraries to be
duplicated in every executable that links against it, and for the resulting executables to be quite large.

In a shared library, the linker simply inserts in the executable enough information to find the library and load it when
the executable is envoked. This typically happens before the program ever gets to main(). This keeps executables
small and allows commonly used libraries to be reused without copying, but it also means that the executable can fail
if the library is renamed, moved, deleted, or even if the user’s environment changes sufficiently.

A necessary (but not sufficient) condition for shared libraries to work is that all the compilation units (*.o) con-
tained must be explicitly compiled as position independent code(PIC). Position independent code has an added level of
indirection in critical areas since details (such as addresses to jump to in subroutine calls) are not known until runtime.
Even though shared libraries are very useful, PIC causes a small but measurable degradation in performance, making
static linked libraries with non-PIC code a viable option for performance-critical situations.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

52 Building Portable Software

A dynamic-linked library is a shared library with one added feature, it can be loaded explicitly by the user at
runtime by passing the string name into dlopen(). Dynamic-linked libraries (DLL’s) also require compilation as
PIC, though many compilers (including GCC) have special commands for each1.

5.3 SIDL Library Issues

As mentioned in Section 3.5, the Babel toolkit includes the SIDL runtime library. The library provides a base interface,
class, and exception as the foundation. This is how Babel provides object-oriented features to non-object-oriented
languages. In order to support the runtime system and build the SIDL library, it also provides DLL and Loader classes.

Babel generated code depends critically on babel config.h to correctly define a lot of platform specific details.
One detail that changes too frequently to encode in babel config.h is whether or not the software is being com-
piled is position independent code (PIC). This detail is commonly added to the compilation instruction using the flags
(e.g. -fPIC -DPIC 2). The first flag tells the compiler to generate position independent code. The second defines
the preprocessor macro PIC. Looking now at babel config.h, we see that either SIDL DYNAMIC LIBRARY or
SIDL STATIC LIBRARY are defined depending on whether or not PIC is defined.

As described in Section 5.2, Babel tends to focus on static libraries and dynamic linked libraries; not worrying
much about shared libraries. The main reason is that for every last drop of performance, people would want static
libraries. To support Java and Python (and the CCA model) dynamic loading is required. There’s no real benefit to
doing shared libraries that can’t be dynamically loaded, so in developing Babel, we focus on the other two linkage
situations.

5.4 Deployment of Babel Enabled Libraries

At this point, there is no standard — or even recommended — model for deploying Babel enabled libraries. Below
are a few examples of how our developer-customers are currently packaging their code.

Server Source Only With this option your users are expected to have Babel installed on their system. In this mode,
developers simply include a SIDL file and their corresponding implementation files. The user in this case must
build the software, call Babel to generate the client bindings in the language of choice, and link it all together
into a final application.

Client and Server Source This option tries to hide Babel as much as possible. In this mode, the developer pre-
generates many different client language bindings and distributes them along with their code and the sources for
the Babel runtime library. Then the user has a “batteries included” package that’s ready to run out of the box.
The user may not even be aware that Babel has been used unless they pay careful attention to how the package
was built.

Server Libraries Only Finally, in this mode only the SIDL file and the precompiled shared library files are dis-
tributed. This is not an open-source solution, though users still need to build the language bindings to access the
shared library.

1-fpic for SO’s, -fPIC for DLL’s
2The actual command to the compiler varies, -fPIC is understood by GCC

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Part II

Supported Language Bindings

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 6

C Bindings

Contents

6.1 Introduction . 55

6.2 Basic Types . 55

6.3 Header files . 55

6.4 Mapping for classes, interfaces and arrays . 56

6.5 Calling SIDL methods from C . 57

6.6 Implicitly defined methods . 58

6.7 Invoking Babel to generate C bindings . 59

6.8 Invoking Babel to generate C implementations . 59

6.1 Introduction

This chapter provides an introduction to the C bindings for SIDL. Babel supports both callers and callees written in C
so this chapter illustrates the use of Babel for both. That is, it shows how to use Babel to wrap the implementation of
software written in C as well as how to call software, possibly implemented in any other supported language, from C.

Since Babel’s Intermediate Object Representation (IOR), the C bindings are very similar to the IOR. In addition,
all of the objects in the SIDL namespace (e.g. SIDL::BaseClass, SIDL::BaseException, etc.) are implemented in C,
so clients can develop solely with a C compiler if necessary. Of course, the intent of Babel is to provide multilingual
interoperability.

6.2 Basic Types

The basic types in SIDL are mapped into C according to Table 6.1.

6.3 Header files

If you would like to use type X.Y.Z from C, you should #include "X Y Z.h". If you would like to include the
header files for a whole package X.Y, you can #include "X Y.h". For example, you can include all the types in
the SIDL namespace with #include "SIDL.h".

Each client side header file will ensure that SIDL header.h is included. SIDL header.h defines:

1. struct SIDL dcomplex for the SIDL dcomplex type with parts named real and imaginary;

2. struct SIDL fcomplex for the SIDL fcomplex type with parts named real and imaginary;

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

56 C Bindings

Table 6.1: SIDL to C Type Mappings

SIDL TYPE C TYPE
int int32 t
long int64 t
float float
double double
bool typedef SIDL bool
char char
string char *
fcomplex struct SIDL fcomplex
dcomplex struct SIDL dcomplex
enum enum
opaque void *
interface typedef
class typedef
array struct *

3. int32 t and int64 t for the SIDL int and long types;

4. a typedef for SIDL bool for the SIDL bool type;

5. preprocessor symbols TRUE and FALSE; and

6. function prototypes for the multi-dimensional array APIs for the basic SIDL types.

In general, clients don’t need to worry about including SIDL header.h because the Babel generated header files
will include it for you.

6.4 Mapping for classes, interfaces and arrays

Because C doesn’t have builtin mechanisms for protecting the global namespace, the C mapping attempts to avoid
namespace collisions by using struct and method names that incorporate all the naming information from the package,
class and method names. For a type Z in package X.Y, the name of the type that C clients use for an object reference
is X Y Z. X Y Z is defined as follows in the X Y Z.h header file:

struct X_Y_Z__object;
struct X_Y_Z__array;
typedef struct X_Y_Z__object* X_Y_Z;

This code fragment also shows that struct X Y Z array is used for a multi-dimensional array of X.Y.Z
objects. Here are some additional concrete examples of the object and interface reference types derived by the C
mapping:

/**
* Symbol "SIDL.BaseClass" (version 0.5.1)
*
* Every class implicitly inherits from <code>BaseClass</code>. This
* class implements the methods in <code>BaseInterface</code>.
*/
struct SIDL_BaseClass__object;
struct SIDL_BaseClass__array;
typedef struct SIDL_BaseClass__object* SIDL_BaseClass;

/**

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

6.5 Calling SIDL methods from C 57

* Symbol "SIDL.BaseInterface" (version 0.5.1)
*
* Every interface in <code>SIDL</code> implicitly inherits
* from <code>BaseInterface</code>, and it is implemented
* by <code>BaseClass</code> below.
*/
struct SIDL_BaseInterface__object;
struct SIDL_BaseInterface__array;
typedef struct SIDL_BaseInterface__object* SIDL_BaseInterface;

6.5 Calling SIDL methods from C

The names of the C functions used to call SIDL methods are a concatenation of the package name, the class or
interface name and the method name(s) with the period characters changed to underscores. If the method is specified
as being overloaded (i.e., has a name extension) , the full method name is the concatenation of the short name and
the extension. For non-static methods, the object or interface pointer is passed as the first parameter before any of the
formal parameters. This parameter operates like an in parameter.

For methods that throw exceptions, there is an extra out argument of type SIDL.BaseException that holds
the thrown exception in cases when an exception is thrown. When an exception is thrown, the caller should ignore the
value of out parameters and the function’s return value.

Here are the C bindings for the critical addRef and deleteRef methods from SIDL.BaseInterface.
These methods are mentioned in particular because C clients must manage object reference counts themselves.

void
SIDL_BaseInterface_addRef(
SIDL_BaseInterface self);

void
SIDL_BaseInterface_deleteRef(
SIDL_BaseInterface self);

These same methods can be called from the SIDL.BaseClass bindings. In fact, every C binding for an interface
or class will have entries for addRef and deleteRef.

void
SIDL_BaseClass_addRef(
SIDL_BaseClass self);

void
SIDL_BaseClass_deleteRef(
SIDL_BaseClass self);

The following SIDL method taken from the Babel regression tests demonstrates how exceptions are handled.

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

Here is the C binding for this method:

int32_t
ExceptionTest_Fib_getFib(
ExceptionTest_Fib self,
int32_t n,
int32_t max_depth,
int32_t max_value,
int32_t depth,
SIDL_BaseException *_ex);

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

58 C Bindings

Here is an example of how to perform exception handling in C using a package of macros defined in SIDL Exception.h.

#include "SIDL_Exception.h"
/* ...numerous lines deleted... */
x = ExceptionTest_Fib_getFib(f, 10, 1, 100, 0, &_ex);
if (SIDL_CATCH(_ex, "ExceptionTest.TooDeepException")) {

traceback(_ex);
SIDL_CLEAR(_ex);

}
else if (SIDL_CATCH(_ex, "ExceptionTest.TooBigException")) {

traceback(_ex);
SIDL_CLEAR(_ex);

}
else if (_ex == NULL) {

return FALSE;
}
SIDL_CHECK(_ex);
return TRUE;

EXIT:;
traceback(_ex);
SIDL_CLEAR(_ex);
return FALSE;

Examples of calls to SIDL overloaded methods are based on the overload sample.sidl file shown in Sec-
tion 3.6. Recall that the file describes three versions of the getValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

int b1, i1, iresult, nresult;

Overload_Sample t = Overload_Sample__create ();

nresult = Overload_Sample_getValue(t);
iresult = Overload_Sample_getValueInt(t, i1);
bresult = Overload_Sample_getValueBool(t, b1);

6.6 Implicitly defined methods

The C binding for interfaces and classes includes two methods for perform type casts. The methods are named cast
and cast2. The leading underscore prevents these builtin methods from conflicting with a user method because user
methods cannot begin with an underscore. Neither of these methods increases the reference count of the underlying
object — this is contrary to standard methods that always return new reference counts. Here are the signatures for
cast and cast2 from SIDL.BaseClass.

SIDL_BaseClass
SIDL_BaseClass__cast(
void* obj);

void*
SIDL_BaseClass__cast2(
void* obj,
const char* type);

The cast method attempts to cast a SIDL interface or object pointer to a pointer to SIDL.BaseClass. The
cast2 method attempts to cast a SIDL interface or object pointer to a pointer to an interface or object pointer of the

type named type. In the case of cast2, the client is responsible for casting the return value into the proper pointer
type. Both methods are NULL safe. A NULL return value indicates that the cast failed or that obj was NULL.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

6.7 Invoking Babel to generate C bindings 59

Non-abstract classes have an additional implicit method called create to create new instances of the class.
Interfaces and abstract classes do not have this method because you cannot instantiate them. The create method
returns a new reference that the client must manage. Here is an example of its signature.

/**
* Constructor function for the class.
*/
SIDL_BaseClass
SIDL_BaseClass__create(void);

6.7 Invoking Babel to generate C bindings

To create C stubs (i.e. code to support C clients to a set of SIDL classes or interfaces), you should invoke Babel as
follows 1:

% babel --client=C file.sidl

or more cryptically

% babel -cC file.sidl

This will create more files than you can shake a stick at. The files ending in IOR.h and IOR.c are the Interme-
diate Object Representation. The files ending with Stub.c are the C stubs — the interface between a C client and
the IOR. The remaining header files have external C API that C clients may use.

To use the C stubs, you must compile the stub files whose file names end with Stub.c and link them against the
SIDL runtime library and a backend implementation.

6.8 Invoking Babel to generate C implementations

To implement a set of SIDL classes in C, you should invoke Babel as follows:

% babel --server=C file.sidl

or use the short form

% babel -sC file.sidl

In both cases, the use of the default repository is assumed for resolving symbols.

1For information on additional command line options, refer to Section 4.3.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

60 C Bindings

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 7

C++ Bindings

Contents

7.1 Introduction . 61
7.2 Basic Types . 61
7.3 SIDL C++ Header Suffix . 61
7.4 SIDL’s Main C++ Header File . 61
7.5 Calling Methods from C++ . 62
7.6 Implementing SIDL Classes in C++ . 64
7.7 Accessing SIDL Arrays From C++ . 64

7.1 Introduction

This chapter provides an introduction to Babel’s C++ bindings. It illustrates the support provided for both C++ callers
and C++ implementations, or callees.

Unlike C or FORTRAN 77, there is no runtime library created for a particular C++ compiler at installation. Instead,
when you generate C++ from SIDL, you will find Stubs (aka proxy classes) generated for SIDL base classes and will
have to compile and link them into your application.

That said, if you switch to a different compiler after installation, there may be some values set in babel config.h
that become invalid. This can be overcome by copying the header file, making the necessary changes, and placing the
modified header file earlier in the include path than the original one.

7.2 Basic Types

The basic types in SIDL are mapped into C++ according to Table 7.1.

7.3 SIDL C++ Header Suffix

The first thing that C++ users will notice is that C++ headers have a ”.hh” suffix to distinguish them from C’s ”.h”
suffix. This convention was born out of necessity to distinguish both differing header files and their include guards.

7.4 SIDL’s Main C++ Header File

All C++ code generated by Babel #include’s a file called ”SIDL cxx.hh”. This file includes babel config.h,
the C header file that defines configuration information. Finally, SIDL cxx.hh defines some C++ classes in the SIDL
namespace such as

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

62 C++ Bindings

Table 7.1: SIDL to C++ Type Mappings

SIDL TYPE C++ TYPE
int int32 t
long int64 t
float float
double double
bool bool
char char
string std::string
fcomplex SIDL::fcomplex
dcomplex SIDL::dcomplex
enum enum
opaque SIDL::opaque
interface class
class class
array SIDL::array (template specialization)

• SIDL::StubBase [implementation detail] Common base class for all C++ stubs (proxy classes)

• template<T,U,V> SIDL::array mixin [implementation detail] Common base class for all C++ array classes.

• typedefs for SIDL::fcomplex, SIDL::dcomplex, and SIDL::opaque (usually std::complex,
std::complex and void*, respectively)

• template<T> SIDL::array Template array type for SIDL arrays.

• template specializations [implementation detail] specialization of arrays of all SIDL types are defined in this
file.

7.5 Calling Methods from C++

Since C++ is an object-oriented language, there is a lot less programmer overhead in using SIDL from the C++
perspective than from non-OO languages such as C or FORTRAN 77.

These proxy classes (we call ”stubs”) serve as the firewall between the application in C++ and Babel’s internal
workings. As one would expect, the proxy classes maintain minimal state so that, unlike C or FORTRAN 77, there is
no special context argument added to non-static member functions.

Below are examples using standard classes. The first is an example of creating an object of the base class and its
association to the base interface.

SIDL::BaseClass object = SIDL::BaseClass::_create();
SIDL::BaseInterface interface = object;

Here is an example call to the addSearchPath in the SIDL.Loader class:

std::string s("/try/looking/here");
SIDL::Loader::addSearchPath(s);

Adapted from the Babel regression tests, the following is an example of a package called ExceptionTest that has a
class named Fib with a method declared in SIDL as follows:

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

The corresponding C++ code fragment to use this method is:

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

7.5 Calling Methods from C++ 63

Table 7.2: SIDL Features Mapped onto C++

SIDL Feature C++ Implementation
packages C++ namespaces (no name transformations)

version numbers ignored
interface C++ class (called ”stub”, serves as a proxy to the implementation)

class C++ class (called ”stub”, serves as a proxy to the implementation)
methods C++ member functions; uses base method name when overloading; no name mangling;

NOTE: Member functions beginning with a leading underscore ” ” may be Babel in-
ternals, or specific to C++ binding.

static methods Static C++ member functions; uses base method name when overloading; no name
mangling; even works for dynamically loaded object’s exceptions thrown and caught
using C++ exception handling.

reference counting SIDL C++ stubs can be treated as smart-pointers. Constructors, destructors, and oper-
ators are overloaded so that explicit calls to addRef() or deleteRef() are rarely
needed.

casting Assignment operators are overloaded to handle safe casting up and down the inheri-
tance hierarchy. User should never call dynamic cast<>() on a SIDL object since
the stubs inheritance hierarchy does not follow the SIDL inheritance hierarchy. At-
tempted downcasts using assignment should be checked by a call to (is nil(), or
not nil()).

instance creation Use static member function ” create”. The default constructor for a C++ stub cre-
ates the equivalent of a NULL pointer. Works only with non-abstract classes.

ExceptionTest::Fib fib = ExceptionTest::Fib::_create();
try {
int result = fib.getFib(4, 100, 32000, 0);
cout << "Result of fib.getFib() = " << result << endl;

} catch (ExceptionTest::NegativeValueException e) {
// ...

} catch (ExceptionTest::FibException e) {
// ...

}

Examples of calls to SIDL overloaded methods are based on the overload sample.sidl file shown in Sec-
tion 3.6. Recall that the file describes three versions of the getValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

bool b1, bresult;
int i1, iresult, nresult;

Overload::Sample t = Overload::Sample::_create();

nresult = t.getValue();
bresult = t.getValue(b1);
iresult = t.getValue(i1);

To create the C++ stubs from a SIDL file, invoke Babel as follows 1:

% babel --client=C++ file.sidl

or simply

1For information on additional command line options, refer to Section 4.3.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

64 C++ Bindings

% babel -cC++ file.sidl

This will create a babel.make file, some C headers and sources, and many C++ headers and sources. Files ending
in ”.c” or ”.h” are in C, files ending in ”.cc” or ”.hh” are C++.

You will need to compile and link the files together to use the C++ stubs.

7.6 Implementing SIDL Classes in C++

Much of the information from the previous section is pertinent to implementing a SIDL class in C++. The types of the
arguments are as indicated in Table 7.1. Your implementation can call other SIDL methods, in which case follow the
rules for client calls.

To create the implementation, you must first have a valid SIDL file, then invoke Babel as follows:

% babel --server=C++ file.sidl

or simply

% babel -sC++ file.sidl

This will create a makefile fragment called babel.make, several C headers and source files, and numerous C++
header and source files. To create a working implementation, the only files that need to be hand-edited are the C++
”Impl” files (header and source files that end in Impl.hh or Impl.cc). All your additions to this file should
be made between code splicer pairs. Code splicing is a technique Babel uses to preserve hand-edited code between
multiple invocations of Babel. This allows a developer to refine their SIDL file without ruining all their previous
implementations. Code between splicer pairs will be retained by subsequent invocations of Babel; code outside splicer
pairs is not.

Here is an example of a code splicer pair in C++. In this example, you would replace the line ”// Insert code here...
” with your implementation.

void MyPackage::MyClass::myMethod() {
// DO-NOT-DELETE splicer.begin(MyPackage.MyClass.myMethod)
// Insert code here...
// DO-NOT-DELETE splicer.end(MyPackage.MyClass.myMethod)

}

It is important to understand where and why splicer blocks occur. Splicer blocks appear at the beginning and end
of each Impl header and source file; for developers to add #include’s and other miscellaneous items respectively.
In the headers, there is a splicer block that allows a user to make the impl class inherit from some other class. From
SIDL’s point of view this is private inheritance — meaning that it is useful for inheriting implementation details, but
they can’t be automatically exposed to the SIDL method dispatch mechanism. There is a splicer block inside the class
definition for developers to add any data members the wish to the class. In the source files, splicer blocks appear
in each method implementation. There are two implicit methods (i.e. methods that did not appear in the SIDL file)
that must also be implemented. The ctor method is a constructor function that is run whenever an object is created.
The dtor method is a destructor function that is run whenever an object is destroyed. If the object has no state, these
functions are typically empty.

7.7 Accessing SIDL Arrays From C++

Although it is feasible to expose the underlying C array API to create, destroy and access array elements and meta-data,
the C++ bindings provide a SIDL::array<T> template mechanism that is more in keeping with C++ idioms.

For SIDL built-in types, template specializations of SIDL::array<T> are defined in SIDL cxx.hh. For SIDL
interface and classes, the array template is again specialized in the corresponding stub header. The reason for the

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

7.7 Accessing SIDL Arrays From C++ 65

extensive use of template specialization is an effort to hide the detail that the array implementation is really templated
on three terms: the type of the C struct that represents the array internally, the internal representation of each item in
the array, and the C++ representation of each item in the array. (See array mixin in SIDL cxx.hh for grungy
implementation details.)

An example is given below.

int32_t len = 10; // array length=10
int32_t dim = 1; // one dimensional
int32_t lower[1] = {0}; // zero offset
int32_t upper[1] = {len-1};
int32_t prime = nextPrime(0);

// create a SIDL array of primes.
SIDL::array<int> a = SIDL::array<int>::createRow(dim, lower, upper);
for(int i=0; i<len; ++i) {

prime = nextPrime(prime);
a.set(i, v);

}

Of course, the example above is only one way to create an array. The list of member functions for all C++ array
classes is:

// constructors
array (array_ior_t * src); // internal
array () ; // empty

// destructor
˜array() ;

// creation
static array<x>
createRow(int32_t dimen, const int32_t lower[],

const int32_t upper[]);
static array<x>
createCol(int32_t dimen, const int32_t lower[],

const int32_t upper[]);
static array<x>
create1d(int32_t len);
static array<x>
create2dCol(int32_t m, int32_t n);
static array<x>
create2dRow(int32_t m, int32_t n);
array<x>
slice(int32_t dimen, const int32_t numElem[],

const int32_t *srcStart = 0,
const int32_t *srcStride = 0,
const int32_t *newStart = 0);

void borrow(item_ior_t * first_element, int32_t dimen,
const int32_t lower[], const int32_t upper[],
const int32_t stride[]);

void addRef();
void deleteRef();

// get/set
item_cxx_wrapper_t get(int32_t i);
item_cxx_wrapper_t get(int32_t i1, int32_t i2);
item_cxx_wrapper_t get(int32_t i1, int32_t i2, int32_t i3);

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

66 C++ Bindings

item_cxx_wrapper_t get(int32_t i1, int32_t i2, int32_t i3, int32_t i4);
item_cxx_wrapper_t get(const int32_t *indices);

void set(int32_t i, item_cxx_wrapper_t elem);
void set(int32_t i1, int32_t i2, item_cxx_wrapper_t elem);
void set(int32_t i1, int32_t i2, int32_t i3,
item_cxx_wrapper_t elem);
void set(int32_t i1, int32_t i2, int32_t i3, int32_t i4,
item_cxx_wrapper_t elem);
void set(const int32_t *indices, item_cxx_wrapper_t elem);

// other accessors
int32_t dimen() const;

int32_t lower(int32_t dim) const;

int32_t upper(int32_t dim) const;

int32_t stride(int32_t dim) const;

bool _is_nil() const;

bool _not_nil() const;

// get a const pointer to the actual array ior
const array_ior_t* _get_ior() const { return d_array; }

// get a non-const pointer to the actual array ior
array_ior_t* _get_ior() { return d_array;}

where

• array ior t is the type of the C struct that represents the array internally,

• item ior t is the internal representation of each item in the array,

• item cxx wrapper t is the C++ representation of each item in the array

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 8

FORTRAN 77 Bindings

Contents

8.1 Introduction . 67
8.2 Basic Types . 67
8.3 Calling Methods From FORTRAN 77 . 68
8.4 Implementing Classes in FORTRAN 77 . 70
8.5 Accessing SIDL Arrays From FORTRAN 77 . 71
8.6 FORTRAN 77 objects with state . 72

8.1 Introduction

This chapter provides an introduction to Babel’s FORTRAN77 bindings. Babel supports both callers and callees
written in FORTRAN 77 so this chapter illustrates the use of Babel for both. That is, it shows how to use Babel to
wrap the implementation of software written in FORTRAN 77 as well as how to call software, possibly implemented
in any other supported language, from FORTRAN 77.

8.2 Basic Types

For pointer types, such as opaque, interface, class, and array, a 64-bit integer is used, so FORTRAN 77 code will be
portable between systems with a 32 bit address space and systems with a 64 bit address space. On a 32 bit system, the

Table 8.1: SIDL to FORTRAN 77 type mapping
SIDL TYPE FORTRAN 77 TYPE
int INTEGER*4
long INTEGER*8
float REAL
double DOUBLE PRECISION
bool LOGICAL
char CHARACTER*1
string CHARACTER*(*)
fcomplex COMPLEX
dcomplex DOUBLE COMPLEX
enum INTEGER
opaque INTEGER*8

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

68 FORTRAN 77 Bindings

upper 32 bits of these quantities are ignored. Systems with more than 64-bit pointers aren’t currently supported.
Generally, clients should treat opaque, interface, class and array values as black boxes. However, there is one value

that is special. A value of zero for any of these quantities indicates that the value does not refer to an object. Zero is the
FORTRAN 77 equivalent of NULL . Any nonzero value is or should be a valid object reference. Developers writing
in FORTRAN 77 should initialize values to be passed as in or inout parameters to zero or a valid object reference.

When mapping the SIDL string type into FORTRAN 77, some capability was sacrificed to make it possible to use
normal looking FORTRAN 77 string handling. One difference is that all FORTRAN 77 strings have a limited fixed
size. When implementing a subroutine with an out parameter, the size of the string is limited to 1024 characters.

Enumerated types are just integer values. The constants are defined in an includable file assuming your FORTRAN
77 compiler supports some form of including.

8.3 Calling Methods From FORTRAN 77

All SIDL methods are implemented as FORTRAN 77 subroutines regardless of whether they have a return value or
not. For object methods, the object or interface pointer is passed as the first argument to the subroutine before all the
formally declared arguments. The exception is static methods, where the object or interface pointer does not appear in
the argument list at all.

When a method has a return value, a variable to hold the return value should be passed as an argument following
the formally declared arguments. When a method can throw an exception (i.e., its SIDL definition has a throws
clause), a variable of type INTEGER*8 should be passed to hold a SIDL.BaseException pointer if an exception
is thrown. The exception argument appears after the return value when both occur in a method. After the call, the
client should test this argument. If it is non-zero, an exception was thrown by the method, and the method should
respond appropriately. When an exception is thrown, the value of all other arguments is undefined.

The name of the subroutine that FORTRAN 77 clients should call is derived from the fully qualified name of the
class and the name(s) of the method. If the method is specified as overloaded (i.e., has a name extension), the method’s
full name will be used. That is, the concatenation of the short name and the name extension will be used for a unique
method name. Hence, to determine the subroutine name for FORTRAN 77, take the fully qualified name, replace
all the periods with underscores, append an underscore, append the short method name, append the method name
extension (if any) and then append ” f”.

For example, to call the deleteRef() method on a SIDL.BaseInterface interface, you would write:

integer*8 interface1, interface2
logical areSame

C code to initialize interface1 & interface 2 here
call SIDL_BaseInterface_deleteRef_f(interface1)

To call the isSame method on a SIDL.BaseInterface , you would write:

call SIDL_BaseInterface_queryInt_f(interface1, ’My.Interface.Name’, interface2)

To call the queryInt method on a SIDL.BaseInterface, you would write:

call SIDL_BaseInterface_queryInt_f(interface1, ’My.Interface.Name’, interface2)

Examples of calls to SIDL overloaded methods are based on the overload sample.sidl file shown in Sec-
tion 3.6. Recall that the file describes three versions of the getValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

integer*8 t
logical b1, bretval
integer*4 i1, iretval

call Overload_Sample__create_f (t)

call Overload_Sample_getValue_f (t, iretval)
call Overload_Sample_getValueInt_f (t, i1, iretval)
call Overload_Sample_getValueBool_f (t, b1, bretval)

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

8.3 Calling Methods From FORTRAN 77 69

For interfaces and classes, there are two implicit methods called cast() and cast2(). Both of these methods
are used to convert from one type to another, and each can be used for upcasting up downcasting. Neither method will
increment the reference count of the object.

cast() is a static method. It tries to convert its opaque argument to the type of the class indicated by the method
name. For example, x y z cast(obj, xyz) will try to convert obj to type x.y.z. If xyz is nonzero, the cast
was successful.

cast2() is an object method. Its return type is opaque, and it has one formal argument, a string in addition to
the implicit object/interface reference. The cast() method attempts to cast the object/interface to the named type.
It is similar to the queryInt method in SIDL.BaseInterface except it does not increment the reference count of
the return object or interface, and it may return an object or an interface pointer. The queryInt() method always
returns an interface pointer.

For non-abstract classes, there is an implicit method called create(). It creates and returns an instance of the
class.

Here are examples of the use of these two methods:

integer*8 object, interface
call SIDL_BaseClass__create_f(object)
call SIDL_BaseInterface__cast_f(object, interface)

c the following call to _cast2 is equivalent to the previous _cast call
call SIDL_BaseClass__cast2_f(object, ’SIDL.BaseInterface’,

$ interface)

Please note the presence of two underscores between BaseClass and create and between BaseClass and cast; the
extra underscore is there because the first character of the method name is an underscore.

Here is an example call to the addSearchPath() in the SIDL.Loader class:

call SIDL_Loader_addSearchPath_f(’/try/looking/here’)

Your FORTRAN 77 must manage any object references created by the calls you make.
Here is another example adapted from the Babel regression tests. Package ExceptionTest has a class named Fib

with a method declared in SIDL as follows:

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

Here is the outline of a FORTRAN 77 code fragment to use this method.

integer*8 fib, except, except2
integer*4 index, maxdepth, maxval, depth, result
call ExceptionTest_Fib__create_f(fib)
index = 4
maxdepth = 100
maxvalue = 32000
depth = 0
call ExceptionTest_getFib_f(fib, index, maxdepth,

$ maxvalue, depth, result, except)
if (except .ne. 0) then

call ExceptionTest_FibException__cast_f(except, except2)
if (except2 .ne. 0) then

c do something here with the FibException
else

call ExceptionTest_NegativeValueException__cast_f
$ (exception, except2)

c do something here with the NegativeValueException
endif
call SIDL_BaseException_deleteRef_f(except)

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

70 FORTRAN 77 Bindings

else
write (*,*) ’getFib for ’, index, ’ returned ’, result

endif
call ExceptionTest_Fib_deleteRef_f(fib)

Here is how you should invoke Babel to create the FORTRAN 77 stubs for an IDL file 1.

% babel --client=f77 file.sidl

or simply

% babel -c=f77 file.sidl

This will create a babel.make file, numerous C headers, numerous C source files, and some FORTRAN 77 files.
The files ending in fStub.c are the FORTRAN 77 stubs that allow FORTRAN 77 to call a SIDL method.

You will need to compile and link the files ending in fStub.c into your application (i.e. STUBSRCS in
babel.make). Normally, the IOR files (IOR.c) are linked together with the implementation file, so you prob-
ably don’t need to compile them.

If you have some enum’s defined in your SIDL file, Babel will generate FORTRAN 77 include files in the style
of DEC FORTRAN (Compaq FORTRAN? (now HP Fortran???)) %INCLUDE. These files are named by taking the
fully qualified name of the enum, changing the periods to underscores, and appending .inc . Here is an example of
a generated include file.

C File: enums_car.inc
C Symbol: enums.car-v1.0
C Symbol Type: enumeration
C Babel Version: 0.5.0
C Description: Automatically generated; changes will be lost
C
C babel-version = 0.5.0
C source-line = 25
C

integer porsche
parameter (porsche = 911)
integer ford
parameter (ford = 150)
integer mercedes

parameter (mercedes = 550)

8.4 Implementing Classes in FORTRAN 77

Much of the information from the previous section is pertinent to implementing a SIDL class in FORTRAN 77. The
types of the arguments are as indicated in Table 8.1. Your implementation can call other SIDL methods in which case
follow the rules for client calls.

You should invoke Babel:

% babel --server=f77 file.sidl

or simply

% babel -s=f77 file.sidl

1For information on additional command line options, refer to Section 4.3.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

8.5 Accessing SIDL Arrays From FORTRAN 77 71

This will create a babel.make, numerous C headers, numerous C source files and some FORTRAN 77 source files.
Your job is to fill in the FORTRAN 77 source files with the implementation of the methods. The files you need to edit
all end with Impl.f. All your changes to the file should be made between code splicer pairs. Code between splicer
pairs will be retained by subsequent invocations of Babel; code outside splicer pairs is not. Here is an example of a
code splicer pair. In this example, you would replace the line ”C Insert extra code here... ” with your lines of code.

C DO-NOT-DELETE splicer.begin(_miscellaneous_code_start)
C Insert extra code here...
C DO-NOT-DELETE splicer.end(_miscellaneous_code_start)

Each Impl.f file contains numerous empty subroutines. Each subroutine that you must implement is partially
implemented. The SUBROUTINE statement is written, and the types of the arguments have been declared. You must
provide the body of each subroutine that implements the expected behavior of the method.

There are two implicit methods (i.e. methods that did not appear in the SIDL file) that must also be implemented.
The ctor() method is a constructor function that is run whenever an object is created. The dtor() method is a
destructor function that is run whenever an object is destroyed. If the object has no state, these functions are typically
empty.

The SIDL IOR keeps a pointer (i.e. C void *) for each object that is intended to hold a pointer to the object’s
internal data. The FORTRAN 77 skeleton provides two functions that the FORTRAN 77 developer will need to use to
access the private pointer. The name of the function is derived from the fully qualified type name as follows. Replace
periods with underscores and append get data f or set data f. The first argument is the object pointer (i.e.
self), and the second argument is an opaque . These arguments are 64 bit integers in FORTRAN 77, but the number of
bits stored by the IOR is determined by the sizeof(void *).

Babel/SIDL does not provide a mechanism for FORTRAN 77 to allocate memory to use for the private data pointer.

8.5 Accessing SIDL Arrays From FORTRAN 77

The normal SIDL C function API is available from FORTRAN 77 to create, destroy and access array elements and
meta-data. The function name from FORTRAN has f appended.

For SIDL types dcomplex, double, fcomplex , float, int and long, SIDL provides a method to get direct access to
the array elements. For the other types, you must use the functional API to access array elements.

For type X, there is a FORTRAN 77 function called SIDL X array access f to provide a method to get direct
access. An example is given below. Of course, this will not work if your FORTRAN 77 compiler does array bounds
checking.

integer*4 lower(1), upper(1), stride(1), i, index(1)
integer*4 value, refindex, refarray(1), modval
integer*8 nextprime, tmp
lower(1) = 0
value = 0
upper(1) = len - 1
call SIDL_int__array_create_f(1, lower, upper, retval)
call SIDL_int__array_access_f(retval, refarray, lower,

$ upper, stride, refindex)
do i = 0, len - 1

tmp = value
value = nextprime(tmp)
modval = mod(i, 3)
if (modval .eq. 0) then

call SIDL_int__array_set1_f(retval, i, value)
else

if (modval .eq. 1) then
index(1) = i
call SIDL_int__array_set_f(retval, index, value)

else
C this is equivalent to the SIDL_int__array_set_f(retval, index, value)

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

72 FORTRAN 77 Bindings

refarray(refindex + stride(1)*(i - lower(1))) =
$ value

endif
endif

enddo

To access a two dimensional array, the expression referring to element i, j is

refarray(refindex + stride(1) * (i - lower(1)) + stride(2) * (j - lower(2))

To access a three dimensional array, the expression referring to element i, j k is

refarray(refindex + stride(1) * (i - lower(1)) + stride(2) * (j - lower(2))

You can call things like LINPACK or BLAS if you want, but you should check the stride to make sure the array
is packed as you need it to be. stride(i) indicates the distance between elements in dimension i. A value of 1
means elements are packed densely in dimension i. Negative stride values are possible, and when an array is a slice
of another array, there may be no dimension with a stride of 1.

For a dcomplex array, the reference array should a FORTRAN array of REAL*8 instead of a FORTRAN array of
double complex to avoid potential alignment problems. For a fcomplex array, the reference array is a COMPLEX*8
because we don’t anticipate an alignment problem in this case.

8.6 FORTRAN 77 objects with state

If you need to implement a FORTRAN 77 class with state, you can use SIDL arrays to store the state information.
This is certainly not the only way to implement a FORTRAN 77 class with state, but it’s one that will work wherever
Babel works. For example, if you have a class whose state requires three boolean variables and two double precision
variables, your constructor might look something like the following:

subroutine example_withState__ctor_fi(self)
implicit none
integer*8 self

C DO-NOT-DELETE splicer.begin(example.withState._ctor)
integer*8 statearray, logarray, dblarray
call SIDL_opaque__array_create1d_f(2, statearray)
call SIDL_bool__array_create1d_f(3, logarray)
call SIDL_double__array_create1d_f(2, dblarray)
if ((statearray .ne. 0) .and. (logarray .ne. 0) .and.

$ (dblarray .ne. 0)) then
call SIDL_opaque__array_set1_f(statearray, 0, logarray)
call SIDL_opaque__array_set1_f(statearray, 1, dblarray)

else
C a real implementation would not leak memory like this one

statearray = 0
endif
call example_withState__set_data_f(self, statearray)

C DO-NOT-DELETE splicer.end(example.withState._ctor)
end

Of course, it is up to your application make the association between elements of the arrays and particular state
variables. For example, you could say that element 0 of the double array is the kinematic viscosity and element 1
could be the airspeed velocity of an unladden swallow. Element 0 of the boolean array could specify African (true) or
European (false). The destructor for this class could look something like this:

subroutine example_withState__dtor_fi(self)
implicit none
integer*8 self

C DO-NOT-DELETE splicer.begin(example.withState._dtor)

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

8.6 FORTRAN 77 objects with state 73

integer*8 statearray, logarray, dblarray
call example_withState__get_data_f(self, statearray)
if (statearray .ne. 0) then

call SIDL_opaque__array_get1_f(statearray, 0, logarray)
call SIDL_opaque__array_get1_f(statearray, 1, dblarray)
call SIDL_bool__array_deleteRef_f(logarray)
call SIDL_double__array_deleteRef_f(dblarray)
call SIDL_opaque__array_deleteRef_f(statearray)

C the following two lines are not strictly necessary
statearray = 0
call example_withState__set_data_f(self, statearray)

endif
C DO-NOT-DELETE splicer.end(example.withState._dtor)

end

In this example, an accessor function for the airspeed velocity of an unladden swallow could be implemented as
follows:

subroutine example_withState_getAirspeedVelocity_fi(
$ self, velocity)

implicit none
integer*8 self
real*8 velocity

C DO-NOT-DELETE splicer.begin(example.withState.getAirspeedVelocity)
integer*8 statearray, dblarray
call example_withState__get_data_f(self, statearray)
if (statearray .ne. 0) then

call SIDL_opaque__array_get1_f(statearray, 1, dblarray)
call SIDL_double__array_get1_f(dblarray, 1, velocity)

endif
C DO-NOT-DELETE splicer.end(example.withState.getAirspeedVelocity)

end

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

74 FORTRAN 77 Bindings

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 9

FORTRAN 90 Bindings

Contents

9.1 Introduction . 75
9.2 Basic Types . 75
9.3 Calling Methods From FORTRAN 90 . 76
9.4 Implementing Classes in FORTRAN 90 . 79
9.5 Accessing SIDL Arrays From FORTRAN 90 . 81

9.1 Introduction

This chapter provides an introduction to the FORTRAN 90 bindings supported by Babel. Software written in FOR-
TRAN 90 that illustrates both the caller, or client, side as well as the callee, or server side, is provided.

For ease of comparison, this chapter is patterned after the chapter on FORTRAN 77 bindings. Further, the initial
support described below is very similar to that provided for FORTRAN 77.

9.2 Basic Types

The mapping for simple SIDL types to FORTRAN 90 is given in Table 9.1. For opaque pointers, the equivalent of a
SIDL double is used. That is, the intermediate object reference assumes a 64-bit integer is used to enable portability

Table 9.1: SIDL to FORTRAN 90 type mapping

SIDL TYPE FORTRAN 90 TYPE
int INTEGER (SELECTED INT KIND(9))
long INTEGER (SELECTED INT KIND(18))
float REAL (SELECTED REAL KIND(6,37))
double REAL (SELECTED REAL KIND(15, 307))
bool LOGICAL
char CHARACTER (LEN=1)
string CHARACTER (LEN=*)
fcomplex COMPLEX (SELECTED REAL KIND(6, 37))
dcomplex COMPLEX (SELECTED REAL KIND(15, 307))
enum INTEGER (SELECTED INT KIND(9))
opaque INTEGER (SELECTED INT KIND(18))

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

76 FORTRAN 90 Bindings

between systems with a 32 bit address space and those with a 64 bit address space. On a 32 bit system, the upper 32
bits of these quantities are ignored. Systems with more than 64-bit pointers aren’t currently supported.

For interfaces, classes and arrays, there is a derived type that holds an opaque pointer. For each interface and
class, there are two modules created. In the first module, the derived type for the object and array are defined. In
the second, the methods for the object/interface and arrays of the object/interface are defined. Clients of a class or
interface, typically use the module containing the methods, and it in turn uses the module containing the types.

Generally, clients should treat opaque, interface, class and array values as black boxes. However, there is one value
that is special. A value of zero for any of these quantities indicates that the value does not refer to an object. Zero
is the equivalent of NULL. Any nonzero value is or should be a valid object reference. The method module provides
functions to test whether an interface, class or array value is null or is not null. There is also a subroutine to
initialize the value to set null. Clients should generally initialize new interface or class values to NULL.

The SIDL string type mapping is currently identical to that of the FORTRAN 77 mapping. That is, all FORTRAN
90 strings have a limited fixed size. When implementing a subroutine with an out parameter, the size of the string is
limited to 1024 characters.

Enumerated types are just integer values. The integer parameters are defined in a module.

9.3 Calling Methods From FORTRAN 90

All SIDL methods are implemented as FORTRAN 90 subroutines regardless of whether they have a return value or
not. For object methods, the object or interface pointer is passed as the first argument to the subroutine before all the
formally declared arguments. The exception is static methods, where the object or interface pointer does not appear in
the argument list at all.

When a method has a return value, a variable to hold the return value should be passed as an argument following the
formally declared arguments. When a method can throw an exception (i.e., its SIDL definition has a throws clause), a
variable of type type(SIDL Base Exception t) should be passed to hold a SIDL.BaseException pointer
if an exception is thrown. The exception argument appears after the return value when both occur in a method. After
the call, the client should test this argument using is null or not null. If it is not null, an exception was
thrown by the method, and the method should respond appropriately. When an exception is thrown, the value of all
other arguments is undefined, and the best couse of action is to ignore their values.

The name of the module that holds the method definitions is derived from the fully qualified name of the class or in-
terface. You can generate the module name by replacing all the periods with underscores. For example, the methods for
SIDL.BaseException are defined in a module namedSIDL BaseException in the file SIDL BaseException.F90.
The name of the module holding the derived type of the class or interface is the same as the one holding the methods ex-
cept that it has type appended to it. The types for SIDL.BaseException are called SIDL BaseException t
and SIDL BaseException a, for the array, and they are defined in the file SIDL BaseException type.F90.

The name of the subroutine that FORTRAN 90 clients is the method’s full name from the SIDL description. If
the method is specified as overloaded (i.e., has a name extension), the method’s full name will be used. That is, the
concatenation of the short name and the name extension will be used for a unique method name.

For example, to call the deleteRef() method on a SIDL.BaseInterface interface, you would write:

use SIDL_BaseInterface
type(SIDL_BaseInterface_t) :: interface1, interface2
logical :: areSame
!
! code to initialize interface1 & interface 2 here
!
call deleteRef(interface1)

To call the isSame method on a SIDL.BaseInterface, you would write:

use SIDL_BaseInterface
! later in the code
call isSame(interface1, interface2, areSame)
! areSame holds the return value

To call the queryInt method on a SIDL.BaseInterface, you would write:

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

9.3 Calling Methods From FORTRAN 90 77

use SIDL_BaseInterface
! later
call queryInt(interface1, ’My.Interface.Name’, interface2)
! interface2 holds the return value now

Examples of calls to SIDL overloaded methods are based on the overload sample.sidl file shown in Sec-
tion 3.6. Recall that the file describes three versions of the getValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

use Overload_Sample
type(Overload_Sample_t) :: t
logical :: b1, bretval
integer (selected_int_kind(9)) :: i1, iretval

call new(t)

call getValue (t, iretval)
call getValueInt (t, i1, iretval)
call getValueBool (t, b1, bretval)

For interfaces and classes, there is an implicit method called cast(). There are actually a set of overloaded
methods that support every allowable cast between a type an all its parent types (objects and interfaces). The first
argument is the object/interface to be cast, and the second argument is a variable of the desired type. If the value of the
second argument after the call is not null, the cast was successful; otherwise, the cast failed. cast() is similar
to the queryInt method in SIDL.BaseInterface except it does not increment the reference count of the return
object or interface, and it may return an object or an interface pointer. The queryInt() method always returns an
interface pointer.

For non-abstract classes, there is an implicit method called new(). It creates and returns an instance of the class.
Here are examples of the use of these two methods:

use SIDL_BaseClass
use SIDL_BaseInterface
type(SIDL_BaseClass_t) :: object
type(SIDL_BaseInterface_t) :: interface
! perhaps other code here
call new(object)
call cast(object, interface)

Here is an example call to the addSearchPath(), a static method, in the SIDL.Loader class:

use SIDL_Loader
! later
call addSearchPath(’/try/looking/here’)

Your FORTRAN 90 must manage any object references created by the calls you make.
Here is another example adapted from the Babel regression tests. Package ExceptionTest has a class named Fib

with a method declared in SIDL as follows:

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

Here is the outline of a FORTRAN 90 code fragment to use this method.

use ExceptionTest_Fib
use ExceptionTest_FibException
use ExceptionTest_NegativeValueException
use SIDL_BaseException
type(ExceptionTest_Fib_t) :: fib

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

78 FORTRAN 90 Bindings

type(SIDL_BaseException_t) :: except
type(ExceptionTest_FibException_t) :: fibexcept
type(ExceptionTest_NegativeValueException_t) :: nvexcept
integer (selected_int_kind(9)) :: index, maxdepth, maxval, depth, result
call new(fib)

index = 4
maxdepth = 100
maxvalue = 32000
depth = 0
call getFib(fib, index, maxdepth, maxvalue, depth, result, except)
if (not_null(except)) then

call cast(except, fibexcept)
if (not_null(except2)) then

! do something here with the FibException
else

call cast(except, nvexcept)
! do something here with the NegativeValueException

endif
call deleteRef(except)

else
write (*,*) ’getFib for ’, index, ’ returned ’, result

endif
call deleteRef(fib)

Here is an example of what Babel will produce for an enumerated type with some of the whitespace and comments
reduced for brevity.

! File: enums_car.F90
! Symbol: enums.car-v1.0
! Symbol Type: enumeration
! Babel Version: 0.8.2
! Description: Client-side module for enums.car

module enums_car
! Symbol "enums.car" (version 1.0)

integer (selected_int_kind(9)), parameter :: porsche = 911
integer (selected_int_kind(9)), parameter :: ford = 150
integer (selected_int_kind(9)), parameter :: mercedes = 550

end module enums_car

Here is how you should invoke Babel to create the FORTRAN 90 stubs for an IDL file 1.

% babel --client=f90 file.sidl

or simply

% babel -c=f90 file.sidl

This will create a babel.make file, numerous C headers, numerous C source files, and some FORTRAN 90 files.
The files ending in fStub.c are called by the FORTRAN 90 module which in turn allow FORTRAN 90 to call a
SIDL method. The files ending in type.F90 contain derived type definitions for classes and interfaces., and the
other files ending in .F90 are FORTRAN 90 modules containing methods.

You will need to compile and link the files ending in fStub.c (i.e., STUBSRCS in babel.make) and all the
files ending in .F90 (i.e., STUBMODULESRCS and TYPEMODULESRCS in babel.make) into your application.
Normally, the IOR files (IOR.c) are linked together with the implementation file, so you probably don’t need to
compile them.

1For information on additional command line options, refer to Section 4.3.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

9.4 Implementing Classes in FORTRAN 90 79

9.4 Implementing Classes in FORTRAN 90

Much of the information from the previous section is pertinent to implementing a SIDL class in FORTRAN 90. The
types of the arguments are as indicated in Table 9.1. Your implementation can call other SIDL methods in which case
follow the rules for client calls.

You should invoke Babel:

% babel --server=f90 file.sidl

or simply

% babel -s=f90 file.sidl

This will create a babel.make, numerous C headers, numerous C source files and some FORTRAN 90 source files.
Your job is to fill in the FORTRAN 90 source files with the implementation of the methods. The files you need to edit
all end with Impl.F90 and Mod.F90. All your changes to the file should be made between code splicer pairs.
Code between splicer pairs is retained by subsequent invocations of Babel; code outside splicer pairs is not.

Here is an example of the standard code splicer pairs in generated FORTRAN 90 code. You would replace the
comment ”Insert extra code here... ” associated with the ”miscellaneous code start” splicer pair with code needed for
your implementation such as additional abbreviation file(s) and any local, or private, subroutines. For the subroutine’s
”use” splicer pair, you would replace the ”Insert use statements here...” comment with any use statements that are
needed by the subroutine. Finally, you would add the implementation between the subroutine body’s splicer pairs in
the place of the ”Insert the implementation here...” comment.

! DO-NOT-DELETE splicer.begin(_miscellaneous_code_start)
! Insert extra code here...
! DO-NOT-DELETE splicer.end(_miscellaneous_code_start)

.

.

.

subroutine Pkg_Class_name_mi(args)
! DO-NOT-DELETE splicer.begin(Pkg.Class.name.use)
! Insert use statements here...
! DO-NOT_DELETE splicer.end(Pkg.Class.name.use)
implicit none
integer (selected_int_kind(18)) :: arg

! DO-NOT-DELETE splicer.begin(Pkg.Class.name)
! Insert the implementation here...
! DO-NOT-DELETE splicer.end(Pkg.Class.name)

Each Impl.F90 file contains numerous partially implemented subroutines. The SUBROUTINE and END SUBROUTINE
statements have been generated and the types of the arguments declared. As mentioned above, you must provide any
needed use statements and the body of each subroutine to implement the expected behavior of the method.

There are two implicit methods (i.e., methods that did not appear in the SIDL file) that must also be implemented
if the object is to have state (i.e., data associated with the instance). The ctor() method is a constructor function
that is run whenever an object is created. The dtor() method is a destructor function that is run whenever an object
is destroyed. If there is not state then these functions are typically empty.

The SIDL IOR keeps a pointer for each object that is intended to hold a pointer to the object’s internal data. The
FORTRAN 90 skeleton provides two functions that the FORTRAN 90 developer will need to use to access the private
pointer. The name of the function is derived from the fully qualified type name by replacing periods with underscores
and appending get data m or set data m. The first argument is the object pointer (i.e., self), and the second
is a derived type defined in the Mod.F90 file. Here is an excerpt from a Mod.F90 file for an object whose state
requires a single integer value.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

80 FORTRAN 90 Bindings

#include"sort_SimpleCounter_fAbbrev.h"
module sort_SimpleCounter_impl

type sort_SimpleCounter_private
sequence

! DO-NOT-DELETE splicer.begin(sort.SimpleCounter.private_data)
integer(selected_int_kind(9)) :: count

! DO-NOT-DELETE splicer.end(sort.SimpleCounter.private_data)
end type sort_SimpleCounter_private

type sort_SimpleCounter_wrap
sequence
type(sort_SimpleCounter_private), pointer :: d_private_data

end type sort_SimpleCounter_wrap

end module sort_SimpleCounter_impl

The derived type sort SimpleCounter private is the type where the developer adds data to store the ob-
ject’s state, andsort SimpleCounter wrap exists simply to facilitate transfering the pointer to a sort SimpleCounter private
to and from the IOR.

Typically for a class with state, the developer needs to allocate(pd%d private data) in the constructor,
ctor, and deallocate(pd%d private data) in the destructor, dtor. Here is a concrete example of a

constructor.

recursive subroutine sort_SimpleCounter__ctor_mi(self)
use sort_SimpleCounter
use sort_SimpleCounter_private
! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._ctor.use)
! DO-NOT-DELETE splicer.end(sort.SimpleCounter._ctor.use)
implicit none
type(sort_SimpleCounter_t) :: self

! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._ctor)
type(sort_SimpleCounter_wrap) :: dp
allocate(dp%d_private_data)
dp%d_private_data%count = 0
call sort_SimpleCounter__set_data_m(self, dp)

! DO-NOT-DELETE splicer.end(sort.SimpleCounter._ctor)
end subroutine sort_SimpleCounter__ctor_mi

Here is the corresponding destructor.

recursive subroutine sort_SimpleCounter__dtor_mi(self)
use sort_SimpleCounter
use sort_SimpleCounter_private
! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._dtor.use)
! DO-NOT-DELETE splicer.end(sort.SimpleCounter._dtor.use)
implicit none
type(sort_SimpleCounter_t) :: self

! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._dtor)
type(sort_SimpleCounter_wrap) :: dp
call sort_SimpleCounter__get_data_m(self, dp)
deallocate(dp%d_private_data)

! DO-NOT-DELETE splicer.end(sort.SimpleCounter._dtor)
end subroutine sort_SimpleCounter__dtor_mi

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

9.5 Accessing SIDL Arrays From FORTRAN 90 81

9.5 Accessing SIDL Arrays From FORTRAN 90

The normal SIDL C function API is available from FORTRAN 90 to create, destroy, and access array elements
and meta-data. The array routines are in a module. For SIDL.BaseException, the array module is name
SIDL BaseException array, and the array module is defined in the SIDL BaseException array.F90.

For SIDL types dcomplex, double, fcomplex , float, int, and long, SIDL provides a method to get direct access to
the array elements. For the other types, you must use the functional API to access array elements.

In the module for a base types, for example, there is a FORTRAN 90 function called access to provide a method
to get direct access. This is illustrated in the example below. Of course, this will not work if your FORTRAN 90
compiler does array bounds checking.

type(SIDL_int_a) :: intarray
integer (selected_int_kind(9)) :: lower(1), upper(1), stride(1), i, index(1)
integer (selected_int_kind(9)) :: value, refindex, refarray(1), modval
integer (selected_int_kind(18)) :: nextprime, tmp
lower(1) = 0
value = 0
upper(1) = len - 1
call createCol(lower, upper, intarray) ! dimension determined by lower
call access(intarray, refarray, lower, upper, stride, refindex)
do i = 0, len - 1

tmp = value
value = nextprime(tmp)
modval = mod(i, 3)
if (modval .eq. 0) then

call set(intarray, i, value)
else

if (modval .eq. 1) then
index(1) = i
call set(intarray, index, value)

else
!
! equivalent to the set(intarray, index, value)
!
refarray(refindex + stride(1)*(i - lower(1))) = value

endif
endif

enddo

To access a two dimensional array, the expression referring to element i, j is

refarray(refindex + stride(1) * (i - lower(1)) + stride(2) * (j - lower(2))

To access a three dimensional array, the expression referring to element i, j, k is

refarray(refindex + stride(1) * (i - lower(1)) + stride(2) * (j - lower(2)) + stride(3) * (k - lower(3))

You can call things like LINPACK or BLAS if you want, but you should check the stride to make sure the array
is packed as needed. You can check stride(i), which indicates the distance between elements in dimension i. A
value of 1 means elements are packed densely in dimension i. Negative stride values are possible, and when an array
is a slice of another array, there may be no dimension with a stride of 1.

For a dcomplex array, the reference array should be a FORTRAN array of REAL (SELECTED REAL KIND(15,
307)) instead of a FORTRAN array of double complex to avoid potential alignment problems. For a fcomplex
array, the reference array is a COMPLEX (SELECTED REAL KIND(15, 307)) because we don’t anticipate an
alignment problem in this case.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

82 FORTRAN 90 Bindings

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 10

Java Bindings

Contents

10.1 Introduction . 83

10.1 Introduction

This chapter provides an introduction to the Java bindings for SIDL. It includes some of the information needed to
implement classes in Java and to use interfaces and objects using a Java client.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

84 Java Bindings

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 11

Python Bindings

Contents

11.1 How to Create a SIDL Object in Python . 85

11.2 How to Cast SIDL Objects in Python . 85

11.3 How to Call Methods from Python . 86

11.4 Building Python Extension Modules . 86

11.5 Setting up to Run Python . 87

11.6 Notes . 87

11.7 How to Implement SIDL Objects in Python . 88

11.1 How to Create a SIDL Object in Python

(once you’ve built the Python extension module)
You need to import the extension module and then calling a method to create an instance. If you have a class whose

fully qualified name is x.y.z, you would say:

>>> import x.y.z
>>> obj = x.y.z.z()

The last part of the class name is repeated. You can also use from x.y.z import * if you prefer; although,
you must guarantee that there are no namespace collisions.

In some cases, the Python extension module may be name zmodule.so instead of simply z.so. This might
tempt you to say import x.y.zmodule instead of just import x.y.z; resist this temptation!

11.2 How to Cast SIDL Objects in Python

Let’s say you have an object obj, and you would like to see if it is an instance of a SIDL class or interface whose
fully qualified name is x.y.z. Here is how you do it.

>>> import x.y.z
>>> zobj = x.y.z.z(obj)

Of course, you don’t need the import if you know that x.y.z has already been imported. If zobj is not equal to
None, the cast was successful.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

86 Python Bindings

11.3 How to Call Methods from Python

Once you have created an object, you call methods on it using normal Python method calls. The arguments to the
method only include the in and inout arguments, and the return value of the Python method includes the SIDL
return value and the inout and out parameters. Hopefully, this will seem natural to Python programmers. For the
following example, the object obj has a method passeverywhere with the following SIDL declaration:

double passeverywhere(in double d1, out double d2, inout double d3);

You can see the Python calling signature with print obj.passeverywhere. doc . Here is what that
shows for this example:

$ python
>>> import Args.Cdouble
>>> obj = Args.Cdouble.Cdouble()
>>> print obj.passeverywhere.__doc__
passeverywhere(in double d1,

inout double d3)
RETURNS

(double _return,
out double d2,
inout double d3)

In the method documentation, the SIDL method’s return value is called return; and unless the method is void,
the return value always appears first. The fact that return starts with an underbar should alert you to the fact that it
is not a parameter because parameter names cannot start with an underbar. The document comments from the SIDL
file (i.e. comments enclosed in /** */ comments) appear below the Babel generated signature documentation.

Static methods of a class are available in the Python x.y.z namespace assuming you use the import x.y.z
command. Static methods have documentation just like class methods.

Examples of calls to SIDL overloaded methods are based on the overload sample.sidl file shown in Sec-
tion 3.6. Recall that the file describes three versions of the getValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

b1 = 1
i1 = 1

t = Overload.Sample.Sample()

nresult = t.getValue()
iresult = t.getValueInt(i1)
bresult = t.getValueBool(b1)

11.4 Building Python Extension Modules

SIDL creates a Setup.in file that can be used to build the Python extension modules that you create. Copy
Makefile.pre.in from your Python distribution into the directory containing Setup.in. There are three make
variables you need to set when your building your Python extension module.

• EXTRAFLAGS — This is for the user to pass in additional compilation flags.

• SIDLLIBDIR — This should be a path (absolute or relative) to the directory where the SIDL runtime library
file (i.e. the shared library/dynamic link library) resides.

• SIDLPYHDRS — This should be a path (absolute or relative) to the top directory in which the basic SIDL
Python extensions are installed.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

11.5 Setting up to Run Python 87

• SIDLHDRS This should be a path (absolute or relative) to the directory where the SIDL C header files are
installed.

Here is a hypothetical example:

% make -f Makefile.pre.in SIDLLIBDIR=/usr/local/lib \
SIDLPYHDRS=/usr/local/include SIDLHDRS=/usr/local/include/SIDL
% make SIDLLIBDIR=/usr/local/lib/libsidl.so \
SIDLPYHDR=/usr/local/include SIDLHDRS=/usr/local/include/SIDL boot

It is unlikely that any installation actually uses those settings.

11.5 Setting up to Run Python

Here I assume that you’ve installed Babel in directories rooted at $PREFIX. You need to have $PREFIX/python
in your PYTHONPATH environment variable in addition to the directory where you are doing your work.

On many systems, you will need $PREFIX/lib in your LD LIBRARY PATH (or whatever system setting con-
trols which directories are searched for shared libraries/dynamic link libraries).

You will likely need to use SIDL DLL PATH (a semicolon separated path) to provide the path to the directory that
holds the shared library/dynamic link library containing the implementation of the SIDL objects.

11.6 Notes

The Python binding for SIDL long uses Python’s unlimited precision integer data type, so it will not behave exactly like
a 64 bit integer (i.e. there is no overflow). For Python versions before 2.2, your code needs to guarantee that a Python
unlimited precision integer is used whenever a SIDL long is needed. For example, if you want to call a method whose
SIDL signature is bool isPrime(long num), calling isPrime(1)will fails; but calling isPrime(1L)will
work fine.

The Python binding for an array of SIDL longs uses an array of 32 bit integers. This problem comes about because
Numeric Python does provide an array of 64 bit integers.

What does this error message mean?

>>> import x.y.Zmodule
Traceback (innermost last):
File "<stdin>", line 1, in ?
ImportError: dynamic module does not define init function (initZmodule)

Is the name of your SIDL interface/class x.y.Z or x.y.Zmodule, if it’s the former, you should say import
x.y.Z. If this isn’t the problem, submit a bug report for Babel. It might be informative to look at the symbol of
the shared library/dynamic link library using a tool like nm. I suppose it’s also worth checking the PYTHONPATH
environment variable to make sure it’s pointing to the right place.

>>> import x.y.Z
Fatal Python error: Cannot load implementation for SIDL class x.y.Z
Abort (core dumped)

This means that the Python stub code (the code that links Python to SIDL’s independent object representation
(IOR)) failed in its attempt to load the shared library or dynamic link library containing the implementation of SIDL
class x.y.Z. Make sure the environment variable SIDL DLL PATH lists all the directories where the shared li-
braries/dynamic link libraries for your SIDL objects/interfaces are stored. SIDL DLL PATH is a semicolon separated
list of directories where SIDL client stubs will search for shared libraries required for SIDL classes and interfaces.
Make sure the directory in which the SIDL runtime resides is in the LD LIBRARY PATH (or whatever your machine’s
mechanism for locating shared library files is).

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

88 Python Bindings

>>> import x.y.Z
Fatal Python error: Cannot load implementation for SIDL interface x.y.Z
Abort (core dumped)

This is the same problem for an interface as described immediately above for a class.

11.7 How to Implement SIDL Objects in Python

To build server side Python, you must have Python compiled as a shared library or dynamically link library. The
standard Python build only builds the necessary shared library on a few platforms — none of which are target platforms
for Babel. Some Linux distributions include a Python shared library, and it is possible to make a Python shared library
on Solaris. The Python shared library should contain the objects from libpythonx.y.a where x.y is your Python version.
Making a shared library is different on each platform, so it is not covered here.

To implement an object in Python, first you must run Babel to create the Python server side bindings 1.

% babel --server=python file.sidl

or simply

% babel -s=python file.sidl

This creates the IOR, Python skeleton (pSkel), and Python launch (pLaunch) files in your currect directory, and it
will create tree of subdirectories based on the package hierarchy found in file.sidl. The IOR, pSkel and pLaunch files
must be compiled and place in a shared library (in most cases).

The tree of subdirectories created by Babel includes Python implementation files whose name ends with Impl.py
and Python extension modules for the Python client side binding (Module.h and Module.c). The extension
modules need to be compiled as above in section 11.4, and you need to fill in the implementations in the Impl.py
files.

Babel generates the outline of the implementation. It creates a class definition and empty methods for you to fill
in the each Impl.py file. If you put your code between the comments as indicated, your code will be preserved if
you rerun Babel. Any changes out side the comment blocks will be lost if you rerun Babel. Here is an example of a
method implementation:

def passeverywhere(self, d1, d3):
#
SIDL EXPECTED INCOMING TYPES
============================
double d1
double d3
#

#
SIDL EXPECTED RETURN VALUE(s)
=============================
(_return, d2, d3)
double _return
double d2
double d3
#

DO-NOT-DELETE splicer.begin(passeverywhere)
if (d1 == 3.14):

1For information on additional command line options, refer to Section 4.3.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

11.7 How to Implement SIDL Objects in Python 89

retval = 3.14
else:

retval = 0
return (retval, 3.14, -d3)
DO-NOT-DELETE splicer.end(passeverywhere)

Babel generated everything except the code that appears between the splicer.begin and splicer.end
comments.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

90 Python Bindings

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 12

SIDL Backend

Contents

12.1 Introduction . 91

12.2 Purpose . 91

12.3 Generated versus Original SIDL files . 91

12.4 XML File Comparison . 93

12.5 Babel Command Line Options . 93

12.1 Introduction

This chapter introduces the SIDL backend associated with symbols that may originate from a SIDL file or the corre-
sponding Extensible Markup Language (XML) representation. Unlike most of the other supported language bindings,
the output from this backend is textual in nature. That is, it is the textual, human-readable form of the interfaces
description. An alternative text form, XML that is, which is also supported is described in Chapter 13.

12.2 Purpose

The primary reason for having a SIDL backend is to provide a mechanism for generating human-readable text for
interfaces that are written in conformant XML. It is important to emphasize that Babel requires the XML to conform
to the SIDL DTD in order to benefit from this feature.

Generating SIDL provides a feature to collaborators who are interested in experimenting with the XML form
of the interfaces. Such groups should find the more human-readable descriptions of the interfaces to be helpful for
distribution and discussion.

12.3 Generated versus Original SIDL files

Generated SIDL files may differ from their original SIDL files in several respects in terms of content as well as layout.
These differences are summarized below.

Packages. The code generation is limited to one high-level package per generated file. In fact, the name of the
generated file is currently defined to be the concatenation of the name of the highest-level package and .̈sidl.̈

Versioning. The generation of requires statements is inferred from the symbols that actually appear in the associated
interface descriptions. The intent is to provide a requires statement for only the highest level package needed of a
given version. Consequently, requires and imports statements that were not necessary for resolving symbols will
not appear. Also, fully qualified names will be shortened in the generated files due to the automatic generation

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

92 SIDL Backend

of the associated requires statement(s). Finally, since an import and require statement can be used in a SIDL file
and no distinction is made in the XML, only a require statement will appear in the generated file.

Implements. Since there is no distinction between implements-all and implements in the XML version of
the interfaces, the generated code outputs implements along with the inherited methods.

Comments. Babel preserves only document, or doc, comments so any comments that do not conform will not appear
in the generated file 1.

Whitespace. Obviously there may be whitespace differences in the generated file. These include indentation, blank
spaces and lines, and brace placement.

As an example, suppose we have a package in the file foo.sidl. The original file’s contents are:

package foo version 1.0 {

class A {}

package bar version 2.0 {
class B {}

}

}

The resulting contents of the generated SIDL file are:

package foo version 1.0 {

class A {
}

package bar version 2.0 {

class B {
}

}

}

Notice the differences in white space. To illustrate more features, further suppose we have a package in the file
fooTest.sidl. The original file’s contents are:

// An ignored comment
require foo version 1.0;
require foo.bar version 2.0;

/**
* Test of doc comment with XML special characters < & >.
*/
package fooTest version 0.1 {

/**
* Another doc comment for an empty class.
*/

class A extends foo.bar.B {}

class B extends foo.A {}
}

1For more information on comments and doc-comments, refer to Comments and Doc-Comments in Section 3.2.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

12.4 XML File Comparison 93

The resulting contents of the generated SIDL file are:

require foo version 1.0;
require foo.bar version 2.0;

/**
* Test of doc comment with XML special characters < & >.
*/
package fooTest version 0.1 {

/**
* Another doc comment for an empty class.
*/

class A extends foo.bar.B {
}

class B extends foo.A {
}

}

Here we see the exclusion of non-document comments and the retention of document comments. Refer to Sec-
tion 3.2 and Appendix C for more information about document comments.

12.4 XML File Comparison

Testing has revealed that XML generated from the original SIDL file compared to XML generated from generated
SIDL files have only minor differences. In fact, the differences are limited to specific metadata fields. Specifi-
cally, the date, source-url, and source-line entries can differ. The dates, however, will be the same if the -̈–suppress-
timestampöption was used when both XML files were generated. Similarly, the source-line entries will be the same
if the package started on the same line in both the original and generated SIDL files. The latter can happen if, for
instance, there are no non-doc comments in the original file.

12.5 Babel Command Line Options

To generate SIDL from a file using the default repository to resolve symbols, you should invoke Babel as follows 2:

% babel --text=SIDL file.sidl

or use the short form

% babel -tSIDL file.sidl

Alternatively, you can generate SIDL from XML symbols, again assuming the default respository is used to resolve
symbols, by typing the following at the command line:

% babel --text=SIDL packagename

or use the short form

% babel -tSIDL packagename

2For information on additional command line options, refer to Section 4.3.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

94 SIDL Backend

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Chapter 13

XML Backend

Contents

13.1 Introduction . 95

13.2 Purpose . 95

13.3 Basic Structure . 95

13.4 Command Line Options . 101

13.1 Introduction

This chapter introduces the XML representation supported by Babel. Here we describe the motivation for having an
XML backend and the basic structure of a conformant XML file. To illustrate, a few of the SIDL symbol XML files
will be presented.

Details regarding the layout of XML files can be obtained by referring to the Document Type Definition (DTD)
provided in Appendix C. For more on the type repositories, refer to[XML Repositories in Section 3.2.

13.2 Purpose

The XML backend is a key feature of Babel. It provides the basis upon which the symbol, or type, repository depends.
SIDL files should be translated into their XML representations and stored in the type repository. This is the case for
the SIDL interfaces and classes that are provided as part of the Babel toolkit.

13.3 Basic Structure

Each generated XML file specifies the interfaces for a given SIDL Symbol in an expanded textual representation.
Although the structure of a given file depends upon the type of symbol it contains, the basic layout consists of a set of
common elements followed by symbol-specific elements.

Common Elements

The common elements are prolog, document type, name, metadata, and comment. These elements, which are described
below, are followed by symbol-specific information.

Prolog. The prolog simply identifies the XML version and encoding scheme associated with the file.

Document Type. The document type declaration states the document contains a Symbol and it identifies the associated
DTD (i.e., SIDL.dtd).

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

96 XML Backend

Name. The symbol name is the first element within the symbol tag pair and it identifies the name and version of the
SIDL symbol that is described in the file.

Metadata. The metadata element itendifies the date the XML file was generated1 along with a set of three key-value
pair entries. The first, source-url, identifies the URL of the SIDL file that was used to generate the XML file.
The second, source-line, identifies the line within the SIDL file at which the symbol was first detected. Finally,
babel-version identifies the version of Babel that was used to generate the XML file.

Comment. The comment tag is used to save off any comment that is associated with the symbol.

Packages

In addition to the common elements, packages retain elements and attributes associated with SIDL packages. These
include whether or not the package is final along with a list of the symbols contained within the package. The list of
symbols consists of the tuple: name, type, and version.

For example, the XML representation of the toplevel SIDL package (i.e., SIDL) is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Symbol PUBLIC "-//CCA//SIDL Symbol DTD v1.1//EN" "SIDL.dtd">
<Symbol>

<SymbolName name="SIDL" version="0.8.2"/>
<Metadata date="20030320 13:29:02 PST">

<MetadataEntry key="source-url" value="file:/home/dahlgren/RELEASE/linux_kcc/share/../../babel/runtime/sidl/sidl.sidl"/>
<MetadataEntry key="source-line" value="40"/>
<MetadataEntry key="babel-version" value="0.8.2"/>

</Metadata>
<Comment>

The <code>SIDL</code> package contains the fundamental type and interface
definitions for the <code>SIDL</code> interface definition language. It
defines common run-time libraries and common base classes and interfaces.
Every interface implicitly inherits from <code>SIDL.BaseInterface</code>
and every class implicitly inherits from <code>SIDL.BaseClass</code>.

</Comment>
<Package final="false">

<PackageSymbol name="BaseInterface" type="interface" version="0.8.2"/>
<PackageSymbol name="BaseClass" type="class" version="0.8.2"/>
<PackageSymbol name="BaseException" type="class" version="0.8.2"/>
<PackageSymbol name="DLL" type="class" version="0.8.2"/>
<PackageSymbol name="Loader" type="class" version="0.8.2"/>
<PackageSymbol name="ClassInfo" type="interface" version="0.8.2"/>
<PackageSymbol name="ClassInfoI" type="class" version="0.8.2"/>

</Package>
</Symbol>

Interfaces

Similarly, the XML for interface symbols contain the common elements. In addition, they retain elements and at-
tributes associated with SIDL interfaces. These include any extensions, parent interfaces it implements, and its meth-
ods. Method information includes its name, communication mode, short name, name extension (for languages that
don’t support method overloading), comment, return type, argument list, and exception list.

For example, the XML representation of SIDL.BaseInterface is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Symbol PUBLIC "-//CCA//SIDL Symbol DTD v1.1//EN" "SIDL.dtd">
<Symbol>

1Assuming the -̈–suppress-timestamp öption was not used.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

13.3 Basic Structure 97

<SymbolName name="SIDL.BaseInterface" version="0.8.2"/>
<Metadata date="20030320 13:29:02 PST">

<MetadataEntry key="source-url" value="file:/home/dahlgren/RELEASE/linux_kcc/share/../../babel/runtime/sidl/sidl.sidl"/>
<MetadataEntry key="source-line" value="47"/>
<MetadataEntry key="babel-version" value="0.8.2"/>

</Metadata>
<Comment>

Every interface in <code>SIDL</code> implicitly inherits
from <code>BaseInterface</code>, and it is implemented
by <code>BaseClass</code> below.

</Comment>
<Interface>

<ExtendsBlock/>
<AllParentInterfaces/>
<MethodsBlock>

<Method communication="normal" copy="false" definition="abstract" extension="" shortname="addRef">
<Comment>

<p>
Add one to the intrinsic reference count in the underlying object.
Object in <code>SIDL</code> have an intrinsic reference count.
Objects continue to exist as long as the reference count is
positive. Clients should call this method whenever they
create another ongoing reference to an object or interface.
</p>
<p>
This does not have a return value because there is no language
independent type that can refer to an interface or a
class.
</p>

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="deleteRef">

<Comment>
Decrease by one the intrinsic reference count in the underlying
object, and delete the object if the reference is non-positive.
Objects in <code>SIDL</code> have an intrinsic reference count.
Clients should call this method whenever they remove a
reference to an object or interface.

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="isSame">

<Comment>
Return true if and only if <code>obj</code> refers to the same
object as this object.

</Comment>
<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="iobj">
<Type type="symbol">

<SymbolName name="SIDL.BaseInterface" version="0.8.2"/>
</Type>

</Argument>
</ArgumentList>

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

98 XML Backend

<ThrowsList/>
</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="queryInt">

<Comment>
Check whether the object can support the specified interface or
class. If the <code>SIDL</code> type name in <code>name</code>
is supported, then a reference to that object is returned with the
reference count incremented. The callee will be responsible for
calling <code>deleteRef</code> on the returned object. If
the specified type is not supported, then a null reference is
returned.

</Comment>
<Type type="symbol">

<SymbolName name="SIDL.BaseInterface" version="0.8.2"/>
</Type>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="isType">

<Comment>
Return whether this object is an instance of the specified type.
The string name must be the <code>SIDL</code> type name. This
routine will return <code>true</code> if and only if a cast to
the string type name would succeed.

</Comment>
<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="getClassInfo">

<Comment>
Return the meta-data about the class implementing this interface.

</Comment>
<Type type="symbol">

<SymbolName name="SIDL.ClassInfo" version="0.8.2"/>
</Type>
<ArgumentList/>
<ThrowsList/>

</Method>
</MethodsBlock>

</Interface>
</Symbol>

Classes

Class definitions are almost identical to that of interfaces except for additional attributes. The additional attribute,
which include whether or not the class is final. Recall that Babel/SIDL supports only single inheritance of classes;
therefore, only a single class will appear in the extends block. If one does not appear in the original SIDL file, by
default the class will extend SIDL.Baseclase.

For example, the XML representation of SIDL.BaseClass is:

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

13.3 Basic Structure 99

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Symbol PUBLIC "-//CCA//SIDL Symbol DTD v1.1//EN" "SIDL.dtd">
<Symbol>

<SymbolName name="SIDL.BaseClass" version="0.8.2"/>
<Metadata date="20030320 13:29:02 PST">

<MetadataEntry key="source-url" value="file:/home/dahlgren/RELEASE/linux_kcc/share/../../babel/runtime/sidl/sidl.sidl"/>
<MetadataEntry key="source-line" value="109"/>
<MetadataEntry key="babel-version" value="0.8.2"/>

</Metadata>
<Comment>

Every class implicitly inherits from <code>BaseClass</code>. This
class implements the methods in <code>BaseInterface</code>.

</Comment>
<Class abstract="false">

<Extends/>
<ImplementsBlock>

<SymbolName name="SIDL.BaseInterface" version="0.8.2"/>
</ImplementsBlock>
<AllParentClasses/>
<AllParentInterfaces>

<SymbolName name="SIDL.BaseInterface" version="0.8.2"/>
</AllParentInterfaces>
<MethodsBlock>

<Method communication="normal" copy="false" definition="final" extension="" shortname="addRef">
<Comment>

<p>
Add one to the intrinsic reference count in the underlying object.
Object in <code>SIDL</code> have an intrinsic reference count.
Objects continue to exist as long as the reference count is
positive. Clients should call this method whenever they
create another ongoing reference to an object or interface.
</p>
<p>
This does not have a return value because there is no language
independent type that can refer to an interface or a
class.
</p>

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="final" extension="" shortname="deleteRef">

<Comment>
Decrease by one the intrinsic reference count in the underlying
object, and delete the object if the reference is non-positive.
Objects in <code>SIDL</code> have an intrinsic reference count.
Clients should call this method whenever they remove a
reference to an object or interface.

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="final" extension="" shortname="isSame">

<Comment>
Return true if and only if <code>obj</code> refers to the same
object as this object.

</Comment>

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

100 XML Backend

<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="iobj">
<Type type="symbol">

<SymbolName name="SIDL.BaseInterface" version="0.8.2"/>
</Type>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="normal" extension="" shortname="queryInt">

<Comment>
Check whether the object can support the specified interface or
class. If the <code>SIDL</code> type name in <code>name</code>
is supported, then a reference to that object is returned with the
reference count incremented. The callee will be responsible for
calling <code>deleteRef</code> on the returned object. If
the specified type is not supported, then a null reference is
returned.

</Comment>
<Type type="symbol">

<SymbolName name="SIDL.BaseInterface" version="0.8.2"/>
</Type>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="normal" extension="" shortname="isType">

<Comment>
Return whether this object is an instance of the specified type.
The string name must be the <code>SIDL</code> type name. This
routine will return <code>true</code> if and only if a cast to
the string type name would succeed.

</Comment>
<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="final" extension="" shortname="getClassInfo">

<Comment>
Return the meta-data about the class implementing this interface.

</Comment>
<Type type="symbol">

<SymbolName name="SIDL.ClassInfo" version="0.8.2"/>
</Type>
<ArgumentList/>
<ThrowsList/>

</Method>
</MethodsBlock>

</Class>
</Symbol>

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

13.4 Command Line Options 101

13.4 Command Line Options

XML must be generated from a SIDL file. The Babel command line is as follows 2:

% babel --text=XML file.sidl

or simply

% babel -tXML file.sidl

In both cases, the use of the default repository is assumed for resolving symbols. In addition, the output will appear
in the default output directory.

2For information on additional command line options, refer to Section ??.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

102 XML Backend

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Part III

Appendices

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Appendix A

Acronyms

A.1 Introduction

This appendix provides a list of acronyms, their meanings, and optional comments. The convention that has been used
is to provide URLs to sites that can provide more information about technologies whose acronyms appear.

ACRONYM MEANING COMMENT
BLAS Basic Linear Algebra Subprograms http://www.netlib.org/blas/
BNF BackusNaur Form
CCA Common Component Architecture http://www.ccaforum.org/
COM Common Object Model http://www.microsoft.com/
DLL Dynamically Linked Library
DTD Document Type Definition Defines the grammar of the XML files.

HTML HyperText Markup Language http://www.w3.org/MarkUp/
IOR Intermediate Object Representation
JNI Java Native Interface

OMG Object Management Group http://www.omg.org/
PIC Position Independent Code

SIDL Scientific Interface Definition Language
SO Shared Object

SPMD Single Program Multiple Data
SWIG Simplified Wrapper and Interface Generator http://www.swig.org/
URL Uniform Resource Locater Often thought of as a pointer to a web resource.
XML Extensible Markup Language http://www.w3.org/XML/
VM Virtual Machine

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

106 Acronyms

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Appendix B

SIDL Grammar

Contents

B.1 Introduction . 107
B.2 Backus-Naur Form . 107

B.1 Introduction

This appendix provides an overview of the Scientific Interface Definition Language (SIDL) grammar. For simplicity,
the grammar is described in extended BNF.

B.2 Backus-Naur Form

The grammar discribed here was extracted from the JavaCC productions defined in the Babel source code. Since the
comments associated with the productions appeared to be sufficiently descriptive, they have been retained to serve as
the explanation of the key productions.

/*
* The following lexical tokens are ignored.
*/
SKIP : {

< " " >
| < "\n" >
| < "\r" >
| < "\t" >
| < "//" (˜["\n","\r"])* ("\n" | "\r" | "\r\n") >
| < "/**/" >
| < "/*" (˜["*"])+ "*" ("*" | ˜["*","/"] (˜["*"])* "*")* "/" >

{ checkComment(image, input_stream.getBeginLine(),
input_stream.getEndLine()); }

| < "[" >
| < "]" >
}

/*
* The following lexical states define the transitions necessary to
* parse documentation comments. Documentation comments may appear
* anywhere in the file, although they are only saved if they preceed
* definition or method productions. Documentation comments are
* represented by "special tokens" in the token list.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

108 SIDL Grammar

*/
SPECIAL_TOKEN : {

< T_COMMENT : "/**" > : BEGIN_DOC_COMMENT
}

<BEGIN_DOC_COMMENT> SKIP : {
< " " >

| < "\t" >
| < "*/" > : DEFAULT
| < ("\n" | "\r" | "\r\n") > : LINE_DOC_COMMENT
| < "" > : IN_DOC_COMMENT
}

<LINE_DOC_COMMENT> SKIP : {
< " " >

| < "\t" >
| < "*/" > : DEFAULT
| < "*" (" ")?> : IN_DOC_COMMENT
| < "" > : IN_DOC_COMMENT
}

<IN_DOC_COMMENT> SPECIAL_TOKEN : {
< "*/" > { trimMatch(matchedToken); } : DEFAULT

| < ("\n" | "\r" | "\r\n") > { trimMatch(matchedToken); } : LINE_DOC_COMMENT
}

<IN_DOC_COMMENT> MORE : {
< ˜[] >

}

/*
* The following keywords are the lexical tokens in the SIDL grammar.
*/
TOKEN : {

< T_ABSTRACT : "abstract" >
| < T_CLASS : "class" >
| < T_COPY : "copy" >
| < T_ENUM : "enum" >
| < T_EXTENDS : "extends" >
| < T_IMPORT : "import" >
| < T_IN : "in" >
| < T_INOUT : "inout" >
| < T_FINAL : "final" >
| < T_IMPLEMENTS : "implements" >
| < T_IMPLEMENTS_ALL : "implements-all" >
| < T_INTERFACE : "interface" >
| < T_LOCAL : "local" >
| < T_ONEWAY : "oneway" >
| < T_OUT : "out" >
| < T_PACKAGE : "package" >
| < T_REQUIRE : "require" >
| < T_STATIC : "static" >
| < T_THROWS : "throws" >
| < T_VERSION : "version" >
| < T_VOID : "void" >

| < T_ARRAY : "array" >
| < T_BOOLEAN : "bool" >
| < T_CHAR : "char" >

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

B.2 Backus-Naur Form 109

| < T_DCOMPLEX : "dcomplex" >
| < T_DOUBLE : "double" >
| < T_FCOMPLEX : "fcomplex" >
| < T_FLOAT : "float" >
| < T_INT : "int" >
| < T_LONG : "long" >
| < T_OPAQUE : "opaque" >
| < T_STRING : "string" >

| < T_IDENTIFIER : <T_LETTER> (<T_LETTER> | <T_DIGIT> | "_")* >
| < T_VERSION_STRING : <T_INTEGER> ("." <T_INTEGER>)+ >
| < T_INTEGER : (["-","+"])? (<T_DIGIT>)+ >
| < T_DIGIT : ["0"-"9"] >
| < T_LETTER : ["a"-"z","A"-"Z"] >

| < T_CLOSE_ANGLE : ">" >
| < T_CLOSE_CURLY : "}" >
| < T_CLOSE_PAREN : ")" >
| < T_COMMA : "," >
| < T_EQUALS : "=" >
| < T_OPEN_ANGLE : "<" >
| < T_OPEN_CURLY : "{" >
| < T_OPEN_PAREN : "(" >
| < T_SEMICOLON : ";" >
| < T_SCOPE : "." >

| < T_COLUMN_MAJOR : "column-major" >
| < T_ROW_MAJOR : "row-major" >

| < T_CATCH_ALL : ˜[] >
}

/**
* A SIDL Specification contains zero or more version productions followed
* by zero or more import productions followed by zero or more package
* productions followed by the end-of-file. Before leaving the specification
* scope, resolve all references in the symbol table.
*/
Specification ::= (Require)* (Import)* (Package)* <EOF>

/**
* A SIDL Require production begins with a "require" token and is followed
* by a scoped identifer, a "version" token, and a version number. The
* scoped identifier must be not defined. The version number is specified
* in the general form "V1.V2...Vn" where Vi is a non-negative integer.
*/
Require ::=
<T_REQUIRE> ScopedIdentifier
<T_VERSION> (<T_INTEGER> | <T_VERSION_STRING>) <T_SEMICOLON>

/**
* A SIDL Import production begins with an "import" token and is followed
* by a scoped identifier which is optionally followed by a "version" token
* and a version number. The scoped identifier must be defined and it must
* be a package. The version number is specified in the general form
* "V1.V2...Vn" where Vi is a non-negative integer. A particular package
* may only be included in one import statement. The import package name
* is added to the default search path. At the end of the parse, any import
* statements that were not used to resolve a symbol name are output as

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

110 SIDL Grammar

* warnings.
*/
Import ::=
<T_IMPORT> ScopedIdentifier
[<T_VERSION> (<T_INTEGER> | <T_VERSION_STRING>)] <T_SEMICOLON>

/**
* The SIDL package specification begins with a "package" token followed by
* a scoped identifier. The new package namespace begins with an open curly
* brace, a set of zero or more definitions, and a close curly brace. The
* closing curly brace may be followed by an optional semicolon. The package
* identifier must have a version defined for it, and it must not have been
* previously defined as a symbol or used as a forward reference. The parent
* of the package must itself be a package and must have been defined. The
* symbols within the curly braces will be defined within the package scope.
*/
Package ::=
[<T_FINAL>] <T_PACKAGE> ScopedIdentifier
[<T_VERSION> (<T_INTEGER> | <T_VERSION_STRING>)]
<T_OPEN_CURLY> (Definition)* <T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* A SIDL Definition production consists of a class, interface, enumerated
* type, or package.
*/
Definition ::= (Class | Enum | Interface | Package)

/**
* A SIDL class specification begins with an optional abstract keyword
* followed by the class token followed by an identifier. The abstract
* keyword is required if and only if there are abstract methods in the
* class. The class keyword is followed by an identifer. The identifier
* string may not have been previously defined, although it may have been
* used as a forward reference. The identifier string may be preceeded
* by a documentation comment. A class may optionally extend another class;
* if no class is specified, then the class will automatically extend the
* SIDL base class (unless it is itself the SIDL base class). Then parse
* the implements-all and implements clauses. The interfaces parsed during
* implements-all are saved in a set and then all those methods are defined
* at the end of the class definition. The methods block begins with an
* open curly-brace followed by zero or more methods followed by a close
* curly-brace and optional semicolon.
*/
Class ::=
[<T_ABSTRACT>] <T_CLASS> Identifier
[<T_EXTENDS> ScopedIdentifier]
[<T_IMPLEMENTS_ALL> AddInterface (<T_COMMA> AddInterface)*]
[<T_IMPLEMENTS> AddInterface (<T_COMMA> AddInterface)*]
<T_OPEN_CURLY> (ClassMethod)* <T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* The SIDL enumeration specification begins with an "enum" token followed by
* an identifier. The enumerator list begins with an open curly brace, a set
* of one or more definitions, and a close curly brace. The closing curly
* brace may be followed by an optional semicolon. The enumeration symbol
* identifier must have a version defined for it, and it must not have been
* previously defined as a symbol. Forward references are not allowed for
* enumerated types. This routine creates the enumerated class and then
* grabs the list of enumeration symbols and their optional values.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

B.2 Backus-Naur Form 111

*/
Enum ::=
<T_ENUM> Identifier <T_OPEN_CURLY> Enumerator (<T_COMMA> Enumerator)*
<T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* The SIDL enumerator specification consists of an identifier followed
* by an optional assignment statement beginning with an equals and followed
* by an integer value. This routine adds the new enumeration symbol to
* the list and then returns.
*/
Enumerator ::= Identifier [<T_EQUALS> <T_INTEGER>]

/**
* A SIDL interface specification begins with the interface token followed
* by an identifier. An interface may have an extends block consisting of
* a comma-separated sequence of interfaces. The methods block begins with
* an open curly-brace followed by zero or more methods followed by a close
* curly-brace and optional semicolon. Interfaces may be preceeded by a
* documentation comment. The identifier string may not have been previously
* defined, although it may have been used as a forward reference. If the
* interface does not extend another interface, then it must extend the base
* SIDL interface (unless, of course, this is the definition for the base
* SIDL interface).
*/
Interface ::=
<T_INTERFACE> Identifier [<T_EXTENDS> AddInterface
(<T_COMMA> AddInterface)*]
<T_OPEN_CURLY> (InterfaceMethod)* <T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* This production parses the next scoped identifier and validates that
* the name exists and is an interface symbol. Then each of its methods
* are checked for validity with the existing methods. If everything
* checks out, then the new interface is added to the existing object.
*/
AddInterface ::= ScopedIdentifier

/**
* This production parses the SIDL method description for a class method.
* A class method may start with abstract, final, or static. An error is
* thrown if the method has already been defined in the class object or if
* the method name is the same as the class name. An error is also thrown
* if a method has been defined in a parent class and (1) the signatures
* do not match, (2) either of the methods is static, (3) the existing method
* is final, or (4) the new method is abstract but the existing method was
* not abstract.
*/
ClassMethod ::= [(<T_ABSTRACT> | <T_FINAL> | <T_STATIC>)] Method

/**
* This method parses a SIDL method and then checks whether it can be
* added to the interface object. An error is thrown if the method has
* already been added to the interface object or if the method name is
* the same as the interface name. An error is also thrown if a previous
* method was defined with the same name but a different signature.
*/
InterfaceMethod ::= Method

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

112 SIDL Grammar

/**
* The SIDL method production has a return type, a method identifier,
* an optional argument list, an optional communication modifier, and
* an optional throws clause. The return type may be void (no return
* type) or any valid SIDL type. The method is built piece by piece.
*/
Method ::=
(<T_VOID> | [<T_COPY>] Type()) Identifier [<T_IDENTIFIER>]
<T_OPEN_PAREN> [Argument (<T_COMMA> Argument)*] <T_CLOSE_PAREN>
[<T_LOCAL> | <T_ONEWAY>] [<T_THROWS> ScopedIdentifier
(<T_COMMA> ScopedIdentifier)*] <T_SEMICOLON>

/**
* Parse a SIDL argument. Arguments begin with an optional copy modifier
* followed by in, out, or inout followed by a type and a formal argument.
* The argument is returned on the top of the argument stack. This routine
* also checks that the copy modifier is used only for symbol objects. For
* all other types, copy is redundant.
*/
Argument ::= [<T_COPY>] (<T_IN> | <T_OUT> | <T_INOUT>) Type Identifier

/**
* A SIDL type consists of one of the standard built-in types (boolean,
* char, dcomplex, double, fcomplex, float, int, long, opaque, and string),
* a user-defined type (interface, class, or enum), or an array. This
* production parses the type and pushes the resulting type object on
* the top of the argument stack.
*/
Type ::=
(<T_BOOLEAN>
| <T_CHAR>
| <T_DCOMPLEX>
| <T_DOUBLE>
| <T_FCOMPLEX>
| <T_FLOAT>
| <T_INT>
| <T_LONG>
| <T_OPAQUE>
| <T_STRING>
| Array
| SymbolType)

/**
* Parse an array construct and push the resulting type and ordering on top of
* the stack. Only dimensions one through MAX_ARRAY_DIM (inclusive) are
* supported.
*/
Array ::=
<T_ARRAY> <T_OPEN_ANGLE> Type [<T_COMMA> (<T_INTEGER>
[<T_COMMA> (<T_COLUMN_MAJOR> | <T_ROW_MAJOR>)]
| (<T_COLUMN_MAJOR>| <T_ROW_MAJOR>))] <T_CLOSE_ANGLE>

/**
* This production parses a scoped identifier and verifies that it is
* either a forward reference or a symbol that may be used as a type
* (either an enum, an interface, or a class).
*/
SymbolType ::= ScopedIdentifier

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

B.2 Backus-Naur Form 113

/**
* All SIDL scoped names are of the general form "ID (. ID)*". Each
* identifier ID is a string of letters, numbers, and underscores that
* must begin with a letter. The scope resolution operator "." separates
* the identifiers in a name.
*/
ScopedIdentifier ::= Identifier (<T_SCOPE> Identifier)*

/**
* A SIDL identifier must start with a letter and may be followed by any
* number of letters, numbers, or underscores. It may not be a reserved
* word in any of the SIDL implementation languages (e.g., C or C++).
*/
Identifier ::= <T_IDENTIFIER>

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

114 SIDL Grammar

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Appendix C

Extensible Markup Language (XML)

Contents

C.1 Introduction . 115

C.2 SIDL Document Type Declaration (DTD) . 115

C.1 Introduction

This appendix describes the XML representation of SIDL interfaces. Since the format of an XML file is dictated by a
Document Type Declaration (DTD) file, the description will focus on the DTD associated with SIDL.

C.2 SIDL Document Type Declaration (DTD)

Babel relies on several DTDs to describe and enforce the layout of conformant XML files. The DTD of primary
importance for Babel is SIDL.dtd because it describes the requisite tags and attributes corresponding to SIDL files.
The contents of the DTD are given below.

<?xml version="1.0" encoding="UTF-8"?>
<!--

File: SIDL.dtd
Package: SIDL XML
Copyright: (c) 2000 The Regents of the University of California
Release: $Name: $
Revision: @(#) $Id: SIDL.dtd,v 1.1 2003/01/30 01:32:30 dahlgren Exp $
Description: DTD for the SIDL XML database representation

Copyright (c) 2000-2002, The Regents of the University of Calfornia.
Produced at the Lawrence Livermore National Laboratory.
Written by the Components Team <components@llnl.gov>
UCRL-CODE-2002-054
All rights reserved.

This file is part of Babel. For more information, see
http://www.llnl.gov/CASC/components/. Please read the COPYRIGHT file
for Our Notice and the LICENSE file for the GNU Lesser General Public
License.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License (as published by

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

116 Extensible Markup Language (XML)

the Free Software Foundation) version 2.1 dated February 1999.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
conditions of the GNU Lesser General Public License for more details.

You should have recieved a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

This file describes the DTD for a SIDL symbol represented in XML format.
The root element is <Symbol>.

PUBLIC ID "-//CCA//SIDL Symbol DTD v1.1//EN"
-->

<!--
Symbol Element

Symbol is the root element for all SIDL XML schema. The Symbol contains a
SymbolName (fully qualified symbol name and version), Metadata, Comment,
and one of Class, Enumeration, Interface, or Package.

-->

<!ENTITY % symbols "Class | Enumeration | Interface | Package">
<!ELEMENT Symbol (SymbolName, Metadata, Comment, (%symbols;))>

<!--
SymbolName Element

A SymbolName represents a fully qualified symbol name along with its
version. It is of the form:

<SymbolName name="SIDL.SomeName" version="1.3.4"/>
-->

<!ELEMENT SymbolName EMPTY>
<!ATTLIST SymbolName name CDATA #REQUIRED

version CDATA #REQUIRED>

<!--
Metadata Element

The Metadata element contains any useful descriptive data about the symbol.
The time and date of creation is required, but all other information is
optional. The date and time must follow the ISO-8601 standard. The
entries in the metadata element are (key,value) pairs.

-->

<!ELEMENT Metadata (MetadataEntry)*>
<!ATTLIST Metadata date CDATA #REQUIRED>

<!ELEMENT MetadataEntry EMPTY>
<!ATTLIST MetadataEntry key CDATA #REQUIRED

value CDATA #REQUIRED>

<!--
Comment Element

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

C.2 SIDL Document Type Declaration (DTD) 117

Comment elements support a very simple HTML description using the
html-lite.dtd HTML subset. See html-lite.dtd for more details.

-->

<!ENTITY % html-lite PUBLIC "-//CCA//SIDL HTML DTD v1.0//EN" "html-lite.dtd">
%html-lite;

<!ELEMENT Comment %html-block;>

<!--
Package Element

The Package element contains the symbols that exist within a package.
In the PackageSymbol element, note that the name is relative to the
package (thus, SIDL.Class is represented by Class within package SIDL).

A true final attribute indicates that this package is not reentrant. It
defaults to true to handle old XML files. In previous versions, all
packages were non-reentrant.

-->

<!ELEMENT Package (PackageSymbol)*>
<!ATTLIST Package final (false | true) "true">

<!--
If the version attribute isn’t provided, the symbol has the same version
as the containing package. This is to provide backward compatibility with
previous released versions of the DTD. Someday the version may become
REQUIRED, so always include it.
-->
<!ELEMENT PackageSymbol EMPTY>
<!ATTLIST PackageSymbol name CDATA #REQUIRED

type (class | enum| interface | package) #REQUIRED
version CDATA #IMPLIED>

<!--
Enumeration Element

The Enumeration element consists of a collection of Enumerator elements
that describe a relative symbol name, its integer value, and whether the
value was assigned by the parser or in the SIDL input file.

-->

<!ELEMENT Enumeration (Enumerator)+>

<!ELEMENT Enumerator EMPTY>
<!ATTLIST Enumerator name CDATA #REQUIRED

value CDATA #REQUIRED
fromuser (false | true) #REQUIRED>

<!--
Class Element

The Class element consists of a class extended by this class, a block
of interfaces implemented by this class, and a block of methods declared
or defined by this class. The methods block does not include methods
declared or defined by parents. The elements AllParentInterfaces and
AllParentClasses include all parents of this class.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

118 Extensible Markup Language (XML)

-->

<!ELEMENT Class (Extends, ImplementsBlock,
AllParentClasses, AllParentInterfaces,
MethodsBlock)>

<!ATTLIST Class abstract (false | true) #REQUIRED>

<!ELEMENT Extends (SymbolName)?>

<!ELEMENT ImplementsBlock (SymbolName)*>

<!--
Interface Element

The Interface element constsis of a block of interfaces that this
interface extends (element ExtendsBlock) and a block of methods
declared by this interface (element MethodsBlock). The methods block
element contains only those method declared or re-declared by this
interface and does not include all those methods defined by the
parent interfaces. The AllParentInterfaces element block includes
all parent interfaces that this interface extends.

-->

<!ELEMENT Interface (ExtendsBlock, AllParentInterfaces, MethodsBlock)>

<!ELEMENT ExtendsBlock (SymbolName)*>

<!--
AllParentClasses and AllParentInterfaces Elements

These elements define a collection of zero or more SymbolName elements
that are the parent classes and parent interfaces of a class or interface.

-->

<!ELEMENT AllParentClasses (SymbolName)*>

<!ELEMENT AllParentInterfaces (SymbolName)*>

<!--
MethodsBlock Element

The MethodsBlock element defines a collection of zero or more methods
that belong to a SIDL interface or class.

-->

<!ELEMENT MethodsBlock (Method)*>

<!--
Method Element

The Method element defines a single method in a class or interface.
The method is defined by a return type (the Type element), a return
mode (the copy attribute of Method), a method name, an argument list,
a throws clause, definition mode modifiers, and communication mode
modifiers.

-->

<!ELEMENT Method (Comment, Type, ArgumentList, ThrowsList)>
<!ATTLIST Method shortname CDATA #REQUIRED

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

C.2 SIDL Document Type Declaration (DTD) 119

extension CDATA #REQUIRED
copy (false | true) #REQUIRED
definition (normal | abstract | final | static) #REQUIRED
communication (normal | local | oneway) #REQUIRED>

<!ELEMENT ArgumentList (Argument)*>

<!ELEMENT ThrowsList (SymbolName)*>

<!--
Argument Element

The SIDL Argument element defines a SIDL argument, which consists
of a copy modifier, a parameter passing mode (in, inout, or out),
a parameter type, and a formal parameter name.

-->

<!ELEMENT Argument (Type)>
<!ATTLIST Argument copy (false | true) #REQUIRED

mode (in | inout | out) #REQUIRED
name CDATA #REQUIRED>

<!--
Type Element

The Type element describes a SIDL type, which may be a built-in type
such as boolean or int, an array, or a user-defined symbol. If the
type description is a primitive type, then no sub-elements are allowed.
If the type is a symbol, then the single sub-element must be a symbol
name. If the type is an array, then the single sub-element must be
an array element

-->

<!ELEMENT Type (SymbolName | Array)?>
<!ATTLIST Type type (void | boolean | char | dcomplex | double |

fcomplex | float | integer | long |
opaque | string | symbol | array) #REQUIRED>

<!ELEMENT Array (Type)>
<!ATTLIST Array dim CDATA #REQUIRED

order (unspecified | column-major | row-major) #REQUIRED>

Babel assumes that comments will conform to the HTML-lite comment format. So, Babel relies on comment.dtd
to validate whether SIDL documentation comments follow the HTML-lite comment format, which is described in
html-lite.dtd. The most current versions of all of these DTDs can also be found in the source distribution in the
babel/compiler/gov/llnl/babel/dtds directory.

NOTE: Any XML interface description that complies with the SIDL DTD can be used as input to Babel.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

120 Extensible Markup Language (XML)

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Appendix D

Lessons Learned

Contents

D.1 Introduction . 121

D.2 Compilation Consistency is Key . 121

D.1 Introduction

This appendix focuses on providing tips, tricks, and advice submitted by Babel/SIDL users. We have generally pro-
vided the information verbatim.

D.2 Compilation Consistency is Key

Steve Smith, 24 September 2001
Basically ”be consistent” is the biggest lesson we found.
When compiling C++ codes, you may have conflicts if you use different compile options. Under KCC we found

-no exceptions caused problems if parts were compiled with/without the flag. There are most likely other compile
flags which turn features on/off which would cause similar problems. This caused a core dump immediately when
core file was loaded. This is somewhat obvious but if you are linking together several different codes from a variety
of developers you need to examine the compile flags very carefully. This problem is probably more likely with C++
due to the greater number of code generation options (e.g. RTTI, exceptions etc).

A much more subtle problem occurred when we had a C shared library which called functions in a C++ shared
library. We initially used gcc to create the C shared library and KCC to create the C++ shared library. The application
would core dump when a dynamic cast was attempted. This was solved by using the ”cc” compiler wrapper that is
part of the KCC distribution (which uses the native ”cc”). So you need to be aware of not only what is in your .so and
how it is compiled but all the .so’s that you are using.

If you have several versions of a library, say during a debugging process, make sure you are using the correct
versions of things. The ”ldd” command is very useful for making sure you getting the shared libraries that you think
you should be linking to. Along these lines, keep your LD LIBRARY PATH as simple as possible when debugging.

In retrospect this does not look like a large number of problems, but figuring out the second problem took a
long time since I focused on how the C++ library was being created rather than where the real problem was being
introduced. It wasn’t until after I had exhausted a long list of other potential conflicts that I started messing with the C
library compilation.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

122 Lessons Learned

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Appendix E

Troubleshooting

Contents

E.1 Introduction . 123
E.2 Common Errors . 123
E.3 Common Warnings . 123

E.1 Introduction

This appendix provides an overview of common problems that Babel users have encountered. Additional insights may
be found in Chapter D.

E.2 Common Errors

This section focuses on common errors encountered by Babel users. The errors have been separated into those related
to SIDL parsing, XML parsing, and compilation.

SIDL Parsing Errors

• Babel: Error: when trying to resolve remaining args...Error : ÄnArgumentf̈ails to resolve as a symbol or file.
For a symbol, Babel attempts to find it in the repository(ies) specified on the command line or, if none specified,
in the default repository. Check the repository being used to ensure that XML exists for the appropriate version
of the symbol. If it is not present, generate the XML for it first then try again.

XML Parsing Errors

Compilation Errors

E.3 Common Warnings

This section focuses on common warnings encountered by Babel users. Again, warnings have been separated into
those related to SIDL parsing, XML parsing, and compilation.

SIDL Parsing Warnings

• Babel: Warning: When creating repository...File R̈epository+Fileı̈s not a repository directory”. First verify
that the specified directory is actually a repository directory. That is, that it contains symbol interfaces defined

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

124 Troubleshooting

by XML files. If not, correct the repository option then try again.

XML Parsing Warnings

Compilation Warnings

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

Bibliography

[1] Babel homepage. http://www.llnl.gov/CASC/components/babel.html.

[2] CCAFE homepage. http://www.cca-forum.org/˜baallan/ccafe.

[3] Common Component Architecture (CCA) Forum homepage. http://www.cca-forum.org.

[4] Tammy Dahlgren, Tom Epperly, Scott Kohn, and Gary Kumfert. Babel User’s Guide. CASC, Lawrence Liver-
more National Laboratory, version 0.7.0 edition, May 2002.

[5] Guy Eddon and Henry Eddon. Inside Distributed COM. Microsoft Press, Redmond, WA, 1998.

[6] Eric Eide, Jay Lepreau, and James L. Simister. Flexible and optimized IDL compilation for distributed appli-
cations. In Proceedings of the Fourth Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers, 1998.

[7] James Gosling, Bill Joy, and Guy Steele. The Java Language Specification, July 1996. Available at
http://java.sun.com.

[8] Michi Hennig and Steve Vinoski. Advanced CORBA Programming with C++. Professional Computing. Addison-
Wesley, 1999.

[9] International Organization for Standardization, Geneva. ISO/IEC 14882 Standard for the C++ Programming
Language, 1998.

[10] Bill Janssen, Mike Spreitzer, Dan Larner, and Chris Jacobi. ILU Reference Manual. Xerox Corporation, Novem-
ber 1997. Available at ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.

[11] Scott Meyers. More Effective C++: 35 New Ways to Improve your Programs and Designs. Professional Com-
puting. Addision-Wesley, 1996.

[12] Scott Meyers. Effective C++: 50 Specific Ways to Improve your Programs and Designs. Professional Computing.
Addision-Wesley, 2 edition, 1998.

[13] Microsoft Corporation. Component Object Model Specification (Version 0.9), October 1995. See
http://www.microsoft.com/oledev/olecom/title.html.

[14] Object Management Group. The Common Object Request Broker: Architecture and Specification, February
1998. Available at http://www.omg.org/corba.

[15] SciDAC: Scientific Discovery through Advanced Computing. http://www.science.doe.gov/scidac.

[16] SCIRun homepage. http://www.sci.utah.edu.

[17] John Shirley, Wei Hu, and David Magid. Guide to Writing DCE Applications. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1994.

[18] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, 3 edition, 1997.

[19] U. S. Department of Energy (DOE) homepage. http://www.energy.gov.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

126 BIBLIOGRAPHY

[20] Norm Walsh. DocBook. O’Reilly, 2000.

[21] XCAT homepage. http://www.extreme.indiana.edu/xcat.

babel-0.8.4 Doc Last Modified April 3, 2003 11:32 a.m.

