
Language Interoperability Mechanisms

for High-Performance Scienti�c Applications�

Andrew Clearyy Scott Kohny Steven G. Smithy Brent Smolinskiy

Abstract

Language interoperability is a diÆcult problem facing the developers and users
of large numerical software packages. Language choices often hamper the reuse and
sharing of numerical libraries, especially in a scienti�c computing environment that uses
C, C++, Java, various Fortran dialects, and scripting languages such as Python. In this
paper, we propose a new approach to language interoperability for high-performance
scienti�c applications based on Interface De�nition Language (IDL) techniques. We
investigate the modi�cations necessary to adopt traditional IDL approaches for use by
the scienti�c community, including IDL extensions for numerical computing and issues
involved in mapping IDLs to Fortran 77 and Fortran 90.

1 Introduction

In recent years, the scienti�c computing community has seen a proliferation of languages
used for numerical simulation. The traditional Fortran mainstay, Fortran 77, has been
joined by Fortran 90. C and C++ have become popular because of their support for
dynamic memory allocation, data structures, and|in the case of C++{object oriented
abstractions. The popularity of Java has driven standards proposals for Java numerical
libraries [8]. Computational scientists have also experimented with the use of high-level
scripting languages such as Python to coordinate large numerical simulations [4].

Language interoperability in this multi-language environment is a diÆcult problem for
developers of new large numerical software packages and also for users of legacy software.
For library developers, the choice of implementation language may severely limit the reuse of
their numerical software, especially considering the breadth of programming languages used
in the scienti�c computing environment. Users of legacy software may be required to adopt
the language of the legacy package for future applications development, even though better
alternatives may exist. If language interoperability is desired, numerical software developers
and users are often forced to write \glue" code that mediates data representations and
calling mechanisms between languages. However, this approach is labor-intensive and
in many cases does not provide seamless language integration across the various calling
languages. Fortran 90 is a particular challenge for language interoperability, since
Fortran 90 calling conventions vary widely from compiler to compiler (see Section 3.3
for details).

�Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National

Laboratory under Contract W-7405-Eng-48. This work has been funded by both ASCI PSE and DOE2000.

Published in the Proceedings of the SIAM Workshop on Object-Oriented Methods for Interoperable Scienti�c

and Engineering Computing, Yorktown Heights, NY, October 21-23, 1998. LLNL report UCRL-JC-131823.
yCenter for Applied Scienti�c Computing, Lawrence Livermore National Laboratory, Livermore, CA.

1

2

One interoperability mechanism used successfully by the distributed systems commu-
nity [7, 13, 15] and the operating systems community [5, 6, 12] is based on the concept of an
Interface De�nition Language or IDL. The IDL is a new \language" that describes the call-
ing interfaces to software packages written in standard programming languages such as C,
Fortran, or Java. Given an IDL description of the interface, IDL compilers automatically
generate the glue code necessary to call that software package from other programming
languages.

In this position paper, we explore the IDL approach to language interoperability and
modify it for use by the scienti�c community. We begin with the object oriented CORBA
IDL speci�cation [13] and investigate the modi�cations necessary for high-performance
scienti�c computing.

Although IDLs are a proven technology for other communities, IDL techniques have
not been applied to high-performance scienti�c computing. We anticipate three primary
research issues in adopting IDL technology. First, we must determine what features are
needed in a scienti�c IDL to support numerical computing. For example, standard IDLs
such as that de�ned by CORBA do not include basic scienti�c computing data types
such as complex numbers or dynamic multidimensional arrays. Second, we must address
performance considerations. Our goal it to make the overhead of calls through the IDL
about as expensive as the invocation of a C++ virtual function. Finally, we must determine
how IDL features such as objects and their methods are to be mapped onto the various
Fortran dialects.

This paper is organized as follows. We begin in Section 2 with a survey of
common interoperability mechanisms. Section 3 describes our design goals for language
interoperability, features needed in a scienti�c IDL, language mappings, and run-time issues.
Finally, we conclude in Section 4 with an evaluation of our proposed IDL interoperability
approach.

2 Survey of Interoperability Mechanisms

Language interoperability|the problem of connecting software modules written in di�erent
programming languages|is a somewhat imprecise term. Programming languages provide
di�ering degrees of support for data abstraction, object oriented design, dynamic memory
allocation, or array-based computation. Such di�erences limit the level to which language
interoperability can be supported. For example, there are limitations to interoperability
between C and Fortran 77 since Fortran 77 does not support C's notion of a pointer.

Of course, one of the reasons that language interoperability is so desirable is that it
enables programmers to exploit the various strengths of di�erent programming languages.
No language has been shown to be the single best language for scienti�c computing.
Fortran is an excellent language for eÆcient array computation, but does not provide the
data abstraction and object oriented features of a language such as C++ or Java. Scripting
languages such as Python provide a powerful environment for experimenting with scienti�c
simulations [4], but do not o�er the performance of a compiled language such as C.

2.1 Multiple Language Bindings

Probably the most common method of language interoperability for scienti�c libraries is
through the use of hand-generated library bindings. In this approach, library designers
select a (typically small) set of supported languages that will be able to call their library.
For each of these supported languages, the designers write a language binding speci�cation

3

that describes the library interface|the objects (if any), functions, and data types|in
that particular language. Essentially, library interfaces are redesigned for every supported
language. Finally, the library developers implement this language binding speci�cation,
typically using glue code that connects the target language to the language used in the
implementation of the library. MPI [10] is one scienti�c library that takes the multiple
language binding approach; the MPI speci�cation describes bindings for both C and
Fortran 77.

The advantage to generating language bindings by hand is that the binding can be
tailored to the style and conventions of the particular language. For example, the MPI
speci�cation dictates that MPI routines in C return error codes as function return values
whereas Fortran routines return error codes through an integer parameter in the argument
list, which follows the standard programming conventions for these two languages.

The primary disadvantage of this approach is that it is very labor-intensive. Both the
language binding and the glue code must be generated by hand for each supported language.
Although the generation of glue code is typically straight-forward, many lines of glue code
will be needed to wrap every object, function, and data type that is to be accessible by the
calling language.

Furthermore, the use of multiple language bindings does not necessarily ensure
simultaneous cross-language use of the library. For example, the MPI language bindings
for both Fortran and C contain routines that create MPI communicator objects. However,
there is no well-de�ned mechanism for sharing MPI communicator objects between Fortran

and C. Therefore, a C application that allocates an MPI communicator cannot pass that
communicator to a Fortran numerical library routine. Although a careful design of the
language bindings can address these issues, the diÆculty grows with the size of the library
and the number of supported languages.

2.2 Pairwise Language Interoperability

Another technique for language interoperability uses foreign invocation libraries or auto-
matically generated glue code to support calls between two targeted languages or among a
small set of targeted languages. For example, the SWIG package [3] reads C and C++ header
�les and generates glue code so that these routines may be called by scripting languages
such as Python. Pyffle [14] is similar in approach to SWIG and supports an almost seamless
integration between Python and C++. The Java Native Interface [9] de�nes a set of library
routines that enables Java code to interoperate with applications and libraries written in
C and C++. Python supports a calling interface for C.

These approaches solve part of the interoperability problem by developing custom solu-
tions that link particular languages; however, they do not address the larger issues involved
with interoperability for all of the scienti�c computing languages. Indeed, N languages
would potentially require O(N2) di�erent software packages for full interoperability.

2.3 Interface De�nition Languages (IDLs)

The IDL approach to interoperability is somewhat similar to the techniques described
in the previous section except that it uni�es all targeted languages through a common
mechanism. The basic idea behind an IDL is to create a new language|the Interface
De�nition Language|to provide a description of the interface for a software package. For
each supported language, an IDL designer de�nes a language mapping that maps constructs
in the IDL onto that target language. For example, an interface speci�cation in an object

4

oriented IDL might be mapped onto a class in C++ or an interface in Java. Glue code is
automatically generated by an IDL compiler that takes as input the IDL description of the
software component and a language mapping for the target language. The IDL approach
reduces the O(N2) potential language mappings of the previous section to only O(N), since
every language is mapped to the IDL, from which every other language is accessible.

IDL's have been in use for a long time in the distributed computing �eld. Sun
RPC IDL and OSF/DCE IDL [15] are standard mechanisms for specifying remote
procedure call interfaces and have been used widely for both UNIX and Windows NT
client/server programming. Microsoft borrowed heavily from the OSF/DCE IDL for its
Component Object Model (COM) IDL speci�cation [5, 11]. CORBA [13] is an industry-
wide speci�cation for a distributed object system; it describes object interfaces in an
IDL that hides language and operating system dependencies. The ILU (Inter-Language
Uni�cation) project [7] is applying similar techniques to explore language interoperability
in a distributed object environment.

The primary drawback to the IDL approach is that interface speci�cations are limited to
the facilities and types expressed in the IDL, which may be a subset of the capabilities in the
targeted languages. For example, a C pointer cannot be expressed in an IDL interface if that
IDL that does not support the pointer type. However, this does not necessarily imply that
IDLs represent the lowest common denominator for all the languages of interest. Many IDL
capabilities, such as object oriented constructs, can be supported through a combination
of clever language mappings and run-time library routines, even for simple languages such
as C or Fortran 77 [13].

3 IDLs for Scienti�c Applications

Of the three interoperability approaches described in the previous section, we believe that
IDL techniques o�er the most potential for the automated, seamless interoperability of
scienti�c libraries. In this section, we describe the modi�cations necessary to adapt existing
IDL methods for the scienti�c computing environment. We begin with a description of how
our approach would be viewed from the perspective of both a library developer and a user.

The developer of a numerical software library would perform the following steps.

1. Specify an interface to the library in the IDL. The IDL speci�cation provides a high-
level, language-independent description of the library interface. For example, the
following is an IDL speci�cation for a Vector object in a hypothetical Solver library.

package Solver {

interface Vector {

// data access to the vector

void setData(in double data);

void setData(in array<double,1> data);

void getData(out array<double,1> data);

// standard vector functions

double dot(in Vector y);

void scale(in double a);

void axpy(in double a, in Vector y);

...

};

};

5

2. Compile the IDL speci�cation using the IDL compiler to generate skeleton glue code
in the implementation language of the library.

3. Write the functions that implement the interface. In doing so, the library developer
must ensure that the function signatures match those expected by the skeleton
glue code. For example, the CORBA language mappings for C specify that
the dot() member function given above would be implemented by C function
Solver Vector dot(). For implementors of a new library, these naming conventions
are not particularly diÆcult to follow. However, library developers that wish to wrap
existing libraries in the IDL for interoperability may need to write a small amount of
glue code to convert between the expected IDL function names and the names used
by the library. Note that this glue code need be written only once to map the IDL
to the library, as opposed to writing glue code for every language as in the approach
described in Section 2.1.

4. Deliver the library code along with the skeleton glue code generated by the IDL
compiler.

To create an application that uses the library described above, a library user would:

1. Compile the IDL speci�cation provided by the library developer for the application
target language. The IDL compiler will generate stub glue code that will connect the
applications code to the library.

2. Write the applications code. The library user will reference the library interface as
speci�ed by the language mappings and the stub glue code. For example, the IDL
function dot() given above would be mapped to method Solver::Vector::dot()

following CORBA C++ mapping conventions or to function Vector dot() in module
Solver for Fortran 90.

3. Compile and link the applications code with the stub and skeleton code generated by
the IDL compiler, the numerical library code, and the small run-time library needed
by the IDL system.

3.1 Design Considerations

Our IDL approach must not introduce signi�cant overheads at run-time; otherwise, it will
not be used in a high-performance computing environment. Traditionally, IDLs have been
used for distributed applications spanning multiple address spaces. Because there can be
no data sharing across multiple address spaces, distributed run-time systems must marshal,
communicate, and un-marshal data arguments during method invocation. Such overheads
would be prohibitively expensive for the large scienti�c data sets found in high-performance
computing. Therefore, we require that all software modules linked by our IDL must share
the same address space. Within a single, shared address space, data can be passed between
modules via reference without expensive data copies.

Note that this design constraint does not preclude the use of our approach for
high-performance parallel computation using MPI. Indeed, the interoperability needs of
numerical libraries for massively parallel computation are the driver for much of this work.
The traditional SPMD approach to parallelism already assumes a single address space for
each MPI process, and our design �ts naturally into this programming model. Shared
memory multiprocessors are becoming increasingly important for scienti�c computing, and

6

we plan to support a simple model of thread parallelism. The run-time system will be
thread-safe, and library writers will be responsible for managing the parallelism within
their objects. This model appears to be most natural for scienti�c libraries and avoids
many of the overheads in other threaded object systems [5].

Finally, our design must support the standard numerical programming languages,
including C, C++, Fortran 77, Fortran 90, Java, and Python. Additionally, we plan to
investigate support for mathematical prototyping tools such as MatLab.

3.2 Scienti�c IDL

For this approach to work, we must choose an IDL that is expressive enough to represent the
abstractions and data types common in scienti�c computing. Unfortunately, no such IDL
currently exists, since most IDLs have been designed for distributed client-server computing
in the business domain.

We have decided to begin with the object oriented CORBA IDL speci�cation [13] and
then modify it as necessary for high-performance scienti�c computing. The CORBA IDL
was chosen for several reasons. It is fairly elegant with a syntax similar to Java or C++,
object oriented, and supports an error-reporting exception mechanism. It provides a module
construct that helps manage the namespaces for di�erent libraries (e.g., to ensure that the
Vector object from library A does not clash with the Vector object from library B). It
is an industry standard and supported by a large user community. With the exception
of Fortran and MatLab, language mapping speci�cations have been written for all of our
targeted scienti�c languages. We will be able to leverage these language mappings and the
other work in the CORBA community.

In the following sections, we describe some of the issues in modifying the CORBA IDL
for scienti�c computing.

3.2.1 Unnecessary CORBA IDL Constructs The CORBA IDL contains a number
of constructs that are either inappropriate or unnecessary for scienti�c computing. For
example, the oneway method attribute only makes sense in a distributed environment. To
simplify the development of our prototype, we have also eliminated support for struct

and union. Both of these constructs can be represented easily using objects and get/set
methods. These constructs may be included later, if warranted. We have replaced
CORBA's �xed-length arrays and sequences with dynamic multidimensional arrays, as
described below.

3.2.2 New Types for Scienti�c Computing The CORBA IDL speci�cation lacks
both complex numbers and dynamic multidimensional arrays, and both are essential to
numerical and scienti�c computing. Complex numbers are fairly trivial to add to the
IDL. The only issue is the mapping of the complex numbers into languages without a
built-in complex type, but complex number libraries either exist or are straight-forward to
implement for all languages of interest.

We have also added dynamic multidimensional arrays to the CORBA IDL. CORBA
currently only supports �xed-length arrays and sequences. A sequence is similar to an
array but is limited to one dimension. In CORBA IDL, dynamic multidimensional arrays
are generally built from sequences of sequences. However, this representation is similar to
an C array of pointers to arrays and is not as natural for most scienti�c computing as true
multidimensional arrays. As illustrated in the IDL sample code in the beginning of this
section, arrays are speci�ed as array<TYPE,N>, where TYPE is the type of the array (e.g.,
double) and N is the array rank.

7

Another issue is the representation of arrays in the various targeted programming
languages. For eÆciency, IDL arrays should map onto native array constructs. However,
the native representation of arrays in Fortran (column major) is di�erent from C and C++

(row major) and also Java and Python, which have their own representations. We plan
to evaluate three potential solutions. The �rst would automatically convert the array to
the representation assumed by the implementation language. Thus, arrays passed to a
Fortran library from a C application would be transposed in memory. This is the simplest
solution, but also the most expensive, since arrays would need to be copied on every call
between languages with di�erent native representations. Second, layout attributes such as
column or row could be added to the IDL to specify the format of the array expected by the
implementation. This would provide more exibility for the library developer and would
force data copies only when needed. Finally, the IDL run-time system could provide simple
routines that would convert array representations at run-time at the request of the library
implementation.

3.2.3 New IDL Constructs We have added two new method modi�ers to the CORBA
IDL: static and final. Static methods may be invoked without an explicit object reference
and are supported by both Java and C++; they can be thought of as a standard function
call in a non-object oriented language. Static methods are not supported by CORBA
since distributed computing environments require object references to specify the execution
context. Static methods are essential in the generation of IDL descriptions for legacy
subroutine libraries that were written without an object model.

The final quali�er is taken from Java and indicates that the speci�ed method may
not be rede�ned in subclasses. By default, we adopt the Java convention that all non-static
methods may be rede�ned in subclasses unless they are declared final. This is the opposite
of the C++ convention, which assumes that methods must be explicitly declared virtual

to be rede�ned within subclasses. There is a slight overhead cost associated with dynamic
function dispatch for virtual (i.e., non-�nal) methods. The final keyword will enable the
stub code and run-time system to optimize away these overhead costs.

3.2.4 Inheritance Issues Unfortunately, the current CORBA speci�cation (v2.2) [13]
supports neither method rede�nition in subclasses nor a useful model of multiple inheri-
tance. We consider both of these necessary capabilities for the object oriented design of
general and extensible scienti�c libraries. It is straight-forward to allow method rede�nition
(see Section 3.4); however, multiple inheritance is more problematic.

There are two potential models for multiple inheritance, which we shall call the C++

model and the Java model. The C++ approach allows a subclass to inherit both interface
and implementation from multiple superclasses. Unfortunately, multiple inheritance of
implementations causes diÆculties when multiple superclass methods share the same
signature; references to such methods are ambiguous, since the compiler does not know
which method implementation to invoke. C++ solves this problem by requiring unambiguous
references in the implementation that is enforced by the compiler. Such an approach
does not work with an IDL, since the IDL cannot force the compilers used for the library
implementations to check its semantics for multiple inheritance.

Thus, we have chosen to implement Java's model for multiple inheritance. In this model,
a subclass may inherit multiple interfaces but only one implementation. This is a much
more elegant model for multiple inheritance and it does not share the limitations of C++'s
model. Following the Java model, we have also added an abstract quali�er that indicates
that a method does not have an implementation and must be de�ned by a subclass.

8

3.3 IDL Language Mappings

The IDL language mapping determines how IDL features are mapped onto the target
language. The CORBA speci�cation de�nes IDL language mappings for C, C++ and
Java [13]. The ILU project [7] has de�ned a mapping between the CORBA IDL and Python.
Obviously, these mappings must be extended for the features that we have added to the base
CORBA IDL, but the mappings for these additional extensions are fairly straight-forward.

Unfortunately, IDL language mappings to Fortran dialects do not exist. For the most
part, the mapping between IDL and Fortran will be similar to the mapping between IDL
and C with the exception of the representation for objects, strings, and arrays. Objects
in Fortran 77 are generally represented using integer identi�ers in the same fashion that
MPI [10] uses integers to represent MPI communicators; objects in Fortran 90 can either
be represented using the same approach or in the expanded Fortran 90 type system.
Strings that are char * in C and C++ will become character *(*) in Fortran with
di�erent termination conditions (NULL for C and C++ but an explicit length for Fortran).
Array mappings for Fortran 77 are straight-forward, although Fortran 90 mappings are
problematic, as described below.

The primary problem in mapping to Fortran is that calling sequences, name mangling,
and Fortran 90 array descriptors vary greatly from compiler to compiler. Thus, in order
to generate glue code for Fortran, the IDL compiler system must be aware of the low-level
details of Fortran compiler conventions. For example, consider the following potential
Fortran 90 mapping of the sample IDL code given in the beginning of this section.

module Solvers

...

contains

subroutine Vector_setData(this, data)

type (Vector) this

real *8, dimension (:) :: data

...

end subroutine Vector_setData

end module Solvers

Calling this Fortran 90 code from another language requires that we understand how the
Fortran 90 compiler represents the function name and how data is passed into the function.
Figure 1 illustrates the di�erences in naming and parameter passing conventions for two
f90 compilers. There are two important points. First, the compilers generate di�erent
linker symbols for the function Vector setData(). Second, the compilers use di�erent
array descriptor structures to represent the array argument, including di�erent de�nitions
of bounds and stride (e.g., byte-based for the SGI but word-based for the Sun).

Once these calling conventions are established for each f90 compiler, the IDL compiler
will automatically generate the glue code necessary to tie Fortran 90 with other languages.
Note that it would be exceedingly tedious to generate this glue code by hand considering
the signi�cant di�erences in Fortran 90 calling mechanics.

3.4 Run-Time Support Library

Because the various software modules linked by our IDL approach will share the same
address space, we will require only a minimal run-time support library. In comparison,
distributed object systems require a substantial run-time system (e.g., the CORBA Object

9

struct vector { ... };

struct f90_array {

double *data;

...

short flags;

short rank;

...

...

int lower0;

int upper0;

int stride0;

};

void vector_setdata.in.solvers_(

struct vector *this

struct f90_array *data)

{

...

}

struct vector { ... };

struct f90_array {

...

double *data;

...

short flags;

short rank;

...

int lower0;

int upper0;

int stride0;

};

void solvers$vector_setdata_(

struct vector *this

struct f90_array *data)

{

...

}

Fig. 1. These C functions are high-level representations of the assembly code generated by two

f90 compilers for the Solver example in the text. The code on the left was generated by the Sun

f90 compiler (v1.2) and the code on the right by the SGI f90 compiler (v6.2).

Request Broker [13]) to manage distributed object references and parameter marshaling.
Our run-time libraries will provide basic support for object reference counting, safe
type casting up and down the type hierarchy, method introspection, and basic error
reporting. We will implement multiple inheritance using basic function table pointer
dispatch mechanisms similar to that used in C++ or PETSc [1, 2].

4 Analysis and Future Work

We have proposed a new approach to language interoperability for high-performance
scienti�c applications based on Interface De�nition Language (IDLs) techniques. IDL
technology would enable computational scientists to use the programming language most
appropriate for the task at hand, or to mix legacy software libraries, without concern about
implementation laguages and interoperability. Furthermore, IDL approaches may solve the
very diÆcult problem of interoperability with Fortran 90 codes.

In this paper, we have emphasized the advantages of IDLs for language interoperability.
We see other advantages, as well. Object oriented IDLs provide a common language
for specifying object oriented interfaces to numerical libraries. The IDL run-time
system also provides support for advanced object oriented features|such as run-time
type identi�cation, object introspection, cross-language error reporting mechanisms, and
multiple inheritance|even for those languages that do not directly support object oriented
features, such as C or Fortran. Object oriented features have been built into C libraries by
hand [1, 2], but an IDL compiler automates this tedious process.

We see two potential weaknesses in the IDL approach. First, the overheads of the IDL
run-time system and glue code may be too high for high-performance scienti�c computing.
We believe that the overheads can be limited to about the cost of a C++ virtual function call;
most function bodies will contain suÆcient work to amortize this small overhead. Second,
scienti�c programmers|traditionally a very conservative group|may not be willing to

10

accept the naming conventions dictated by the IDL compiler or may not be willing to rely
on yet another software library. We believe that the bene�ts of language interoperability
and support for object oriented abstractions in C and Fortran will more than outweigh
these disadvantages.

To date, we have completed a parser that reads the IDL grammar described in this
paper, and we are currently implementing the IDL type checker. Implementation of the run-
time system will be straight-forward, since it provides only basic facilities for error handling,
run-time type identi�cation, and object reference counting. Next, we will implement the
glue code generation routines for the various target languages. We will begin with C, C++,
and Fortran 77 to validate our approach and study inter-language performance overheads.
Finally, we will implement the glue code generators for Java, Python, Fortran 90, and
MatLab.

Acknowledgments

Much of this work was motived by discussions at Common Component Architecure (CCA)
workshops. The CCA group consists of representatives from DOE laboratories and
academia working towards the speci�cation of a component framework for high-performance
scienti�c computing.

References

[1] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, EÆcient management of parallelism in
object oriented numerical software libraries, in Modern Software Tools in Scienti�c Computing,
E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser Press, 1997, pp. 163{202.

[2] , PETSc home page, 1998. See http://www.mcs.anl.gov/petsc.
[3] D. Beazley, SWIG: An easy to use tool for integrating scripting languages with C and C++, in

The 4th Annual Tcl/Tk Workshop, 1996. See http://www.swig.org.
[4] D. M. Beazley and P. S. Lomdahl, Building exible large-scale scienti�c computing applications

with scripting languages, in The 8th SIAM Conference on Parallel Processing for Scienti�c
Computing, Minneapolis, MN, March 1997.

[5] G. Eddon and H. Eddon, Inside Distributed COM, Microsoft Press, Redmond, WA, 1998.
[6] E. Eide, J. Lepreau, and J. L. Simister, Flexible and optimized IDL compilation for distributed

applications, in Proceedings of the Fourth Workshop on Languages, Compilers, and Run-time
Systems for Scalable Computers, 1998.

[7] B. Janssen, M. Spreitzer, D. Larner, and C. Jacobi, ILU Reference Manual, Xerox Corporation,
November 1997. Available at ftp://ftp.parc.xerox.com/pub/ilu/ilu.html.

[8] Java Grande Forum. See http://www.javagrande.org.
[9] JavaSoft, Java Native Interface Speci�cation, May 1997.
[10] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard (v1.1),

June 1995.
[11] Microsoft Corporation, Component Object Model Speci�cation (Version 0.9), October

1995. Available at http://www.microsoft.com/oledev/olecom/title.html.
[12] J. G. Mitchell, J. J. Gibbons, G. Hamilton, P. B. Kessler, Y. A. Khalidi, P. Kougiouris, P. W.

Madany, M. N. Nelson, M. L. Powell, and S. R. Radia, An overview of the Spring system, in
Proceedings of Compcon Spring 1994, February 1994.

[13] Object Management Group, The Common Object Request Broker: Architecture and
Speci�cation, February 1998. Available at http://www.omg.org/corba.

[14] Paul Dubois, personal communication. See http://xfiles.llnl.gov/CXX Objects/cxx.htm.
[15] J. Shirley, W. Hu, and D. Magid, Guide to Writing DCE Applications, O'Reilly & Associates,

Inc., Sebastopol, CA, 1994.

