
Language Interoperability Mechanisms for
High-Performance Scientific Applications

Scott Kohn
with

Andrew Cleary, Steven G. Smith, and Brent Smolinski

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

October 21, 1998

CASC

Overview

Goal: Apply IDL interoperability technology to problems
in high-performance parallel scientific computing

Motivation
Traditional interoperability mechanisms
Review of IDL technology
Using an IDL for interoperability in scientific computing
— what is a “Scientific IDL”
— Fortran issues
— performance considerations

Analysis and conclusions

CASC

Motivation #1:
Language interoperability

Motivated by Common Component Architecture (CCA)
— cross-lab interoperability of DOE numerical software
— DOE labs use many languages (f77, f90, C, C++, Java, Python)
— language should not be a barrier to software reuse

Scripting Driver
(Python)

Simulation Framework
(C)

Visualization System
(Java)

Numerical Routines
(f90)

Solver Library
(C++)

CASC

Motivation #2:
Object support for non-object languages

Want object implementations in non-object languages
— object-oriented techniques useful for software architecture
— but … many scientists are uncomfortable with C++
— e.g., PETSc library implements object-oriented features in C

Object support is tedious and difficult if done by hand
— inheritance and polymorphism require function lookup tables
— support infrastructure must be built into each new class

IDL approach provides “automatic” object support
— IDL compiler automates generation of object “glue” code
— polymorphism, multiple inheritance, reference counting
— introspection, RTTI, simple exception mechanism

CASC

Interoperability through language bindings

Generate custom bindings for each language
— labor-intensive to generate bindings for supported languages
— can tailor binding to style and conventions of language
— approach taken in the MPI standardization effort

Library

Fortran
Bindings

C
Bindings

C++
Bindings

delivered with
the library

Fortran C C++

CASC

Interoperability through custom solutions

Techniques that target small collections of languages
— foreign call interfaces or automatic glue code generators
— e.g., SWIG wraps C and C++ for calls from scripting languages
— not very general - limited only to subsets of languages

C

f77
JNI

Native
SWIGf90

C++ Python

Java

CASC

Interoperability through an IDL

Describe objects in an “interface definition language”
— each language interoperates with the “IDL language”
— IDL compiler generates “glue” that wraps components
— examples: CORBA, DCOM, ILU, RPC, microkernel OSes

f77

Python

Java

IDL
C f90

C++

CASC

IDL: Interface Definition Language

Declarative interface description language
— describes interface only (no implementation details)
— language-independent way to describe object APIs

package Solver {
interface Vector {

Vector clone();
double dot(in Vector y);
void axpy(in double a, in Vector y);
…

};
interface Matrix {

void apply(out Vector Ax, in Vector x);
};
...
class SparseMatrix implements Matrix {

void apply(out Vector Ax, in Vector x);
};

);

CASC

Compiler generates “glue” code from IDL

SIDL Compiler

hypre Interface
Description

Stub
Glue Code

Skeleton
Glue Code

Caller
Language

hypre Library
Language

Language Mappings
Compiler Details

IDL Database

called by
library user

wraps library
implementation

CASC

IDL glue code bridges languages

Library User

stubs Solver_Vector_dot (…)
package Solver {

interface Vector {
double dot(in Vector y);
...

};
};

IDL “Run-Time System”

Solver::Vector::dot (…)skeletons

Library Implementation

CASC

Calling the IDL stubs from user code
double error(Solver::Matrix A, Solver::Vector x)
{

Solver::Vector r = x.clone();
A.apply(r, x);
return(r.dot(r));

}

C++

double precision function error(A, x)
integer A, x, r
r = Solver_Vector_clone(x)
call Solver_Matrix_apply(A, r, x)
error = Solver_Vector_dot(r, r)
call Solver_Vector_delete(r)
return
end

double error(Solver_Matrix A, Solver_Vector x)
{

Solver_Vector r = Solver_Vector_clone(x);
Solver_Matrix_apply(A, r, x);
double result = Solver_Vector_dot(r, r);
Solver_Vector_delete(r);
return(result);

}

C

f77 types
methods

CASC

Design goals for the interoperability of
high-performance scientific software

High-performance
— no data copies (means single address-space)
— overhead of a C++ virtual function call (or maybe a few)
— works in either a threaded or MPI environment

Language support
— C, C++, Fortran 77/90 in “high-performance” mode
— Java and Python with maybe a little more overhead
— investigate support for prototyping tools like MatLab

Expressibility for IDL
— sufficiently general to express most scientific interfaces
— must be object oriented and support error mechanisms

CASC

Research issues for scientific interoperability

Leverage existing technology where appropriate
— CORBA and ILU IDLs and language mappings
— Java inheritance and introspection ideas

Research issues
— what features are needed in a “Scientific IDL”
— mapping the “Scientific IDL” onto Fortran
— performance and overheads in the run-time system

Basic research approach in our project
— prove a simple prototype can work in a scientific environment
— then … add new features (e.g., distributed computation)

CASC

What our “Scientific IDL” looks like

Start with the CORBA IDL
— object oriented, exceptions, namespaces
— syntax similar to Java and C++
— mappings to all languages of interest but Fortran

Eliminate (for now, anyway) unnecessary features
— one-way qualifier
— struct and union (performance and Fortran considerations)
— CORBA arrays and sequences (replaced - see below)

Add new data types and fix stupid things
— CORBA inheritance model broken - adopt Java
— add complex type and dynamic multidimensional arrays
— add static and final qualifiers for methods

The new IDL looks a lot like Java

CASC

IDL specification for a linear solver package

package Solver {
interface Vector {

Vector clone();
double dot(in Vector y);
void axpy(in double a, in Vector y);
void initialize(in array<double,1> data);

};
interface Matrix {

void apply(out Vector Ax, in Vector x);
};
class SparseMatrix implements Matrix, RowAddressible {

void apply(out Vector Ax, in Vector x);
};
class CG extends Krylov implements AbstractSolver {

void solve(in Matrix A,...) throws ConvergenceException;
};

);

class
exception
interface
package

CASC

Evaluation of IDL expressibility

Sufficiently expressive for some numerical packages
— hypre, KINSOL, structured AMR linear solvers interface
— looked at some parts of the PETSc package

Type system limited to types expressible in the IDL
— no pointers and currently no templates
— problems with external opaque objects (e.g., MPI_Comm)
— but … only high-level interfaces will be expressed in the IDL

More than just the intersection of language capabilities
— features can be supported through the run-time system
— e.g., object-oriented support in C or f77
— e.g., introspection, RTTI, reference counting, exceptions …

CASC

Language mapping issues

Fortran 77/90 are the only real problems
— C, C++, Java mappings are defined by CORBA
— Python mappings are defined by ILU
— new constructs do not add to complexity of language mapping

Fortran 77 should be OK
— follow C bindings for function names
— opaque object references become integers (as in MPI)
— no structs or unions needed (or can be mapped to objects)

Fortran 90 will be major pain …
— can use f77 mapping and not exploit expanded type system
— want IDL arrays to map onto Fortran 90 arrays
— calling sequences and array descriptors compiler-dependent
— but … doing this by hand would be almost impossible

CASC

Performance and the run-time system

Planned run-time system is very simple
— single address space (perhaps distributed later)
— IDL design means no data copies (perhaps array transpose)
— polymorphism requires function tables as in C++ or PETSc
— overhead is a few function calls (could be inlined away)

So what do we need in a run-time system?
— implementation of vtables for Java inheritance model
— up/down casting and introspection queries
— object reference counting
— exception support as in CORBA (really just error return codes)
— other miscellaneous stuff (complex numbers in C, etc.)

CASC

Project status and future development

Current implementation status
— parser/analyzer written in Java with JavaCC
— prototype for polymorphism/multiple inheritance support in C
— integrating prototype with parser stub generator

Future development plans
— prove the technology can work in C
— demonstrate interoperability for C, C++, and f77
— develop language mappings for f90
— add language mappings for Java, Python, and MatLab
— add distributed capabilities (borrow existing technology)

CASC

Analysis and conclusions

Advantages of the IDL approach
— language interoperability (even for Fortran 90!)
— automatic support for object oriented features in C
— expressive enough for many numerical libraries (?)
— IDL provides a nice description language for interface
— automatically generates type information for introspection

Disadvantages and potential problems
— library designers write the IDL description (but … it’s simple)
— language mapping may not be as “natural” as if by hand
— types are limited to the IDL type system

What are the alternatives?

CASC

Acknowledgements

Work performed under the auspices of the U.S. Department
of Energy by Lawrence Livermore National Laboratory under
Contract W-7405-Eng-48.
Document UCRL-MI-131823

	Scott KohnwithAndrew Cleary, Steven G. Smith, and Brent SmolinskiCenter for Applied Scientific ComputingLawrence Livermor
	Overview
	Motivation #1:Language interoperability
	Motivation #2:Object support for non-object languages
	Interoperability through language bindings
	Interoperability through custom solutions
	Interoperability through an IDL
	IDL: Interface Definition Language
	Compiler generates “glue” code from IDL
	IDL glue code bridges languages
	Calling the IDL stubs from user code
	Design goals for the interoperability of high-performance scientific software
	Research issues for scientific interoperability
	What our “Scientific IDL” looks like
	IDL specification for a linear solver package
	Evaluation of IDL expressibility
	Language mapping issues
	Performance and the run-time system
	Project status and future development
	Analysis and conclusions
	Acknowledgements

