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Babel’s Scope & CCA
� Babel provides language 

interoperability, not 
components. 

� We collaborate with CCA 
to add parallel 
distributed support

� We also provide tools 
(Quorum & Alexandria) 
to facilitate component 
development and   

deployment

Compilers &
Linkers

Operating System

CCA Compliant 
Frameworks
Component
Semantics
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Release Announcement

� C, C++, F77, Python(client)
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babel-0.5.0.tar.gz

� Babel code generator
� written in Java

� Babel runtime library
� written in ANSI C

� Docs (minimal)
� papers, talks, javadoc html
� babel101 tutorial
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Hand Coded 
Language Interoperability

JNI
Native
SWIG

Platform Dependent

C

C++

f77

f90

Python

Java
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Babel Enabled 
Language Interoperability

� Truly Object Oriented
� Reference Counting

� Exception Handling
� RMI (future)

C

C++

f77

f90

Python

Java
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Babel Enabled 
Language Interoperability

What’s In This Release:What’s In This Release:

C

C++

f77

f90

Python

Java
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Babel Has Two Types of 
Customers

� Have a code
� Want to increase 

their user base
� Will learn SIDL
� Want Babel 

general and 
powerful

� Have a problem
� Want to solve their 

problem
� May never see SIDL 
� Want software that’s 

easy & trustworthy

Developers Users
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Babel’s Design Priorities

� Performance
� Developer/User dichotomy
� What’s natural for each language? 

� Could expose C array structs in C++
� C++ style would be SIDL::array<T>
template <>
array<item_t> : public array_mixin

< array_t, item_t,            
item_cxx_wrapper_t>  { }

template <>
array<item_t> : public array_mixin

< array_t, item_t,            
item_cxx_wrapper_t>  { }
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SIDL (Scientific Interface 
Definition Language)

� Builds on Industry 
IDL technology 

� CORBA
� COM

� Designed for  
Scientific Apps

� complex types
� dynamic 

multidimensional 
arrays

version Hello 1.0;
package Hello { 
class World {
string getMsg();

}
}
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version MySolverLib 0.1.0;
import ESI; 
package MySolverLib { 
interface MatrixGenerator { ... } 
class OptionDatabase {
void getOption( in string name, 

out string val);
}
class Vector implements-all ESI.Vector {
void setOptions( in OptionDatabase db );    

}
class Bizarre implements MatrixGenerator {

...    
void setData( in array<dcomplex,2> a );

}
}
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Many forms of language 
interoperable interfaces

SIDL
Scientific Interface

Definition Language

Human Comp

IOR
Internal Object
Representation

mpi
Co

XML
eXtensible Markup

Language
b Compatible

atible

We

ler Compatible
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XML enables...
...automated creation
via higher-level tools...Type Descriptions

on Shared Repositories

...Browsing
for Types

...automated 
search & 

discovery by 
advanced 

builders
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Language Interoperability: 
How Babel Makes it Work

Impls

� Application: user’s LOP
(Language Of Preference)

� Implementation: developers LOP 
(Can be wrappers to legacy code)

SIDLSIDL

If developer used Babel,
they also have a SIDL file.

Stubs

Skels

IORs

Application
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Language Interoperability: 
How Babel Makes it Work

Application

Stubs

Skels

IORs

Impls

� Application: user’s LOP
(Language Of Preference)

� Implementation: developers LOP 
(Can be wrappers to legacy code)

� Client Side Stubs: user’s LOP to C

� Internal Object Representation 
(IOR):  Always in C

� Server Side Skeletons:  translates 
IOR (in C) to developer’s LOP
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How Much Language Interoperability 
Have We Achieved?

� Basic Types
� bool
� char
� int
� long
� float 
� double
� fcomplex
� dcomplex
� string
� opaque

� Basic Types
� bool
� char
� int
� long
� float 
� double
� fcomplex
� dcomplex
� string
� opaque

� Extended Types
� Objects
� enumerations
� arrays of basic types
� arrays of objects
� (arrays are 

multidimensional, no 
arrays of arrays) 

� Extended Types
� Objects
� enumerations
� arrays of basic types
� arrays of objects
� (arrays are 

multidimensional, no 
arrays of arrays) 

� Modes
� in
� out
� inout
� return 

value

� Modes
� in
� out
� inout
� return 

value

� OO Method Dispatch
� regular
� final
� static
� interfaces
� classes

� OO Method Dispatch
� regular
� final
� static
� interfaces
� classes

� Exception Handling� Exception Handling

� For All Combinations of Languages
� C C
� C++ C++
� F77 F77
� Python

� For All Combinations of Languages
� C C
� C++ C++
� F77 F77
� Python

� 1431 test cases 
(and counting)

� 1431 test cases 
(and counting)
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What we foresee, based on 
experience with our tests...

Language Interoperability

Developer Concerns:
Configuration, 
Packaging,
& Deployment

User Concerns:
Installation
Trust



GKK 19CASC

GKK 4CASC

Hand Coded
Language Interoperability

JNI
Native
SWIG

Platform Dependent

C

C++

f77

f90

Python

Java
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Hand Coded
Language Interoperability

JNI
Native
SWIG

Platform Dependent
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f77

f90

Python

Java

These aren’t new problems...
But they are on a larger scale

Developer Concerns:
Configuration, 
Packaging,
& Deployment

User Concerns:
Installation
Trust

Babel enabled
Language Interoperability

� Object Oriented
� Reference Counting

� Exception Handling
� RMI (future)

C

C++

f77

f90

Python

Java
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Babel enabled
Language Interoperability

� Object Oriented
� Reference Counting

� Exception Handling
� RMI (future)

C

C++

f77

f90

Python

Java
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For Example...
� Consider the following statements...

� Java is more portable than C
� C is more portable than C++ 
� C++ is more portable than F77

� “portable” in a different sense
� Java doesn’t need to be recompiled (like C)
� C is mature, isn’t as hard to parse (as C++)
� C++ can bind to C or Java easier than F77

� BUT F77 is also more portable than C 
because of header/library issues

Babel’s  

regression tests 

have the worst of 

all worlds!!!
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For Example...
� To support Python and Java 

� All libraries must be shared (*.so) not 
statically linked (*.a)

� C++ shared libraries are problematic 
� Exception support is platform/compiler 

dependent
� Linking issues when interoperating with 

other languages
� Can create valid shared library with 

uncatchable exceptions
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Babel’s Configuration/Build
� GNU Make 
� Autoconf 

configuration
� Automake

build Makefiles
� Libtool 

shared libraries
� CUTE 

custom testing

� python’s own 
build system

� java’s built-in 
(broken) make

� helper scripts
� fixes to autoconf,

automake &
libtool

� lots of hacks



GKK 23CASC

0

200

400

600

800

1000

1200

1400

1600

Jan
-00

Feb-00
Mar-

00
Apr-0

0
May-00
Jun-00
Jul-0

0
Aug-00
Sep-00
Oct-0

0
Nov-00
Dec-00
Jan

-01
Feb-01
Mar-

01
Apr-0

1
May-01
Jun-01
Jul-0

1

pass
xfail
fail

Test History
sparc-sun-solaris2.7-gcc
# 

Te
st

 C
as

es

Date

babel 0.5.x

babel 0.4.x

IO
R

 R
ew

rit
e

Configure/Build/Repository faults,
not software failures!!!
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Problems affect the User too...
� How does a user get and install 

“language interoperable” software?
� Binary: if supplied by developer
� Source:

Assume “configure; make install”?
� How to link into application?

� If any C++ code, must use C++ linker
� Which C++ to use?

C++ has no std binary interface
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Crux of the problem

� We’re building 21st century 
technology...

� ... using 30 year old tools.

Make
Bourne shell

Autoconf (M4)
Automake (perl)
libtool (perl/sh)

JavaPythonF77C++
C

Autoheader
aclocal
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Solution

� Integrated config, build, package, 
test and management system.
� no make inside!

can have action create many files
understands directories

� uses real database
� program all aspects in one language
� MUST BE OPEN SOURCE
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In the mean time...

� Babel works on other platforms, 
just not automated config/testing
� Java code generator (precompiled)
� ANSI C runtime library (no problem)

� Babel’s tests are (necessarily) 
pathological worst-case examples

� We didn’t create these problems, 
we just exercise them aggressively
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Future Babel: 
Will Provide More Build Help

� “babel.make” 
� currently lists code generated
� may add additional flags, macros, etc.

� configure
� currently used for regression tests
� may generate artifacts useful for 

developers
helper scripts
warnings
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Farther Future Babel:
Will Do Distributed Computing

Internet

Marshaler

Line Protocol

Line Protocol

UnmarshalerStubs

IORs

Skels

IORs

Application

Impls
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Closing Remarks

� Babel Beta 0.5 is released
� Babel enables language 

interoperability 
� connect C, C++, F77, and Python 
� provide a uniform object-model, 

even in non-OO languages. 
� Deploying & Installing Language 

Interoperable Code in General
� is still very hard
� has broken every tool we use
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The End
babel-announce@llnl.gov 

babel-users@llnl.gov

http://www.llnl.gov/CASC/components
components@llnl.gov

Bill Bosl, Tammy Dahlgren, 
Tom Epperly, Scott Kohn, 

Gary Kumfert, & Steve Smith
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A.3. Can HPC and Component 
Technology REALISTICALLY be 
integrated?

� Yes.
� But HPC Components have huge 

(and unique) hurdles:
� Diverse Architectures
� Diverse OS’s
� Integration of SPMD and Dist. Comp.
� Archaic Pkg/Devel/Config/Build tools
� Non-CS trained (or interested) users
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B.3. Can the HPC community really 
afford yet another compiler such as
Babel?

� Is language interoperability 
important?

� How important?
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B.3. How is the Java subset of C++ 
inadequate as an HPC IDL?

� What is a “Java subset of C++” ?
� How does one

� use it to bind to other languages? 
� get a common inheritance model?
� get a common exception model?
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B.5. What is the role of traditional (parallel)
tools in component technology?

� Hopefully, they’re replaced by 
modern parallel tools.
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B.9. What will be the configuration issues
for components...to be portable and
high-performance?

� Lots.
� Lack of Configuration, Packaging, 

& Deployment tools 
� is the #1 Achilles heel for 

components
� is the #1 day-to-day pain in Babel 

development
� #1 cause for failure in regression 

tests
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C.1. Will anyone actually make the effort to
componentize their applications
software?

� Yes.
� But it will be messy.

� Efforts to Babelize at LLNL:
� hypre - want OOP in ANSI C & 

automatic F77 bindings
� ALPS - want scripting interface for 

laser plasma physics 
� SAMRAI - framework used in ALPS
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D.4. Should components be viewed as 
mostly a library/runtime developer
technology?

� No.  
� I used components in this 

PowerPoint Presentation
� Users can use components without 

knowing they’re using them.
� This is harder to achieve in UNIX than 

other platforms
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