
Babel
Users’ Guide

TAMARA DAHLGREN THOMAS EPPERLY

GARY KUMFERT JAMES LEEK

ii

Disclaimer

This work was performed under the auspices of the U.S. Department of Energy by University of California Lawrence
Livermore National Laboratory under contract No. W-7405-Eng-48.

This document was prepared as an account of work sponsored by an agency of the United States Government. Nei-
ther the United States Government nor the University of California nor any of their employees, makes any warranty,
express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned
rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manu-
facturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or the University of California. The views and opinions of authors expressed herein do not
necessarily state or reflect those of the United States Government or the University of California, and shall not be used
for advertising or product endorsement purposes.

Release Information

Babel Users’ Guide (this document) UCRL-SM-205559
Babel Source Code (associated software) UCRL-CODE-2002-054

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Babel
Users’ Guide

TAMARA DAHLGREN THOMAS EPPERLY

GARY KUMFERT JAMES LEEK

Center For Applied Scientific Computing
Lawrence Livermore National Laboratory

P.O. Box 808
Livermore, California, USA

July 26, 2005

iv

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Preface

This document applies to Babel 0.10.8. It, like the software it documents, is a work in progress.
– The Babel Development Team

Babel in a Nutshell

Babel is a tool that enables software written in different languages to communicate. It accomplishes this task by
using an Interface Definition Language (IDL) similar to COM and CORBA. Babel relies on the Scientific Interface
Definition Language (SIDL) that is specifically tuned for scientific applications. By expressing software interfaces, or
APIs1, in SIDL the appropriate glue code stubs and skeletons can be generated to facilitate language interoperability.
Features unique to SIDL are:

• Dynamic multi-dimensional arrays

• Complex numbers (e.g.2 + 3i)

• In-process optimizations

• Special directives for large-scale parallel distributed programming (future)

• Syntax for specifying interface behavior (future)

Babel enables true object-oriented techniques even in non object-oriented languages. The object model that SIDL
supports is similar to Java and Objective C where a class can extend at most one class, but implement many interfaces.
In C++ speak, an interface is simply a class of all pure-virtual methods. Furthermore, if library developers want
object-oriented features but are required to be 100% ANSI C compliant, Babel can meet those constraints. Although
the Babel code generator is implemented in Java, the runtime libraries and generated files for C bindings are 100%
ANSI C compliant.

Babel can be used as the basis for a component framework, but it isnot a complete framework by itself. We’ve
added a tiny CCA-compliant framework, calledDecaf, in our examples/ directory. Decaf demonstrates how Babel can
be used to implement a component framework.

SIDL is also a useful communications tool for code development teams since it only expresses the public API.
That is, implementation details, which often prove distracting during collaborative design, can be safely avoided by
restricting discussions to the interfaces described in SIDL. Furthermore, since SIDL is simple and clean it can be used
by Computer Scientists, Math Programmers, and Application Scientists to debate APIs even using only email.

Scope of this Manual

This document is intended as an introduction and tutorial on the use of Babel tools for the generation and use of
component software. The Babel tools were designed specifically for scientific applications, therefore most of the
examples and exercises here also deal with scientific applications.

This manual assumes the reader is a programmer who is proficient in two or more of the following languages: C,
C++, FORTRAN 77, FORTRAN 90, Java, or Python. Furthermore, this manual assumes the reader is familiar with the

1Application Programming Interfaces

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

vi Preface

SPMD2 programming model that pervades the scientific computing community. Knowledge of and experience with
MPI programming is helpful, but not strictly required.

Getting the Software

Babel source is available free of charge on the web. Developed by the Components Project at the Lawrence Livermore
National Laboratory Center for Applied Scientific Computing (CASC), it is licensed under the Lesser GNU Public
License (LGPL). See the source distribution for details.

The homepage for the Components Project is

http://www.llnl.gov/CASC/components

Conventions

The following typographic conventions are used throughout this manual.

Italic is used for file and command names. It is also used to highlight com-
ments in examples and to define terms the first time they appear in a
document.

Constant Width is used in examples to show the text that is generated, and in regular
text to show operators, variables, and the output from commands or
programs.

Constant Slanted is used for displaying for SIDL source code. We use a separate font to
distinguish SIDL code from generated code.

Constant Bold is used to show user’s modifications to generated code and in examples
to show user’s actual input at a terminal.

Sans Serif Slanted is used in examples to show variables for which a context-specific sub-
stitution should be made. The variablefilename, for example, would
be replaced by the actual filename.

Additionally, we may use specific blocks of text as sidebars to call the readers attention to particular information.
Here’s one kind.

Rationale: Often when listing restrictions or requirements, we find it helpful to also explain and document the
rationale behind a design decision. In time, the context in which the rationale was based may become irrelevant,
making the rationale blocks very useful for understanding when to change a decision.

We Appreciate Your Feedback

We have tested and verified the information in this manual. Nonetheless, features may have changed or oversights may
exist. Please contact us with any issues, corrections, or suggestions for future versions of this manual through snail
mail at:

Components Project
Center for Applied Scientific Computing
Lawrence Livermore National Laboratory
P.O. Box 808, L–365
Livermore, CA 94551

2Single Program Multiple Data

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

http://www.llnl.gov/CASC/components

vii

or through email to:

components@llnl.gov

To find out more about Babel, feel free to subscribe to one or more of the associated distribution lists given below.

• babel-announce@llnl.gov is a moderated email forum to which anyone can subscribe (though no-one
can post). This is a low-volume alternative for people who want to know about releases and major announce-
ments.

• babel-dev@llnl.gov is an open discussion forum about Babel for serious babel users who want to talk
about the internal workings of the tools. Anyone can subscribe or send email to this list.

• babel-users@llnl.gov is an open discussion forum about Babel for users. Anyone can subscribe or send
email to this list.

To subscribe, simply send email tomajordomo@lists.llnl.gov with the appropriate line(s):

subscribe babel-announce [email-address]
subscribe babel-dev [email-address]
subscribe babel-users [email-address]

where you can explicitly state your email address inemail-address or, if you leaveemail-address blank, majordomo
will use your email ReplyTo: field.

Acknowledgments

Project Alumni: Nathan Dykman, Scott Kohn, and Brent Smolinski

Interns: Melvina Blackgoat, Kirk Kelsey, Sarah Knoop, and Nija Shi

Alpha Testers: Andy Cleary, Jeff Painter, Cal Ribbens

Contributors (Ideas, Bug Reports, Patches, & Code): Rob Armstrong, Ben Allan, Wael Elwasif, Matt Knepley,
Boyana Norris, Barry Smith, Jody Winston, and many more.

Sponsors: Babel development originally started as a Strategic Initiative (SI) in the LDRD (Lab Directed R&D)
portfolio of Lawrence Livermore National Laboratory.

Current funding is from the DOE/Office of Science SciDAC program as part of the Common Component Technol-
ogy for Terascale Scientific Simulation (CCTTSS). Also known as the Common Component Architecture.

Software Notices

Babel depends on a great deal of third-party software.

• JavaCC is used to generate the SIDL Parser. This is a java.net community project. JavaCC is available under a
BSD-style license here:https://javacc.dev.java.net/).

• gnu.getopt is an implementation of GNU Getopt in Java and is distributed with Babel as a JAR file. It can be
downloaded (along with sourcecode) from either the GNU website

http://www.gnu.org/software/java/packages.html

or the author’s website

http://www.urbanophile.com/arenn/hacking/download.html.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

mailto:components@llnl.gov
mailto:majordomo@lists.llnl.gov

viii Preface

The following is the copyright notice for gnu.getopt:

/**
/* Getopt.java -- Java port of GNU getopt from glibc 2.0.6
/*
/* Copyright (c) 1987-1997 Free Software Foundation, Inc.
/* Java Port Copyright (c) 1998 by Aaron M. Renn (arenn@urbanophile.com)
/*
/* This program is free software; you can redistribute it and/or modify
/* it under the terms of the GNU Library General Public License as published
/* by the Free Software Foundation; either version 2 of the License or
/* (at your option) any later version.
/*
/* This program is distributed in the hope that it will be useful, but
/* WITHOUT ANY WARRANTY; without even the implied warranty of
/* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
/* GNU Library General Public License for more details.
/*
/* You should have received a copy of the GNU Library General Public License
/* along with this program; see the file COPYING.LIB. If not, write to
/* the Free Software Foundation Inc., 59 Temple Place - Suite 330,
/* Boston, MA 02111-1307 USA
/**/

The text for the GNU Library GPL is available athttp://www.gnu.org/copyleft/library.html .

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Contents

Preface v

1 Introduction 1
1.1 Babel Facilitates Language Interoperability . 1
1.2 Scientific Interface Definition Language (SIDL) . 3
1.3 Benefits to Customers . 3
1.4 Beyond Babel’s Scope . 3
1.5 Summary . 4
1.6 Organization . 4

I Foundations 5

2 Installation 7
2.1 Simple Installation . 7
2.2 External Software Requirements . 9

3 Basic Babel Code Generation 11
3.1 Babel is a Compiler . 11
3.2 Command Line Options . 11

4 Hello World Tutorial 15
4.1 Introduction . 15
4.2 Writing the SIDL File . 15
4.3 Writing the Implementation . 16
4.4 Writing the Client . 17
4.5 Final Remarks . 18

5 SIDL Basics 19
5.1 Introduction . 19
5.2 SIDL Files . 19
5.3 Fundamental Types . 23
5.4 Arrays . 25
5.5 SIDL Runtime . 50
5.6 Objects . 59
5.7 XML Repositories . 61

II Supported Language Bindings 63

6 C Bindings 65
6.1 Introduction . 65
6.2 Basic Types . 65

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

x CONTENTS

6.3 Header files . 65
6.4 Mapping for classes, interfaces, arrays and r-arrays . 66
6.5 Calling SIDL methods from C . 67
6.6 Catching and Throwing Exceptions in C . 68
6.7 Implicitly defined methods . 69
6.8 Invoking Babel to generate C bindings . 70
6.9 Invoking Babel to generate C implementations . 70

7 C++ Bindings 73
7.1 Introduction . 73
7.2 Basic Types . 73
7.3 SIDL C++ Header Suffix . 73
7.4 SIDL’s Main C++ Header File . 74
7.5 Calling Methods from C++ . 74
7.6 Catching and Throwing Exceptions in C++ . 75
7.7 Invoking Babel to generate C++ stubs . 76
7.8 Implementing SIDL Classes in C++ . 76
7.9 Accessing SIDL Arrays From C++ . 77
7.10 C++ Specific Babel Command Line Options . 79

8 FORTRAN 77 Bindings 81
8.1 Introduction . 81
8.2 Basic Types . 81
8.3 Calling Methods From FORTRAN 77 . 82
8.4 Catching and Throwing Exceptions in FORTRAN 77 . 83
8.5 Invoking Babel to generate FORTRAN 77 Stubs . 85
8.6 Implementing Classes in FORTRAN 77 . 85
8.7 Accessing SIDL Arrays From FORTRAN 77 . 86
8.8 FORTRAN 77 objects with state . 88

9 FORTRAN 90 Bindings 91
9.1 Introduction . 91
9.2 Basic Types . 91
9.3 Calling Methods From FORTRAN 90 . 92
9.4 Catching and Throwing Exceptions in Fortran 90 . 94
9.5 Invoking Babel to Generate F90 Stubs . 95
9.6 Implementing Classes in FORTRAN 90 . 96
9.7 Accessing SIDL Arrays From FORTRAN 90 . 98

10 Java Bindings 101
10.1 Introduction . 101
10.2 Basic Types . 101
10.3 Client Side: Using SIDL Classes and Methods . 101
10.4 Server Side: Writing SIDL classes in Java . 102
10.5 Casting Objects . 103
10.6 Out and Inout arguments . 103
10.7 Using SIDL arrays with Java . 103
10.8 Interfaces and Abstract Classes . 104
10.9 Exceptions . 105
10.10Enumerations . 106
10.11Invoking Babel to generate Java bindings . 106
10.12Invoking Babel to generate Java implementations . 107
10.13Environment Variables . 107

11 Python Bindings 109

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

CONTENTS xi

11.1 How to Create a SIDL Object in Python . 109
11.2 How to Cast SIDL Objects in Python . 109
11.3 How to Call Methods from Python . 110
11.4 Catching and Throwing Exceptions in Python . 110
11.5 Building Python Extension Modules . 111
11.6 Setting up to Run Python . 111
11.7 Notes . 112
11.8 How to Implement SIDL Objects in Python . 112

12 SIDL Backend 115
12.1 Introduction . 115
12.2 Purpose . 115
12.3 Generated versus Original SIDL files . 115
12.4 XML File Comparison . 117
12.5 Babel Command Line Options . 117

13 XML Backend 119
13.1 Introduction . 119
13.2 Purpose . 119
13.3 Basic Structure . 119
13.4 Command Line Options . 125

14 HTML Interface Documentation 127
14.1 Introduction . 127

III Advanced Topics 129

15 Building Portable Polyglot Software 131
15.1 Layout of Generated Files . 131
15.2 Grouping compiled assets into Libraries . 132
15.3 Dynamic vs. Static Linking . 133
15.4 SIDL Library Issues . 135
15.5 Language Bindings for thesidl Package . 135
15.6 SCL Files for Dynamic Loading . 135
15.7 Deployment of Babel Enabled Libraries . 136

16 Troubleshooting 137
16.1 Introduction . 137
16.2 Common Errors . 137
16.3 Common Warnings . 137

17 Lessons Learned 139
17.1 Introduction . 139
17.2 Compilation Consistency is Key . 139

IV Appendices 141

A Reserved Words 143
A.1 Introduction . 143
A.2 Reserved Words . 143
A.3 Suggested Things To Avoid . 143

B SIDL Grammar 147

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

xii CONTENTS

B.1 Introduction . 147
B.2 Backus-Naur Form . 147

C Extensible Markup Language (XML) 155
C.1 Introduction . 155
C.2 SIDL Document Type Declaration (DTD) . 155

D Glossary 161

Bibliography 173

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 1

Introduction

Contents

1.1 Babel Facilitates Language Interoperability . 1

1.2 Scientific Interface Definition Language (SIDL) . 3

1.3 Benefits to Customers . 3

1.4 Beyond Babel’s Scope . 3

1.5 Summary . 4

1.6 Organization . 4

1.1 Babel Facilitates Language Interoperability

Babel was conceived, designed, and built to solve a problem; namely, to make scientific software libraries equally
accessible from all of the standard languages. Hence, its goal is language interoperability. The vision goes far beyond
calling BLAS1 implemented in FORTRAN 77 from a C program. At its heart, Babel lets programmers use their tool
of choice in developing complete applications using components implemented in one or more distinct programming
languages.

For instance, let us say that an application scientist is running a sophisticated C++ code from a Python scripting
environment. This can already be easily accomplished with technologies like SWIG. Now let’s say that the simulation
is showing some erratic behavior and the application scientist wants to extend theConvergenceCheck class to also
report some information to a log file. Let’s also assume that this application scientist doesn’t want to write a new C++
class much less rewrite the current application. What this individual wants to do is derive and utilize a new class in
Python from the C++ConvergenceCheck class. Thus, the C++ simulation code will now have to invoke a method
on a class implemented in Python, which then dispatches back to the C++ base class after doing its additional logging.
This cannot be done in SWIG because SWIG does not support calls from C++ to Python, only from Python to C++.
This is an example of a capability that Babel provides that is outside the scope of SWIG.

Figure 1.1 lists many of the primary languages that are of interest to scientific simulation software developers and
users. The good news is that there is a path from each language to every other; meaning that calling from one to another
is possible. However, the technologies to get from one language to another vary widely, are fraught with pitfalls, and
may require calling through a completely different language.

Babel works by providing the technology to define and support the multi-language interoperation of a common
subset of functionality through programming language-neutral interface specifications. See Fig. 1.2 to see a graphical
representation of the supported languages. It is important to note that this common functionality subset isfar from a
lowest common denominator solution in that Babel actually adds functionality when it is lacking in the host language.

1BLAS: Basic Linear Algebra Subroutines

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

2 Introduction

JNI
Native
SWIG

Platform Dependent

C

C++

f77

f90

Python

Java

Figure 1.1: Language Interoperability Using Current Technology.

C

C++

f77

f90

Python

Java

Figure 1.2: Language Interoperability Using Babel.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

1.2 Scientific Interface Definition Language (SIDL) 3

1.2 Scientific Interface Definition Language (SIDL)

In order to support multi-language interoperability, Babel relies on the specification of interfaces in the Scientific
Interface Definition Language (SIDL) (pronounced “SIGH-dull”). SIDL is similar to COM and CORBA IDLs, but was
designed with an emphasis on scientific computing. Specifically, SIDL currently supports dynamic multi-dimensional
arrays and has built-in complex numbers. It will acquire a set of directives to aid in the description of massively
parallel distributed objects and additional syntax for specifying interface behavior.

When it comes to deciding what programming idioms to support across all languages and which ones to reject,
SIDL strikes a careful balance between minimalism and completeness. It isnot a lowest common denominator solu-
tion. SIDL is minimal to keep the learning curve as low as possible. It is complete so developers do not feel constrained
in how to express their solutions.

SIDL is object-oriented. Its object model closely resembles that of Java and Objective C. In this model there is
single inheritance of implementation and multiple inheritance of interfaces. It supports the typical notions of virtual,
static, and final methods. SIDL also provides a basic set of features by defining and implementing the basic types for
interfaces, classes and exceptions. All types implicitly inherit from these basic types.

The most important concept to grasp about SIDL is that SIDL only defines a public interface that other programs
may use to access your code. As a result, all methods defined as part of a SIDL file are public, if you do not want
a method to be globally useable, simply do not define it in your SIDL file. Furthermore, all object and class data is
implicitly private. There is no way to declare or define data in a SIDL file. Instead, any data required for your code
should be declared in the implementation language files. This way, the languages that use your code through Babel
may create your objects and pass them around just like any normal piece of data, but they may only access the data
through the provided interface.

SIDL also has a complete set of fundamental data types, from booleans to double precision complex numbers. It
also supports more sophisticated types such as enumerations, strings, objects, and dynamic multi-dimensional arrays.

SIDL is still a work in progress. Of particular research interest are directives that will be added for parallel
distributed object interaction and features to specify behavioral semantics associated with the interfaces.

1.3 Benefits to Customers

Babel has two types of customers:developeranduser. The developer implements a library that will be used by one
or more users. Since one goal of the developer is to increase their customer base, the developer writes a SIDL file that
effectively publishes the interface to their software in a platform and language neutral manner. The user, on the other
hand, may not care or even know that they are interacting with a library through Babel.

Babel provides some features that benefits user and developer alike. The most important aspect to note here is that
all Babel objects are reference counted. This feature is critical to encapsulate the memory allocation library (e.g. C’s
malloc/free or C++’s new/delete) used in the implementation of the object. Users never need concern themselves with
when to free up a resource, they only declare when they’re done with their reference to that resource. Developers are
free to use different memory allocation subsystems in different parts of their code if need be.

1.4 Beyond Babel’s Scope

The language interoperability problem is a large one, and though the Babel tools address much of it, there is still a lot
that is beyond the scope of our tool. Babel is at its heart a code generator and a runtime library. Consequently, the
following features are currently limitations of the Babel tool kit:

Reverse engineeringis not supported. That is, there is no support for inspecting or modifying compiled code. In
addition, scanning existing software to generate SIDL wrappers is not supported. There are other groups who
are pursuing a C++ to SIDL converter. Since SIDL contains different information than what is in a C++ header
file, however, such a converter cannot be fully automated without additional help.

Library compatibility is limited. Since Python and Java dynamically load libraries into their virtual machines, using
these languages requires the ability to build shared libraries. In general, building shared libraries (particularly
from C++) is difficult and error prone. This is compounded by the fact that compiler vendors have no standard

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

4 Introduction

way of doing this, and many tools that help building shared libraries don’t support C++. One can build a
legitimate shared library that still won’t work because there are unresolved symbols, or the library was loaded
in the wrong mode.

Compiler compatibility is limited. Since the C++ standard does not specify a binary interface and uses a lot of
hashing in their symbol tables, there have been no attempts to get libraries from dissimilar C++ compilers to
work together. Similarly, although we support FORTRAN 77 and FORTRAN 90, all libraries of Fortran code
must be compiled with the same compiler. . . again because of the lack of a standard binary interface.

Despite the aforementioned limitations, Babel does facilitate the development of language interoperable software.
However, issues of robust packaging, building, and deployment of language interoperable software still loom on the
horizon.

1.5 Summary

Babel consists of a set of tools that are intended to be used for facilitating language interoperability in the scien-
tific computing community. Using interfaces for libraries or components specified in Scientific Interface Definition
Language (SIDL) files, Babel can generate corresponding XML representations as well as the source code for the
corresponding stubs, intermediate object representations, and implementation skeletons. The generated source code
then becomes the foundation for the glue code that is used for language interoperability between callers of libraries
and components.

In addition to providing generated code that automatically handles mapping fundamental data type parameters asso-
ciated with calls between different languages, Babel has built-in support for complex numbers and multi- dimensional
arrays. Additional benefits include object reference counting to facilitate memory management.

Finally, Babel’s primary goal is to facilitate the development of language interoperable libraries and components.
Hence, support for reverse engineering is not provided. Given that Babel has been developed by a research team,
there are also limitations associated with shared library and programming language-specific compiler interoperability
support that have been looked into but probably will not be addressed in the foreseeable future. Regardless, Babel
has proven to be useful to its stakeholders to the point that it is becoming an integral part of the Common Component
Architecture (CCA). Refer to papers and presentations on our web site for more information.

1.6 Organization

The remainder of this document is separated into two parts; namely, foundations and supported language bindings.
Part I is devoted to describing the SIDL and the Babel tools. It starts with a tutorial to gently introduce the reader
to the development of glue code from both the implementation (or server) and user (or client) sides. The following
chapter introduces SIDL and Babel basics. Finally, a chapter on advanced topics, such as linking options, is provided.

Part II describes the language bindings currently supported by Babel. At this point, most of the bindings are
programming languages. In which case, most have both client- and server-side bindings. However, Babel also supports
textual language backends. At this time, Extensible Markup Language (XML) and Scientific Interface Definition
Language (SIDL) are the only to textual backends that are supported.

Appendices are included to provide more information on topics such as acronyms, the SIDL Grammar, and SIDL
XML. In addition, sections are included that provide advice and tips on troubleshooting.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Part I

Foundations

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 2

Installation

Ideally, Babel will configure and make “out-of-the-box” on most Unix-like machines. If the configuration process
detects that certain resources are unavailable, it will correctly disable support for languages or features needing
those resources. If this instance of correct behavior is not the intended behavior, then the installer is left to install
the external resources and then re-configure, make, and install Babel. This chapter is intended to provide help and
reassurance that Babel is indeed configured and installed correctly.

Contents

2.1 Simple Installation . 7

2.1.1 Configure . 8

2.1.2 Make . 8

2.1.3 Make Check (Optional) . 9

2.1.4 Make Install . 9

2.1.5 Make Installcheck (Optional) . 9

2.2 External Software Requirements . 9

2.2.1 Required & Included . 9

2.2.2 Required but Separate . 9

2.2.3 Recommended . 10

2.2.4 Optional . 10

2.1 Simple Installation

These instructions assume you have a “tarball” (e.g. *.tar.gz file). We have volunteers who put together and manage
RedHat RPMs and Debian *.deb distributions of Babel. If you have one of these distros, read their documentation first
as it may have details that supersede our own.

A typical build is a simple sequence of

% ./configure
lots of stuff
...
Fortran77 enabled.
C++ enabled.
Java enabled.
Python enabled.
Fortran90 enabled.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

8 Installation

% make
lots more stuff
...
% make install
not so much stuff
...

There are many circumstances where the configuration step will properly terminate with an error, but if the config-
uration works, the build and installation shouldn’t terminate abnormally.

2.1.1 Configure

There are two main choices to be made at configure time: “Where does the software get built?” and “Where does the
software get installed?”. The mechanisms for effecting these choices are quite different.

If you want to build software in a separate directory from where the tarball was untarred, this is called a “VPATH
build”. VPATH builds are useful if you want to build Babel multiple times with various compilers, flags, or you have
a shared filesystem across multiple platforms. It separates the code you generate from things that you were given.
The downside is that its more complex to remember where to edit what since original sources will be in the source
directory tree and the generated sources and compiled assets will be in the build directory tree.

If you run configure in the directory it appears, (i.e. you typed./configure) you are performing an “non-
VPATH build”. To do a VPATH build, simply cd to the directory you want to be the build directory root, then launch
configure from there. The following sequence demonstrates a vpath build

% tar zxvf babel-x.x.x.tar.gz
% mkdir babel-linux-build
% cd babel-linux-build
% ../babel-x.x.x/configure

Note that the directory where you build Babel should be different from the directory where you install Babel. The
default install directory is /usr/local, but can be set to any directory that you have read/write access to. To change
the install directory, run configure with the--prefix option. Since many people do not have root access on their
machine (or prefer to install in a local directory when dealing with unfamiliar software), this option is probably the
second most heavily used option for configure (first being--help , which is a good one to try also.)

At the time of this writing (0.9.3), there are two configure scripts in Babel, about 40K lines of shell script each.
These configure scripts will then propagate the information they acquire to Makefiles by perform approximately
190 sed substitutions (per Makefile), to the source code by setting approximately 170 preprocessor macros in ba-
bel config.h, and various bits of shell script in the build that do not get propagated to the install directory. The
configure script does not modify any source code in Babel’s runtime system or code generator. This means that source
code generated by a different Babel installation is usable as long as it gets compiled against the local babelconfig.h
and linked with the local Babel runtime libraries.

2.1.2 Make

The makefiles are generated by the configure script from Makefile.in templates. The configure script is generated by
a tool called autoconf. The Makefile.in’s are generated from Makefile.am files by a separate, but related tool called
automake. We also use a tool called libtool to help with libraries. Libtool is written in shell, automake in perl, and
autoconf in m4.

After a successful configuration step, if your build fails it is most likely that there is a bug in Babel, autoconf,
libtool, or a library of m4 macros from any of the above. It is less likely to be an issue with automake, but possible.
Perl and m4 themselves are no longer involved in the process after the configure script is produced, so while there may
be a nascent bug in the files they generated, it is unlikely.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

2.2 External Software Requirements 9

2.1.3 Make Check (Optional)

re This is an exhaustive check that can take hours on an average workstation. The number of actual tests run depends
on the number of languages that are enabled. In general a driver and an implementation of each test is generated in
each enabled language. Then each combination of driver and implementation are run (both statically linked libraries
and dynamically loaded libraries, as appropriate) and tested. A test script can actually launch multiple tests, and tests
can have multiple parts. At the time of this writing (babel-0.9.3) there are over 13,000 parts tested when all languages
are enabled.

2.1.4 Make Install

This transfers built software to the final installation directory. Examples and tests are not installed, nor are Makefiles or
dozens of other types of files. Make install also builds javadoc documentation for Babel’s code generator. Since some
libraries are built with install paths in mind, libtool uses a lot of scripts to make things work in their build directory
with binaries actually hidden in .lib subdirectories. Make install strips this extra scaffolding away as well.

2.1.5 Make Installcheck (Optional)

This is the same test suite as with make check. The only difference is that it is run against the code in the install
directories, not the build directories.

2.2 External Software Requirements

Babel builds on a lot of available software; some optional, some required. Some we ship in our tarball, some we
require users to install separately.

2.2.1 Required & Included

• Java GetOpt: This is a Java rewrite of GNU GetOpt available at http://www.urbanophile.com/arenn/hacking/download.html.
The Babel code generator uses this to parse command line arguments. The JAR file, download information, and
licensing details are in the lib/ subdirectory of the Babel distribution.

• Xerces-J:Xerces-J is a Java implementation of SAX and DOM XML parsers available from the Apache Soft-
ware Foundation at http://www.apache.org. The Babel code generator uses this for XML I/O. The JAR file,
download information, and licensing details are in the lib/ subdirectory of the Babel distribution.

2.2.2 Required but Separate

• Unix shell & bintools: On early 64bit Linux boxes, we found it necessary to rebuild even these basic tools with
all 64bit options enabled. Apparently they were originally installed with less attention to detail than necessary.
Bintools includes things like cp and mv.

• C/C++ compiler: The Babel runtime library and much of the code generated by the Babel code generator will
be ANSI C. So that must be available. The C++ compiler should be optional, but at the time of this writing the
configure and makefiles didn’t reliably support disabling C++.

• Java: The Babel code generator is implemented in Java. One can disable the support for Java language bindings,
but a working Java would still be needed for just about everything else. We generally stick with Sun’s java
developer kits (available at http://java.sun.com). Others have run Babel with Kaffe and GJC.

• libxml2: This is the Gnome C library for parsing XML files (see http://xmlsoft.org). The Babel runtime library
needs version 2.4 or above to parse SCL files for dynamic loading.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

http://www.urbanophile.com/arenn/hacking/download.html
http://www.apache.org
http://java.sun.com
http://xmlsoft.org

10 Installation

2.2.3 Recommended

• Python: Needed for the python language binding (obviously) and for the testing harness. Since the Linux kernel
is often configured with a Python-based tool, its hard to find a Linux without python already installed. Python
can be downloaded from http://www.python.org.

One important gotcha is a special case where non-python applications create Babel objects implemented in
python. In this case, the Babel runtime needs to dynamically load the python virtual machine (libpython.so).
Unfortunately, python does not always build a dynamically loadable version of this library by default. If the
Babel configure script cannot find a libpython.so, it will disable server-side Python support.

At the time of this writing, Python cannot be coerced to build a libpython.so on AIX.

• Numeric Python (NumPy): This is a scientific array python extension module. It provides native C arrays (and
the ability to manipulate very big arrays) similar to python lists. Babel’s python language binding requires this
extension module available at http://www.pfdubois.com/numpy.

• Python Meta Widgets (Pmw): This is a library of GUI widgets built on top of Python’s native tcl/tk interface
(tkinter). Its available on SourceForge http://pmw.sourceforge.net Pmw is only needed by the GUI in the babel-
life supercomputing demo. This Babel implementation of Conway’s Game of Life is a separate tarball found in
the contrib/ directory of the Babel distro. There is no test for Pmw in Babel’s configuration script.

• Chasm: Babel uses the Fortran array descriptor library available in Chasm (see http://chasm-interop.sourceforge.net).
Chasm is a language interoperability tool in its own right, but as of version 1.0.1, only the array library is con-
sidered complete. Without Chasm, the configuration script will disable Fortran 90 support.

• pthreads: Needed for Java language binding.

2.2.4 Optional

These packages are used by Babel maintainers in the course of normal development. You’ll need these only if you
start rewriting code in Babel’s distribution.

• Automake: Part of GNU Autotools (see http://www.gnu.org/software/automake). Check the configure.ac file
to determine exactly which version we use. The configure script will disable autoconf if it detects the slightest
variation from the version we prescribe.

• Autoconf: Part of GNU Autotoolssee http://www.gnu.org/software/automake). Check the configure.ac file to
determine exactly which version we use. The configure script will disable autoconf if it detects the slightest
variation from the version we prescribe.

• Libtool: Part of GNU Autotools (see http://www.gnu.org/software/libtool). Note that we often find need to
make minor tweeks to ltmain.sh so a fresh download may generate slightly worse results on some platforms.

• m4: Contact us for a patched version that we use (we overflow buffers in the distributed version).

• JavaCC: This Java Compiler Compiler is what we use to generate the SIDL parser in Babel. If you are interested
in experimenting with changing the SIDL grammar, then edit the compiler/gov/llnl/babel/parsers/sidl/sidl.jj file
and rebuilt the parser with this tool. Information available at https://javacc.dev.java.net.

• LaTeX2HTML: This is used to generate HTML the HTML version of our manuals.

• perl: Needed by automake, LaTeX2HTML and other bits and pieces.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

http://www.python.org
http://www.pfdubois.com/numpy
http://pmw.sourceforge.net
http://chasm-interop.sourceforge.net
http://www.gnu.org/software/automake
http://www.gnu.org/software/automake
http://www.gnu.org/software/libtool
https://javacc.dev.java.net

Chapter 3

Basic Babel Code Generation

This chapter describes the Babel code generator and its command line options.

Contents

3.1 Babel is a Compiler . 11

3.2 Command Line Options . 11

3.1 Babel is a Compiler

Babel is a compiler. It takes symbols and their interfaces as input and generates either code or a given textual repre-
sentation. These interfaces may be specified in either Scientific Interface Definition Language (SIDL) or Extensible
Markup Language (XML). The form the output takes depends upon the options specified on the command line. Refer
to the Section 3.2 for details on command line options. More information on the supported bindings can be found in
Part II of this document.

3.2 Command Line Options

The entire Babel code generator is written in Java and compiled into a jar file. For convenience, a small script called
babel is provided thatshouldset the appropriate environment variables and invoke the Java Virtual Machine on the
jar file. To test that the script and jar file are working together properly, simply typebabel -- help .

Using Babel

Babel requires exactly one of the following mutually exclusive arguments on the command line unless you use the
-- multi option.

• -- help : Print options to stdout.

• -- version : Print version of Babel.

• -- text= form : Generate text equivalent (“sidl” or “xml”) of associated package(s) or generate interface
documentation with “html”.

• -- client= lang : Generate client, or proxy, classes to access library.

• -- server= lang : Generate the server and client classes to implement the library.

• -- parse-check : Check the SIDL file only.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

12 Basic Babel Code Generation

By far, the three most common uses of Babel will be to generate the Client-side proxies, Server-side implementations,
and XML associated with the SIDL file. The last option is essentially used internally when the Babel runtime library
is being developed.

The -- multi option lets you generate multiple targets for a given set of files in a single run. Put it first on the
command line, each-- client or -- server can have a different set of settings.

Additionally, there are a few supplemental arguments that complete the picture.

• -- output-directory= dir : Specifies the root directory associated with the generated files. The default
setting is the current working directory.

• -- generate-subdirs : Generates files in a directory tree matching the packaging scope of the SIDL
file. This is on by default for languages that have this requirement, such as Java and Python, but off by default
for languages that have no such requirement. Hence, code generation for only the latter languages (e.g. C, C++,
F77, F90) is effected by this option.

• -- short-file-name : When the-- generate-subdirs and-- short-file-names options are used simultane-
ously, the generated file names will not include package names, just the class or interface symbol. Thus, either
long or short names must be used in all clients or servers that have interdependencies; mixing short and long
names will result in compile and/or runtime errors.

• -- repository-path= path : Specifies a semicolon separated list of directories, or URLs1 to search for
XML Type descriptions. The need for these XML types is to resolve references in the SIDL file. This option can
be used multiple times on the same command line. If appropriate, the Babel script adds the default repository
path to the command line before dispatching to the Java Virtual Machine.

• -- no-default-repository : Prohibits the use of the default repository in resolving symbols.

• -- suppress-timestamp : Suppresses the insertion of meta-information that could result in generated
files that would otherwise not differ from prior executions on the same, unchanged input file. Typically Babel
inserts meta-information such as creation time into files it generates. Although this information is useful, it does
result in the creation of excessive changes when using version control systems.

• -- exclude= regex : This options can be used multiple times. Each time you add a regular expression
that will be used to exclude symbols from code generation. No code or XML will be generated for any symbol
matching the user provided regular expression. This command line option requires version 1.4.0 or later of the
Java runtime environment.

• -- comment-local-only : This option reduces the amount of comments in stub C header files. It will
only include the doc comments for locally defined method. It will not include doc comments for inherited
methods.

• -- hide-glue : This option causes all non-impl files to be generated in aglue/ subdirectory. This reduces
the “clutter” in the current directory.

• -- language-subdir : This options causes all generated files to be stored in a language-dependent
subdirectory; if the-- generate-subdirs option is also used, the language directory will be at the bottom
of the hierarchy.

• -- exclude-external : This option causes code to be generated only for the symbols specified on the
command line. No code is generated for symbols on which the users symbols depend.

• -- cxx-ior-exception : Earlier versions of the Babel C++ bindings checked the IOR pointer in a given
stub before making any calls on it. If the IOR was null, a NullIORException was thrown. It was later found
that in certain cases these checks were taking an inordinent amount of time, and since C++ does not normally
check pointers before dereferencing them, it was decided that this feature was out of line with the spirit of C++.
However, since some code had already been written that used this feature, we could not completely eliminate
the checks. Therefore, this command line option was added. Calling babel with it will generate C++ stubs with
the checks in them. This option has no effect on other languages.

1URLs have colons in them, so this path has to be semi-colon separated, even though UNIX paths are traditionally colon separated.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

3.2 Command Line Options 13

Table 3.1: Command Line Arguments.

SHORT FORM LONG FORM NOTES
-h -- help Print options to stdout.
-v -- version Print version of Babel.
-tform -- text=form Generate text.
-clang -- client=lang Generate client classes.
-slang -- server=lang Generate server and client classes.
-p -- parse-check Only check parsing of the SIDL file.

-- generate-sidl-stdlib Regenerate the Babel runtime library.
-odir -- output-directory=dir Root directory to contain generated files.
-g -- generate-subdirs Generate sources in directory tree matching

SIDL packaging.
-Rpath -- output-directory=path Use specified XML repository(ies) to resolve

symbols.
-eregex -- exclude=regex Do not generate output for matching symbol(s).

-- no-default-repository Do not use the default repository to resolve
symbols.

-- suppress-timestamp Suppress time-related metadata generation.
-- comment-local-only Reduce doc comments in C stub header.

-E -- exclude-external Do not generate code for dependencies.
-u -- hide-glue Put glue code in a subdirectory.
-l -- language-subdir Put code in a language dependent directory.
-x -- cxx-ior-exception Include Null IOR checks in C++ Stubs.
-V -- vpath Set the impl (splicer block) root directory.

• -- vpath= dir : This option sets the root directory Babel searches first when trying to load implementation
files to preserve splicer block contents in the hand edited implementation files. If you are generating server-side
C for a concrete classx.y.z and you used-- vpath=/tmp , Babel would try to read splicer blocks from
/tmp/x y z Impl.h and /tmp/x y z Impl.c . If it does not find either file in/tmp , it also checks the
current directory. If you are using-- generate-subdirs with -- vpath , the vpath directory is the root
of the tree, so for the example, Babel would search for/tmp/x/y/z Impl.h and/tmp/x/y/z Impl.c .
When appropriate, Babel inserts#line directives to refer debuggers to the original file. As its name suggests,
this option is useful when making vpath builds using make. Some people also use it to avoid spurious changes
to the files managed by their revision control system.

Long and Short Forms

So far, we’ve shown described the long forms of command line arguments, starting with two hyphens “-- ”. There are
also short forms for many of the more frequently used commands. See Table 3.1 for details.

Examples

To create a new XML version of a SIDL file, use the following command:

% babel -tXML -omydepot mystuff.sidl

To exclude code generation for types whose name begins with “MPI.”, use the following command:

% babel -sC++ --exclude=’ˆMPI \.’ mystuff.sidl

Now suppose a developer wants to implement a library in C++ that corresponds to these types in the SIDL file.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

14 Basic Babel Code Generation

% babel -sC++ mystuff.sidl

Alternatively, the developer could also create C++ implementation files based on the XML repository. In this case, a
list of symbols to be implemented would need to be specified. Assuming that all of the types are in a package called
“mystuff”, the following command can be issued:

% babel -sC++ -Rmydepot mystuff

Now suppose a second developer wants to extend this software. A second SIDL file is created then the implemen-
tation files in FORTRAN 90 are generated with the following command:

% babel -sf90 -Rmydepot newstuff.sidl

A user now can download both SIDL files and create their Python bindings to use both libraries with the following
command:

% babel -cPython -Rhttp://localhost/mystuff/mydepot;
http://www.otherhost.com/newstuff mystuff newstuff

Finally, to generate SIDL files for each package based on the XML stored in the repository, the following command
is used:

% babel -tSIDL -Rhttp://localhost/mystuff/mydepot;
http://www.otherhost.com/newstuff mystuff newstuff

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 4

Hello World Tutorial

Contents

4.1 Introduction . 15
4.2 Writing the SIDL File . 15
4.3 Writing the Implementation . 16
4.4 Writing the Client . 17
4.5 Final Remarks . 18

4.1 Introduction

This tutorial guides you through the process of writing the classic “Hello World!” example using the Babel tools. In the
process, it attempts to teach you how to write a Scientific Interface Definition Language (SIDL) interface description
file, generate the library implementation in C++, and write a C main program to call the library. It also illustrates the
process for writing a Makefile to compile and link the library and program.

4.2 Writing the SIDL File

The “Hello World!” program will be written in a directory called hello/ and place the client library in a subdirectory
hello/lib/:

% mkdir hello
% cd hello
% mkdir lib

The first step is to write a SIDL file. Recall that SIDL is an interface definition language (IDL) that describes the
calling interface for a scientific library. It is used by the Babel tools to generate glue code that hooks together different
programming languages. A complete description of SIDL can be found in Chapter 5.

For this particular application, we will write a SIDL file that contains a class World in a package Hello. Method
getMsg() in class World returns a string containing the traditional computer greeting. Using your favorite text editor,
create a file called hello.sidl in the hello/ directory containing the following:

package Hello version 1.0 {
class World {

string getMsg();
}

}

The package statement provides a scope (or namespace) for class World, which contains only one method, getMsg().
The version clause of the statement identifies this as version 1.0 of the Hello package.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

16 Hello World Tutorial

4.3 Writing the Implementation

We will write the implementation in the lib/ subdirectory of hello/. The first step is to run the Babel shell script to
generate the library implementation code for the SIDL file. We will implement the library in C++. The simplified
command to generate the Babel library code (assuming Babel is in your PATH) is1:

% babel -sC++ -olib ../hello.sidl

In this Babel command, the “-sC++ ” flag, or its long form “--server=C++ ”, indicates that we wish to generate
C++ bindings for an implementation2. The “-olib ” flag, or its long form “--output-dir=lib ”, defines the root
directory of where the generated code should be placed.

This command will generate a large number of C and C++ header and source files. It is often surprising to
newcomers just how much code is generated by Babel. Rest assured, each file has a purpose and there is a lot of
important things being done as efficiently as possible under the hood.

Files are named after the fully-qualified class-name. For instance, a packageHello and classWorld would have
a fully qualified name (in SIDL) asHello.World . This corresponds to file names beginning withHello World 3.
For each class, there will be files withIOR, skel , stub , or impl appended after the fully qualified name.IOR
files are always in ANSI C (source and headers), containing Babel’s Intermediate Object Representation.Impl files
contain the actual implementation, and can be in any language that Babel supports, in this case, they’re C++ files.
Impl files are the only files that a developer need look at or touch after generating code from the SIDL source.Skel
filesperform translations between the IORs and the Impls. In some cases (like Fortran) the Skels are split into a few
files: some in C, some in the Impl language. In the case of C++, the Skels are pure C++ code wrapped inextern
"C" {} declarations. If the file is neither an IOR, Skel, nor Impl, then it is likely aStub. Stubs are the proxy classes
of Babel, performing translations between the caller language and the IOR. Finally, the file babel.make is a Makefile
fragment that will simplify writing the Makefile necessary to compile the library. You may ignore the babel.make file
if you wish.

The only files that should be modified by the developer (that’s you since you’re implementing Hello World) are
the “Impls”, which are in this case files ending withImpl.hh or Impl.cc Babel generates these implementa-
tion files as a starting point for developers. These files will contain the implementation of the Hello library. Every
implementation file contains many pairs of comment “splicer” lines such as the following:

std::string
Hello::World_impl::getMsg()
throw ()
{

// DO-NOT-DELETE splicer.begin(Hello.World.getMsg)
// Insert code here...
// DO-NOT-DELETE splicer.end(Hello.World.getMsg)

}

Any modifications between these splicer lines will be saved after subsequent invocations of the Babel tool. Any
changes outside the splicer lines will be lost. This splicer feature was developed to make it easy to do incremental
development using Babel. By keeping your edits within the splicer blocks, you can add new methods to the hello.sidl
file and rerun Babel without the loss of your previous method implementations. You shouldn’t ever need to edit the
file outside the splicer blocks.

For our hello application, the implementation is trivial. Add the following return statement between the splicer
lines in thelib/Hello World Impl.cc file:

std::string
Hello::World_impl::getMsg()
throw ()
{

1For information on additional command line options, refer to Section 3.2.
2You can also try the “--help ” flag to list all of the Babel command-line options.
3Note: dots are converted to underscores for file naming.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

4.4 Writing the Client 17

// DO-NOT-DELETE splicer.begin(Hello.World.getMsg)
return std::string("Hello World!");
// DO-NOT-DELETE splicer.end(Hello.World.getMsg)

}

To keep the Makefile simple, we will use some GNU Make features. This Makefile may not work with other
make implementations. The GNU gcc and g++ compilers are used in this example. The following Makefile in the lib/
subdirectory will compile the library files and create a shared library namedlibhello.so :

Assumes babel-config is in the current path
.cc.o:

g++ -fPIC ‘babel-config --includes‘ -c $<
.c.o:

gcc -fPIC ‘babel-config --includes‘ -c $<

include babel.make
OBJS = ${IMPLSRCS:.cc=.o} ${IORSRCS:.c=.o} \

${SKELSRCS:.cc=.o} ${STUBSRCS:.cc=.o}

libhello.so: ${OBJS}
g++ -shared -o $@ ${OBJS}

clean:
${RM} *.o libhello.so

You do not necessarily need to create a shared library for this example; you may generate a standard static library
(e.g., libhello.a). However, in general, you must generate a shared library if you will be calling your library from
Python or Java. To create the shared library archive libhello.so, simply execute make as follows:

% cd lib/
% make libhello.so

4.4 Writing the Client

We will write the client in the main hello/ subdirectory. The main program will be written in C. File hello.c is as
follows:

#include <stdio.h>
#include "Hello_World.h"

int main(int argc, char** argv)
{

Hello_World h = Hello_World__create();
char* msg = Hello_World_getMsg(h);
printf("%s\n", msg);
Hello_World_deleteRef(h);
free(msg);

}

This code creates the HelloWorld object, calls the getMsg() method, prints the ubiquitous saying, decrements the
reference count for the object, and frees the message string.

There are a few details worth noting here. The C bindings generate function names by combining packages, classes,
and method names with underscores (e.g.Hello World getMsg() . Whenever you see double underscores in
Babel generated symbols, they indicate something built-in to (and sometimes specific to) the language binding. The
create() method is built-in to every instantiatable class defined in SIDL, triggering the creation of Babel internal

data structures as well as the constructor of the actual object implementation.
To generate the C glue code necessary to call the library, we run the Babel tool again, this time specifying C as the

target language:

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

18 Hello World Tutorial

% babel --client=C hello.sidl

or simply

% babel -cC hello.sidl

The “-cC ” flag, or its equivalent long-form “--client=C ”, tells the Babel code generator to create only the C
stub calling code, not the entire library implementation. The library libhello.so already contains the necessary IOR,
skeleton, and implementation object files. We compile the hello program using the following GNU Make Makefile:

.c.o:
gcc ‘babel-config --includes‘ -Ilib -c $<

include babel.make
OBJS = hello.o ${STUBSRCS:.c=.o}
LIBDIR=‘babel-config --libdir‘
hello: ${OBJS}

gcc ${OBJS} -o $@ \
-Wl,-rpath -Wl,lib -Llib -lhello \
-Wl,-rpath -Wl,$(LIBDIR) -L$(LIBDIR) -lsidl

clean:
${RM} *.o hello

Note that the “-R” flags tell the dynamic library loader where to find the hello and sidl shared libraries. You
could achieve the same behavior through environment variables such asLD LIBRARY PATH. On some machines
and compilers (notably linux-gcc-3.0) the -R flag is no longer supported, so you will have to modify the appropriate
environment variable to find the shared library.

Finally, we make the executable and run it:

% make hello
% ./hello
Hello World

4.5 Final Remarks

Congratulations! You are now ready to develop a parallel scalable linear solver package.
The preceding process may seem to be the most complicated way to write the world’s simplest program but, of

course, the same process will also work for significantly more complex applications. “Hello World” is small enough to
experiment with in the language of your choice. Parallel, multithreaded, scientific simulation codes are another matter
entirely.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 5

SIDL Basics

Contents

5.1 Introduction . 19
5.2 SIDL Files . 19
5.3 Fundamental Types . 23
5.4 Arrays . 25
5.5 SIDL Runtime . 50
5.6 Objects . 59
5.7 XML Repositories . 61

5.1 Introduction

This chapter describes the basics of the Scientific Interface Definition Language (SIDL). The goal is to provide suf-
ficient information to enable most library and component developers to begin using SIDL to wrap their software. It
begins with an overview of SIDL files followed by an introduction to the fundamental data types. More complex topics
such as the object arrays, exceptions, objects, and the XML repository are then addressed.

5.2 SIDL Files

SIDL files are human-readable, language- and platform- independent interface specifications for objects and their
methods. SIDL allows you to specify classes, interfaces, and the methods therein. All methods defined in SIDL are
public, since the developer is writing them as part of an interface description. Any data you wish a SIDL object to
hold is not declared in the SIDL file, and is private. Data should be placed in the implementation skeleton files, and
cannot be publicly exported.

Babel reads the SIDL files to generate the appropriate programming language bindings. These bindings, in the form
of stub, intermediate object representation (IOR), and implementation skeleton sources, provide the basis for language
interoperable software using Babel. In addition, SIDL files are used to populate the XML symbol repository that can
serve as an alternate source of interface specifications during the generation of programming language bindings.

Basic Structure

The basic structure of a SIDL file is illustrated below.

package <identifier> [version <version>]
{

interface <identifier> [<inheritance>]
{

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

20 SIDL Basics

[<type>] <identifier> ([<parameters>]) [throws <exception>];
.
.
.

[<type>] <identifier> ([<parameters>]) [throws <exception>];
}

class <identifier> [<inheritance>]
{

[<type>] <identifier> (<parameters>) [throws <exception>];
.
.
.

[<type>] <identifier> ([<parameters>]) [throws <exception>];
}

package <identifier> [version <version>]
{

.

.

.
}

}

The main elements arepackages, interfaces, classes, methods, andtypes. For a more detailed description, refer to
Appendix B.

Packagesprovide a mechanism for specifying name space hierarchies. That is, it enables grouping sets of interface
and/or class descriptions as well as nested packages. Identified by thepackagekeyword, packages have ascoped
name that consists of one or more identifiers, or name strings, separated by a period (”.”). A package can contain
multiple interfaces, classes and nested packages. By default, packages are now re-entrant. In order to make them
non-re-entrant, they must be declared asfinal .

Interfaces define a set of methods that a caller can invoke on an object of a class that implements the methods.
Multiple inheritance of interfaces is supported, which means an interface or a class can be derived from one or
more interfaces.

Classesalso define a set of methods that a caller can invoke on an object. A class can extend only one other class
but it can implement multiple interfaces. So we have single inheritance of classes and multiple inheritance of
interfaces.

Methods define services that are available for invocation by a caller. The signature of the method consists of the return
type, identifier, arguments, and exceptions. Each parameter has atypeand amode. Themodeindicates whether
the value of the specifiedtype is passed from caller to callee (in), from callee to caller (out), or both (inout).
Each exception that a method canthrow when it detects an error must be listed. These exceptions can be either
interfaces or classes so long as they inherit fromsidl.BaseException . For a default implementation of the
exception interfaces, the exception classes should extendsidl.SIDLException . Methods and parameter
passing modes are discussed in greater detail in Section 5.6.

Types are used to constrain the the values of parameters, exceptions, and return values associated with methods. SIDL
supports basic types such asint , bool , andlong as well as strings, complex numbers, and arrays.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.2 SIDL Files 21

Comments and Doc-Comments

SIDL has the same commenting style as C++/Java and even has a special documentation comment (so calleddoc-
comment) similar to those used in Javadoc. One can embed comments anywhere in their SIDL file. Documentation
comments should immediately precede the class, interface, or method with which they are associated. Babel replicates
documentation comments in the files it generates. It does not replicate plain comments.

/*
* 1. This is a multi-line comment.
*
*/

// 2. This comment fits entirely on a single line.

/* 3. This comment can fill less than a line. */

/** 4. This is a documentation comment. */

/**
* 5. Documentation comments can span
* multiple lines without the beginning
* space-asterisk-space combinations
* getting in the way.
*/

Consider the above SIDL file fragment.

1. This comment is a regular multi-line comment that is delimited by a slash-star , star-slash (“/* ”, “ */ ”) pair.

2. This is a single-line comment that starts with a double slash “// ” and continues to the end of the line.

3. This comment is the same as # 1 except that it is completely contained on a single line. It can be embedded in
the middle of a line anywhere a space naturally occurs.

4. This is a documentation comment. In keeping with Javadoc, Doc++, and other tools, it is delimited by slash-star-
star and star-slash (“/** ”, “ */ ”) combinations. Documentation comments are important because their contents
are preserved by Babel in the corresponding generated files. Doc-comments must directly precede the interface,
class, or method that they document.

5. This is a multi-line variant of a doc-comment. Note that initial asterisks on a line are assumed to be for human
readers only and are discarded by Babel when it reads in the text. The multi-line doc-comment is the preferred
way of documenting SIDL.

Packages and Versions

SIDL has both a packaging and versioning mechanism built in. Packages are essentially named scopes, serving a
similar function as Java packages or C++ namespaces. Versions are decimal separated integer values where it is
assumed larger numbers imply more recent versions. All classes and interfaces in that package get that same version
number. If subpackages are specified, they can have their own version number assigned. If a package is declared
without a version, it can only contain other packages. If a package declares interfaces or classes, a version number for
that package is required.

package mypkg {

}

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

22 SIDL Basics

This SIDL file represents the minimum needed for each and every SIDL file. The package statement defines a scope
where all classes within the package must reside. Since no version clause is included, the version number defaults to
0.

Packages can be nested. This is shown in the example below. The version numbers assigned to all the types is
determined by the package, or subpackage, in which it resides. In the design of the SIDL file, remember that some
languages get very long function names from excessively nested packages or excessively long package names.

package mypkg version 1.0 {

package thisIsAReallyLongPackageName {
}

package this version 0.6 {
package is {

package a {
package really {

package deeply version 0.4 {
package nested {

package packageName version 0.1 {
}

}
}

}
}

}
}

}

External types can be expressed in one of two ways. The fully scoped external type can be used anywhere in the
class description. Alternatively, animport statement can be used to put the type in the local package-space.import
statements can request a specific version of the package, if that version is not found, Babel will print an error. If no
version is specified, Babel will take whatever version it is being run on. Babel can not be run on two versions of a
given package at the same time, even if you only import or require one of them.

Another way to restrict the package version you use is therestrict statement.restrict does not import the
package, but if you do later import the package or refer to something in that package by it’s fully scoped name, Babel
will guarantee that the correct version of the package will be used. Also note that all restrict statements must come
before the first import statement.

Below is a sample SIDL file, that should help bring all of these concepts together.
require pkgC version 2.0; // restrict pkgC to version 2.0, not imported

import pkgA version 1.0; // restrict pkgA version 1.0. Includes class pkgA.A

import pkgB; // import pkgB regaurdless of version. Includes class pkgB.B

package mypkg version 2.0 {
class foo {

setA(A); // imported from pkgA, must be pkgA.A-v1.0
setB(B); // imported from pkgB, must be pkgB.B, no version restriction
setC(pkgC.C); // must be pkgC.C-v2.0
setD(pkgD.D); // no version restriction

}
}

Re-entrant Packages

By default, SIDL packages are re-entrant. This means that Babel allows sub-packages to be broken into separate files,
but you’d still have to run Babel on all the files at the same time. Here’s how it works.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.3 Fundamental Types 23

Table 5.1: SIDL Types

SIDL TYPE SIZE (BITS)
bool 1
char 8
int 32
long 64
float 32
double 64
fcomplex 64
dcomplex 128
opaque 64
string varies
enum 32
interface varies
class varies
array <Type,Dim > varies
rarray <Type,Dim > (index variables) varies

First define the outermost package in a file.
package mypkg version 2.0 {

}

Then define a sub-package in a second file.
package mypkg.subpkg version 2.0 {

}

Note that both files begin with the identical version statement. Now as long as you run Babel on both SIDL files at
the same time (with the outermost one first on the commandline), all is fine.

This works because the package statement takes a scoped identifier as an argument. As long as Babel knows that
a packagemypkg exists, it can handle a new package calledsubpkg . (This would also work ifsubpkg were a
class. Version statements require an identifier for the outermost package. Since packages cannot have dots “.” in their
names, the only dots in version statements should appear at the numbers, not the package names.

Running the second file without the first will (and should) generate an error since the enclosing package was
not declared. Re-entrance should be used judiciously. This feature may be disabled by labeling a given package as
final .

5.3 Fundamental Types

Table 5.1 briefly shows the different data types that are supported in Babel. Refer to each chapter for the lan-
guage specific bindings for each SIDL type. The “S” in SIDL stands for “Scientific.” This emphasis is reflected in
the fundamental support for complex numbers (fcomplex anddcomplex) and dynamic multidimensional arrays
(array <Type,Dim >).

C++ developers looking at the SIDL syntax for arrays, might think that SIDL is a templated IDL, but this is not
so. Although the syntax for SIDL arrays looks like a template, it is specific only to the array type. Developers cannot
create templated classes or methods in SIDL.

Rationale: Although C++ templates are a very powerful programming mechanism, they apply only to C++. For
Babel to implement similar hashing routines, method names in languages other than C++ would become prohibitively
(thousands of characters) long. Moreover, this C++ template hashing mechanism is compiler specific so while C++
is very good at hiding the expanded template names (unless there is an error to report) we would have to add babel
C++ bindings on a compiler by compiler basis.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

24 SIDL Basics

Discussion of the various types is broken up into sections. Numeric types such asbool , char , int , long ,
float , double , fcomplex , dcomplex , string s, as well as information about enumerated types and the
opaque type are all covered in this Subsection 5.3.

Information about extended types such as Interfaces and Classes along with the methods they contain are described
in Section 5.6, and Section 5.4 covers Array.

Numeric Types

The SIDL typesbool , char , int , long , float , double , fcomplex , anddcomplex are the smallest and
easiest data types to transfer between languages transparently. They all have a fixed size and can just as reasonably be
copied as passed by reference.

Most languages natively support all of these data types (though perhaps less so with complex types). There are a
few notable exceptions that may be of interest.

ANSI C does not define the size ofint andlong , only that the latter be at least as big as the former. As of the
C99 standard, there are typesint32 t andint64 t that are signed integers that explicitly support a fixed number
of bits. Most compilers already have these symbols defined appropriately insys/types.h (pre C99 standard) or
inttypes.h .

Python defines itsint andlong to be equivalent to C, and therefore suffers the same platform dependent integer
size problem with less flexibility for a workaround. It is not uncommon for regression tests involving longs and Python
to fail on certain platforms. Python 2.2 has a patch to make SIDL long support better.

Strings

Strings are an interesting datatype because they are fundamental to many pieces of software, but represented dif-
ferently by practically every single programming language. Strings can have a high overhead to support language
interoperability because there is invariably so much copying involved.

FORTRAN 77 and 90 support for strings is limited to a predetermined buffer size. Since the results of a string
assignment into that buffer in FORTRAN does not propagate the length of the string, trailing whitespace is always
trimmed for any string begin passed out from a FORTRAN implementation.

Opaque

Theopaque type is dangerous and rarely useful. However, there are particular times when an opaque type is the only
way to solve a problem; for example, it is one of the few portable ways to implement an object with state in Fortran 77
(see Section 8.8). When a SIDL file uses anopaque type, Babel guarantees only bits will be relayed exactly between
caller and callee. If there is a need to pass more information than an opaque provides, than the developer can simply
pass a pointer to that information.

Use of aopaque carries a heavy penalty. When Babel matures enough to support distributed computing, any
method calls withopaque in the argument list (or return type) will be restricted to in-process calls only.

Rationale: Sinceopaque is typically used for a pointer to memory, this sequence of bits has no meaning outside
of its own process space.

Enumerations

An enumeration is typically used in programming languages to specify a limited range of states to enable dealing with
them by names instead of hard-coded values. For language interoperability purposes — especially to support this
concept on languages with no native support — we’ve had to create specific rules for the integer values associated
with enumerated types.

package enumSample version 1.0 {

// undefined integer values
enum color {

red, orange, yellow, green, blue, violet
};

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 25

// completely defined integer values
enum car {

/**
* A sports car.
*/

porsche = 911,
/**

* A family car.
*/

ford = 150,
/**

* A luxury car.
*/

mercedes = 550
};

// partially defined integer value
enum number {

notZero,// This non-doc comment will not be retained.
notOne,
zero=0,
one=1,
negOne=-1,
notNeg

};
}

Above is a sample of enumerations taken directly from our regression tests. It defines a packageenumSample
that contains three enumerations. C/C++ developers will find the syntax very familiar. When defining an enumeration,
the actual integer values assigned can be undefined, completely defined, or partially defined.

SIDL defines the following rules for adding integer values to enumerated states that don’t have a value explicitly
defined.

1. Error if two states are explicitly assigned the same value

2. Assign all explicit values to their named state.

3. Assign smallest unused non-negative value to first unassigned state in enumeration.

4. Repeat 3 until all states have assigned (unique) values.

To verify the application of these rules, theenumSample.number enumeration will have the following values
assigned to its states:NotZero =2, NotOne =3, zero =0; one=1, negOne=-1, notNeg =4.

5.4 Arrays

One of the features that separates SIDL and BABEL from Microsoft’s COM/DCOM and the OMG’s CORBA is
support for multi-dimensional arrays. SIDL is designed to serve the high performance computing community, so we
anticipate that both SIDL object developers and object clients may require direct access to the underlying array data
structure to try to optimize instruction pipelining or cache performance. The purpose of this document is to describe
the functional API to the SIDL array data structure and the underlying data structures. This presentation will focus on
the C API for arrays because it is the basis for the other language APIs, so they will likely reflect its idiosyncrasies.

There are two main kinds of arrays in SIDL: normal arrays and r-arrays. R-arrays are a specialized form of array
for numeric types that has a simpler interface from C, C++, FORTRAN 77 and FOTRAN 90. Normal arrays are used
for all SIDL types.

The SIDL array API and data structure can be used in client code to prepare argument for passing to a SIDL
method, and it is used inside the implementation code to get data and meta-data from incoming arguments.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

26 SIDL Basics

Normal SIDL arrays can be “row-major” or “column-major”. They are not parallel array classes, and not partic-
ularly sophisticated, but they are very, very general. These are meant to generalize the array types built into many
languages, not to provide a general array component that everyone will use. It is expected for parallel array libraries
to build on top of the array type presented into SIDL.

R-arrays

There are two kinds of SIDL arrays: normal SIDL arrays and raw SIDL arrays called r-arrays. Normal SIDL arrays
provide all the features of a normal SIDL type. They can be passed asin , inout , orout parameters, and they can be
returned as a method return value. Normal SIDL arrays can be allocated or borrowed, and they are reference counted.
You can also passNULLas a normal SIDL array.

SIDL r-arrays exist to provide a lower access to numeric arrays from C, C++, Fortran 77, Fortran 90 and future
languages as appropriate. For example, a one-dimensional r-array in C appears as a double pointer and a length
parameter. To highlight the contrast, normal SIDL arrays appear as a struct in C, a template class in C++, an 64-bit
integer in Fortran 77 and a derived type in Fortran 90.

R-arrays are have more restrictions in how they can be used. Here is how r-arrays are more constrainted:

1. Only thein andinout parameter modes are available for r-arrays. R-arrays cannot be used as return values
or asout parameters.

2. R-arrays must be contiguous in memory, and multi-dimensional arrays must be in column-major order (i.e.,
Fortran order).

3. NULL is not an allowable value for an r-array parameter.

4. The semantics forinout r-array parameters are different. The implementation is not allowed to deallocate the
array and return a new r-array.inout means that the array data is transferred from caller to callee at the start
of a method invocation and from callee to caller at the end of the a method invocation.

5. The implementation of a method taking an r-array parameter cannot change the shape of the array.

6. The lower index is always 0, and the upper index isn− 1 wheren is the length in a particular dimension. This
is contrary to the normal convention for Fortran arrays.

7. It can only be used for arrays of SIDLint , long , float , double , fcomplex , anddcomplex types.

Rationale: The way r-arrays are passed to the server-side code, particularly Fortran 77, makes it impossible for
them to be allocated or deallocated. This makesout and return values impossible. Because the data has to be
accessible directly from Fortran 77 without any additional meta-data, the array data must be in column-major order.

Arrays of char are not currently supported for r-arrays because in some languages characters are treated as
16-bit Unicode characters.

The advantages of r-arrays include:

• Arrays appear more “natural” in C, C++, Fortran 77, Fortran 90 and future low level languages.

• Developers need less or no code to tranlate between their array data structure and SIDL’s array data structure.

• SIDL generated APIs can have signatures very similar if not identical to well known legacy APIs.

• Less performance overhead because r-arrays can avoid a call tomalloc andfree .

When you declare an r-array, you also declare the index variables that will hold the size of the array in each
dimension. For example, here is an method to solve one of the fundamental problems of linear algebra,Ax = b:

void solve(in rarray<double,2> A(m,n),
inout rarray<double> x(n),
in rarray<double> b(m),
in int m,
in int n);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 27

In this example,A is a 2-D array of doubles withmrows andn columns.x is a 1-D array of doubles of lengthn, and
b is a 1-D array of doubles of lengthm. Note that by explicitly declaring the index variables, SIDL takes avoid using
extra array size parameters by taking advantage of the fact that the sizes ofA, x andb are all inter-related. The explicit
declaration also allows the developer to control where the index parameters appear in the argument list. In many cases,
the argument types and order can match existing APIs.

The mapping for the solve method will be shown for C, C++, Fortran 77 and Fortran 90 in the following chapters.
In languages that do not support low level access such as Python and Java, r-arrays are treated just like normal SIDL
arrays, and the redundant index arguments are dropped from the argument list. The indexing information is available
from the SIDL array data structure.

SIDL Language Features

As of release 0.6.5, interface definitions can specify that an array argument or return value must have a particular
ordering for a method. The typearray<int, 2, row-major> indicates a dense,1 two-dimensional array of
32 bit integers in row-major order; and likewise, the typearray<int, 2, column-major> indicates an dense
array in column-major order. Some numerical routines can only provide high performance with a particular type of
array. The ordering is part of the interface definition to give clients the information they need to use the underlying
code efficiently. The ordering specification is optional.

For one-dimensional arrays, specifyingrow-major or column-major allows you to specify that the array
must be dense, that is stride 1. Otherwise, for one-dimensional arrays row-major and column-major are identical.

If you pass an array into a method and the array does not have the specified ordering, the skeleton code will make a
copy of the array with the required ordering and pass the copy to the method. This copying is necessary for correctness,
but it will cause a decrease in performance. The implementor of the method can count on an incoming array to have
the required ordering.

Forout parameters and return values, an ordering specification means that the method promises to return an array
with the specified ordering. The implementation should create theout arrays with the proper ordering; because if it
does not, the skeleton code will have to copy the outgoing array into a new array with the required ordering.

For inout parameters, an ordering specification means the ordering specification will be enforced by the skeleton
code for the incoming and outgoing array value.

At the time of writing this, the ordering constraints are enforced for Python implementation because Python uses
Numeric Python arrays, so BABEL cannot control the array ordering as fully. The Python skeletons do force outgoing
arrays (i.e., arrays passed back from Python) to have the required ordering.

Independent and borrowed arrays

From a memory perspective, there are two main kinds of arrays: independent and borrowed. The independent arrays
owns and manages its data. It allocates space for the array elements when the array is created, and it deallocates that
space when the array is finally destroyed.

The borrowed array does not own or manage its data. It borrows its array element data from another source that
it cannot manage, and it only allocates space for the index bounds and stride information. The rationale for borrowed
arrays is to allow data from another source to temporarily appear as a SIDL array without requiring data be copied.

If you slice an independent array, the resulting array is also considered independent even though it borrows data
from the original independent array. The resulting array can still manage its data by retaining a reference to the original
array; hence, its element data cannot disappear until the resulting array is destroyed. If youslice a borrowed array,
the resulting array is also borrowed because like its original array, it doesn’t manage the underlying data.

In the Babel generated code, r-arrays are converted to borrowed arrays. These borrowed arrays are allocated on the
stack rather than on the heap to improve performance of r-arrays.

The Life of an Array

The existence of borrowed arrays causes the arrays to deviate from the normal reference counting pattern. You may
recall that all arrays are reference counted, and an array’s resources are reclaimed when the reference count goes
to zero. However, a borrowed array’s array element data will disappear whenever the source of the borrowed data

1meaning non-strided

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

28 SIDL Basics

Table 5.2: SIDL types to array function prefixes

SIDL TYPE ARRAY FUNCTION PREFIX VALUE TYPE
bool sidl bool sidl bool
char sidl char char
dcomplex sidl dcomplex struct sidl dcomplex
double sidl double double
fcomplex sidl fcomplex struct sidl fcomplex
float sidl float float
int sidl int int32 t
long sidl long int64 t
opaque sidl opaque void *
string sidl string char *

determines that it should regardless of the reference count in corresponding the SIDL array. This behavior means that
developers should consider any SIDL array that they did not create themselves, for example incoming arguments to
methods, as potential borrowed arrays. When a method wants to keep a copy of an array that might be a borrowed
array, it should use thesmartCopy method documented below.

Here are some rules of thumb about the use of borrowed arrays:

• The creator of a borrowed array should guarantee that the data for the borrowed array will exist through the
duration of any method calls using the borrowed array.

• Methods should not return a borrowed array as a return value orout parameter unless the method can guarantee
that the array element data will be available until the process shuts down.

• There is a negligible performance cost when usingsmartCopy when the array is not borrowed, and there is a
huge correctness benefit when the array is borrowed.

The Language Bindings

The C++ binding for array provides access to the C API in case you need to take the gloves off and revel in the data
directly. But the C++ binding also provides a templated wrapper class to provide a more natural look and feel for C++
programmers.

The Python binding for arrays involves copying SIDL arrays to/from Numeric Python arrays. Arrays in Python
don’t have the SIDL methods available. They just have the Numeric Python API available.

The FORTRAN 77 API mimics the C API; all the C functions have been FORTRANified and havef appended to
their names. The FORTRAN 90 API uses function overloading to allow programmers to use the short array method
names.

The Array API

In the following presentation, we use the SIDLdouble type; however, everything in this section applies to all types
except where noted. The basic types are in the SIDL namespace. Table 5.2 shows the prefix for SIDL base types and
the actual value type held by the array...

For arrays of interfaces or classes, the name of the array function prefix is derived from the fully qualified type
name. For example, for the typesidl.BaseClass , the array functions all begin withsidl BaseClass . For
sidl.BaseInterface , they all begin withsidl BaseInterface .

When you add an object or interface to an array, the reference count of the element being overwritten is decre-
mented, and the reference count of the element being added is incremented. When you get an object or interface from
an array, the caller owns the returned reference.

For arrays of strings when you add a string to any array, the array will store a copy of the string. When you retrieve
a string from an array, you will receive a copy of the string. You shouldsidl String free the returned string
when you are done with it.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 29

When you create an array of interfaces, classes, or strings, all elements of the array are initialized to NULL. Other
arrays are not initialized. When an array of interfaces, classes, or strings is destroyed, it releases any held references
in the case of objects or interfaces. In the case of strings, it frees any non-NULL pointers.

The name of the data structure that holds the array if double isstruct sidl double array . For some
types, the data structure is an opaque type, and for others, it is defined in a public C header file.

The functions are listed succinctly in Table 5.3 as well as in detail over the next few pages.

Function: createCol

/* C */
struct sidl_double__array*
sidl_double__array_createCol(int32_t dimen,

const int32_t lower[],
const int32_t upper[]);

//
// C++
static sidl::array<double>
sidl::array<double>::createCol(int32_t dimen,

const int32_t lower[],
const int32_t upper[]);

C
C FORTRAN 77

subroutine sidl_double__array_createCol_f(dimen, lower, upper, result)
integer*4 dimen
integer*4 lower(dimen), upper(dimen)
integer*8 result

!
! FORTRAN 90
subroutine createCol(lower, upper, result)

integer (selected_int_kind(9)), dimension(:), intent(in) :: lower, upper
type (sidl_double_3d), intent(out) :: result ! type depends on dimension

! dimension of result is inferred from the size of lower

// Java
// (isRow should be false to get a column order array)

public Array(int dim, int[] lower, int[] upper, boolean isRow);

This method creates a column-major, multi-dimensional array in a contiguous block of memory.dimen should
be strictly greater than zero, andlower andupper should havedimen elements.lower[i] must be less than
or equal toupper[i]-1 for i ≥ 0 and i < dimen . If this function fails for some reason, it returnsNULL.
lower[i] specifies the smallest valid index for dimensioni , andupper[i] specifies the largest. Note this defini-
tion is somewhat un-C like where the upper bound is often one past the end. In SIDL, the size of dimensioni is 1 +
upper[i] - lower[i] .

The function makes copies of the information provided bydimen , lower , andupper , so the caller is not obliged
to maintain those values after the function call.

For FORTRAN, the new array is returned in the last parameter,result . A zero value inresult indicates that
the operation failed. For Fortran 90, you can use the functionnot null to verify thatresult is a valid array.

Function: createRow

/* C */
struct sidl_double__array*
sidl_double__array_createRow(int32_t dimen,

const int32_t lower[],
const int32_t upper[]);

//
// C++
static sidl::array<double>

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

30 SIDL Basics

Table 5.3: SIDL Array Functions

SHORT NAME DESCRIPTION
createCol Creates a column-major order SIDL array
createRow Creates a row-major order SIDL array
create1d Creates a dense one-dimensional SIDL array
create2dCol Creates a dense, column-major, two-dimensional SIDL array
create2dRow Creates a dense, column-major, two-dimensional SIDL array
slice Creates a sub-array of another array. Takes parameters to define array properties.
borrow Makes a SIDL array from thrid party data without copying it
smartCopy Copies a borrowed array or addRefs a non-borrowed array
addRef Increments the reference count.
deleteRef Decrements the reference count.
get1 Returns the indexed element from a one-dimensional array
get2 Returns the indexed element from a two-dimensional array
get3 Returns the indexed element from a three-dimensional array
get4 Returns the indexed element from a four-dimensional array
get5 Returns the indexed element from a five-dimensional array
get6 Returns the indexed element from a six-dimensional array
get7 Returns the indexed element from a seven-dimensional array
get Returns the indexed element from an array of any dimension
set1 Sets the indexed element in a one-dimensional array
set2 Sets the indexed element in a two-dimensional array
set3 Sets the indexed element in a three-dimensional array
set4 Sets the indexed element in a four-dimensional array
set5 Sets the indexed element in a five-dimensional array
set6 Sets the indexed element in a six-dimensional array
set7 Sets the indexed element in a seven-dimensional array
set Sets the indexed element in an array of any dimension
dimen Returns the dimension of the array
lower Returns the lower bound of the specified dimension
upper Returns the upper bound of the specified dimension
stride Returns the stride of the specified dimension
length Returns the length of the Array in the specified dimension
isColumnOrder Returns true if the array is a dense column-major order array, false otherwise
isRowOrder Returns true if the array is a dense row-major order array, false otherwise
copy Copies the contents of source array to dest array
ensure Returns an array with guaranteed ordering and dimension from any array.
first Provides direct access to the element data of the array.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 31

sidl::array<double>::createRow(int32_t dimen,
const int32_t lower[],
const int32_t upper[]);

C
C FORTRAN 77

subroutine sidl_double__array_createRow_f(dimen, lower, upper, result)
integer*4 dimen
integer*4 lower(dimen), upper(dimen)
integer*8 result

!
! FORTRAN 90
subroutine createRow(lower, upper, result)

integer (selected_int_kind(9)), dimension(:), intent(in) :: lower, upper
type(sidl_double_3d), intent(out) :: result ! type depends on dimension

! dimension of result is inferred from the size of lower

// Java
// (isRow should be true to get a row order array)

public Array(int dim, int[] lower, int[] upper, boolean isRow);

This method creates a row-major, multi-dimensional array in a contiguous block of memory. Other than the
difference in the ordering of the array elements, this method is identical tocreateCol .

Function: create1d

/* C */
struct sidl_double__array*
sidl_double__array_create1d(int32_t len);

// C++
static sidl::array<double>
sidl::array<double>::create1d(int32_t len);

C FORTRAN 77
subroutine sidl_double__array_create1d_f(len, result)
integer*4 len
integer*8 result

! FORTRAN 90
subroutine create1d(len, result)

integer (selected_int_kind(9)), intent(in) :: len
type(sidl_double_1d), intent(out) :: result

// Java
public Array1(int s0, boolean isRow);

This method creates a dense, one-dimensional vector of ints with a lower index of 0 and an upper index oflen− 1.
This is defined primarily as a convenience for C and C++ programmers. Iflen ≤ 0, this routine returns NULL.

Function: create2dCol

/* C */
struct sidl_double__array*
sidl_double__array_create2dCol(int32_t m, int32_t n);

// C++
static sidl::array<double>
sidl::array<double>::create2dCol(int32_t m, int32_t n);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

32 SIDL Basics

C FORTRAN 77
subroutine sidl_double__array_create2dCol_f(m, n, result)
integer*4 m, n
integer*8 result

! FORTRAN 90
subroutine create2dCol(m, n, result)

integer (selected_int_kind(9)), intent(in) :: m, n
type(sidl_double_2d), intent(out) :: result

// Java
// isRow should be false to get a column order array

public Array2(int s0, int s1, boolean isRow);

This method creates a dense, column-major, two-dimensional array of ints with a lower index of(0, 0) and an upper
index of(m − 1, n − 1). If m ≤ 0 or n ≤ 0, this method returns NULL. This is defined primarily as a convenience
for C and C++ programmers.

Function: create2dRow

/* C */
struct sidl_double__array*
sidl_double__array_create2dRow(int32_t m, int32_t n);

// C++
static sidl::array<double>
sidl::array<double>::create2dRow(int32_t m, int32_t n);

C FORTRAN 77
subroutine sidl_double__array_create2dRow_f(m, n, result)
integer*4 m, n
integer*8 result

! FORTRAN 90
subroutine create2dRow(m, n, result)

integer (selected_int_kind(9)), intent(in) :: m, n
type(sidl_double_2d), intent(out) :: result

// Java
// isRow should be false to get a column order array

public Array2(int s0, int s1, boolean isRow);

This method creates a dense, row-major, two-dimensional array of ints with a lower index of(0, 0) and an upper
index of(m − 1, n − 1). If m ≤ 0 or n ≤ 0, this method returns NULL. This is defined primarily as a convenience
for C and C++ programmers.

Function: slice

/* C */
struct sidl_double__array *
sidl_double__array_slice(struct sidl_double__array *src,

int32_t dimen,
const int32_t numElem[],
const int32_t *srcStart,
const int32_t *srcStride,
const int32_t *newStart);

//
// C++
array<double>

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 33

sidl::array<double>::slice(int dimen,
const int32_t numElem[],
const int32_t *srcStart = 0,
const int32_t *srcStride = 0,
const int32_t *newStart = 0);

C
C FORTRAN 77

subroutine sidl_double__array_slice_f(src, dimen, numElem, srcStart,
$ srcStride, newStart, result)

integer*8 src, result
integer*4 dimen
integer*4 numElem(srcDimen), srcStart(srcDimen)
integer*4 srcStride(srcDimen), newStart(dimen)

!
! FORTRAN 90
subroutine slice(src, dimen, numElem, srcStart, srcStride, newStart, result)

type(sidl_double_3d), intent(in) :: src ! type depends on dimension
type(sidl_double_2d), intent(out) :: result ! type depends on dimension
integer (selected_int_kind(9)), intent(in) :: dimen
integer (selected_int_kind(9)), intent(in), dimension(:) :: &

numElem, srcStart, srcStride, newStart

// Java
public native Array _slice(int dimen, int[] numElem, int[] srcStart,

int[] srcStride, int[] newStart);

This method will create a sub-array of another array. The resulting array shares data with the original array. The
new array can be of the same dimension or potentially less than the original array. If you are removing a dimension,
indicate the dimensions to remove by settingnumElem[i] to zero for any dimensioni that should go away in the
new array. The meaning of each argument is covered below.

src the array to be created will be a subset of this array. If this argument is NULL, NULL will be returned. The
returned array borrows data fromsrc , so modifying one array modifies both. In C++, thethis pointer takes
the place ofsrc .

dimen this argument must be greater than zero and less than or equal to the dimension ofsrc . An illegal value will
cause a NULL return value.

numElem this specifies how many elements from src should be in the new array in each dimension. A zero entry
indicates that the dimension should not appear in the new array. This argument should be an array with an entry
for each dimension ofsrc . NULLwill be returned forsrc if either

srcStart[i] + numElem[i] * srcStride[i] > upper[i] , or
srcStart[i] + numElem[i] * srcStride[i] < lower[i]

srcStart this parameter specifies which element ofsrc will be the first element of the new array. If this argument is
NULL, the first element ofsrc will be the first element of the new array. If non-NULL, this argument provides
the coordinates of an element ofsrc , so it must have an entry for each dimension ofsrc . NULL will be
returned forsrc if either

srcStart[i] < lower[i] , or srcStart[i] > upper[i] .

srcStride this argument lets you specify the stride between elements ofsrc for each dimension. For example with a
stride of 2, you could create a sub-array with only the odd or even elements ofsrc . If this argument is NULL,
the stride is taken to be one in each dimension. If non-NULL, this argument should be an array with an entry
for each dimension ofsrc .

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

34 SIDL Basics

newLower this argument is like thelower argument in a create method. It sets the coordinates for the first element
in the new array. If this argument is NULL, the values indicated bysrcStart will be used. If non-NULL, this
should be an array withdimen elements.

Assuming the method is successful and the return value is named newArray,src[srcStart] refers to the same
underlying element asnewArray[newStart] .

If src is not a borrowed array (i.e., it manages its own data), the returned array can manage its by keeping a
reference tosrc . It is not considered a borrowed array for purposes ofsmartCopy .

Function: borrow

/* C */
struct sidl_double__array*
sidl_double__array_borrow(double* firstElement,

int32_t dimen,
const int32_t lower[],
const int32_t upper[],
const int32_t stride[]);

//
// C++
void
sidl::array<double>::borrow(double* firstElement,

int32_t dimen,
const int32_t lower[],
const int32_t upper[],
const int32_t stride[]);

C
C FORTRAN 77

subroutine sidl_double__array_borrow_f(firstElement, dimen, lower,
$ upper, stride, result)

real*8 firstElement()
integer*4 dimen, lower(dimen), upper(dimen), stride(dimen)
integer*8 result

!
! FORTRAN 90
subroutine borrow(firstElement, dimen, lower, upper, stride, &

result)
real (selected_real_kind(17,308)), intent(in) :: firstElement
integer (selected_int_kind(9)), intent(in) :: dimen
integer (selected_int_kind(9)), dimension(:), intent(in) :: lower, upper,&

stride
type(sidl_double_1d), intent(out) :: result ! type depends on array dimension

This method creates a proxy SIDL multi-dimensional array using data provided by a third party. In some cases,
this routine can be used to avoid making a copy of the array data.dimen , lower , andupper have the same meaning
and constraints as inSIDL double array createCol . ThefirstElement argument should be a pointer to
the first element of the array; in this context, the first element is the one whose index islower .

stride[i] specifies the signed offset from one element in dimensioni to the next element in dimensioni .
For a one dimensional array, the first element has the addressfirstElement , the second element has the address
firstElement + stride[0] , the third element has the addressfirstElement + 2 * stride[0] , etc.
The algorithm for determining the address of the element in a multi-dimensional array whose index is in arrayind[]
is as follows:

int32_t* addr = firstElement;
for(int i = 0; i < dimen; ++i) {

addr += (ind[i] - lower[i])*stride[i];
}
/* now addr is the address of element ind */

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 35

Note elements of stride need not be positive.
The function makes copies of the information provided bydimen , lower , upper , andstride . The type of

firstElement is changed depending on the array value type (see Table 5.2).

Function: smartCopy

/* C */
struct sidl_double__array*
sidl_double__array_smartCopy(struct sidl_double__array *array);

// C++
void
sidl::array<double>::smartCopy();

C FORTRAN 77
subroutine sidl_double__array_smartCopy_f(array, result)
integer*8 array, result

! FORTRAN 90
subroutine smartCopy(array, result)

type(sidl_double_1d), intent(in) :: array ! type depends on dimension
type(sidl_double_1d), intent(out) :: result ! type depends on dimension

// Java
public native Array _smartCopy();

This method will copy a borrowed array or increment the reference count of an array that is able to manage its own
data. This method is useful when you want to keep a copy of an incoming array. The C++ method operates onthis .

Function: addRef

/* C */
void
sidl_double__array_addRef(struct sidl_double__array* array);

// C++
void
sidl::array<double>::addRef() throw (NullIORException);

C FORTRAN 77
subroutine sidl_double__array_addRef_f(array)
integer*8 array

! FORTRAN 90
subroutine addRef(array)

type(sidl_double_1d), intent(in) :: array ! type depends on array dimension

This increments the reference count by one. In C++, this method should be avoided because the C++ wrapper class
manages the reference count for you.

Function: deleteRef

/* C */
void
sidl_double__array_deleteRef(struct sidl_double__array* array);

// C++
void
sidl::array<double>::deleteRef() throw (NullIORException);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

36 SIDL Basics

C FORTRAN 77
subroutine sidl_double__array_deleteRef_f(array)
integer*8 array

! FORTRAN 90
subroutine deleteRef(array)

type(sidl_double_1d), intent(out) :: array ! type depends on dimension

This decreases the reference count by one. If this reduces the reference count to zero, the resources associated with
the array are reclaimed. In C++, this method should be avoided because the C++ wrapper class manages the reference
count for you.

Function: get1

/* C */
double
sidl_double__array_get1(const struct sidl_double__array* array,

int32_t i1);

// C++
double
sidl::array<double>::get(int32_t i1);

C FORTRAN 77
subroutine sidl_double__array_get1_f(array, i1, result)
integer*8 array
integer*4 i1
real*8 result

! FORTRAN 90
subroutine get(array, i1, result)

type(sidl_int_1d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1
real (selected_real_kind(17,308)), intent(out) :: result

// Java
public double get(int i);

This method returns the element with indexi1 for a one dimensional array. The return type of this method is the
value type for the SIDL type being held (see Table 5.2). This method must only be called for one dimensional arrays.
For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to calldeleteRef()
when they are done with the reference unless it isNULL). For arrays of strings, the client owns the returned string (i.e.,
the client is obliged to call free on the returned pointer unless it isNULL). There is no reliable way to determine from
the return value cases when i1 is out of bounds.

Function: get2

/* C */
double
sidl_double__array_get2(const struct sidl_double__array* array,

int32_t i1,
int32_t i2);

// C++
double
sidl::array<double>::get(int32_t i1, int32_t i2);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 37

C FORTRAN 77
subroutine sidl_int__array_get2_f(array, i1, i2, result)
integer*8 array
integer*4 i1, i2
real*8 result

! FORTRAN 90
subroutine get(array, i1, i2, result)

type(sidl_int_2d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2
real (selected_real_kind(17,308)), intent(out) :: result

// Java
public double get(int i, int j);

This method returns the element with indices (i1 , i2) for a two dimensional array. The return type of this method
is the value type for the SIDL type being held (see Table 5.2. This method must only be called for two dimensional
arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to calldeleteRef
when they are done with the reference unless it isNULL). For arrays of strings, the client owns the returned string (i.e.,
the client is obliged to call free on the returned pointer unless it isNULL). There is no reliable way to determine from
the return value cases wheni1 , i2 are out of bounds.

Function: get3

/* C */
double
sidl_double__array_get3(const struct sidl_double__array* array,

int32_t i1,
int32_t i2,
int32_t i3);

// C++
double
sidl::array<double>::get(int32_t i1, int32_t i2, int32_t i3);

C FORTRAN 77
subroutine sidl_double__array_get3_f(array, i1, i2, i3, result)
integer*8 array
integer*4 i1, i2, i3
real*8 result

! FORTRAN 90
subroutine get(array, i1, i2, i3, result)

type(sidl_double_3d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3
real (selected_real_kind(17,308)), intent(out) :: result

// Java
public double get(int i, int j, int k);

This method returns the element with indices (i1 , i2 , i3) for a three dimensional array. The return type of this
method is the value type for the SIDL type being held (see Table 5.2). This method must only be called for three
dimensional arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
deleteRef() when they are done with the reference unless it isNULL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to callfree() on the returned pointer unless it isNULL). There is no reliable
way to determine from the return value cases when i1, i2, i3 are out of bounds.

Function: get4

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

38 SIDL Basics

/* C */
double
sidl_double__array_get4(const struct sidl_double__array* array,

int32_t i1,
int32_t i2,
int32_t i3,
int32_t i4);

// C++
double
sidl::array<double>::get(int32_t i1, int32_t i2, int32_t i3, int32_t i4);

C FORTRAN 77
subroutine sidl_double__array_get4_f(array, i1, i2, i3, i4, result)
integer*8 array
integer*4 i1, i2, i3, i4
real*8 result

! FORTRAN 90
subroutine get(array, i1, i2, i3, i4, result)

type(sidl_double_4d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3, i4
real (selected_real_kind(17,308)), intent(out) :: result

// Java
public double get(int i, int j, int k, int l);

This method returns the element with indices(i1 , i2 , i3 , i4) for a four dimensional array. The return type of
this method is the value type for the SIDL type being held (see Table 5.2). This method must only be called for four
dimensional arrays. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
deleteRef() when they are done with the reference unless it isNULL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to callfree() on the returned pointer unless it isNULL). There is no reliable
way to determine from the return value cases wheni1 , i2 , i3 , or i4 are out of bounds.

Function: get5-7

Methodsget5 –get7 are defined in an analogous way.

Function: get

/* C */
double
sidl_double__array_get(const struct sidl_double__array* array,

const int32_t indices[]);

// C++
double
sidl::array<double>::get(const int32_t indices[]);

C FORTRAN 77
subroutine sidl_double__array_get_f(array, indices, result)
integer*8 array
integer*4 indices()
real*8 result

! FORTRAN 90
subroutine get(array, indices, result)

type(sidl_real_1d), intent(in) :: array ! type depends on dimension
integer (selected_int_kind(9)), dimension(:), intent(in) ::indices

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 39

real (selected_real_kind(17,308)), intent(out) :: result

// Java
public native double _get(int i, int j, int k, int l, int m, int n, int o);

This method returns the element whose index is indices for an array of any dimension. The return type of this
method is the value type for the SIDL type being held (see Table 5.2). This method can be called for any positively
dimensioned array. For objects and interfaces, the client owns the returned reference (i.e., the client is obliged to call
deleteRef() when they are done with the reference unless it isNULL). For arrays of strings, the client owns the
returned string (i.e., the client is obliged to callfree() on the returned pointer unless it isNULL). There is no reliable
way to determine from the return value cases when indices has an element out of bounds.

Function: set1

/* C */
void
sidl_double__array_set1(struct sidl_double__array* array,

int32_t i1,
double value));

// C++
void
sidl::array<int32_t>::set(int32_t i1, double value);

C FORTRAN 77
subroutine sidl_double__array_set1_f(array, i1, value)
integer*8 array
integer*4 i1
real*8 value

! FORTRAN 90
subroutine set(array, i1, value)

type(sidl_double_1d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1,
real (selected_real_kind(17,308)), intent(in) :: value

// Java
public void set(int i, double value) {

This method sets the value in indexi1 of a one dimensional array to value. The type of the argument value is
the value type for the SIDL type being held (see Table 5.2). This method must only be called for one dimensional
arrays. For arrays of objects and interfaces, the array will make its own reference by callingaddRef() on value, so
the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so the client
retains ownership of the value pointer.

Function: set2

/* C */
void
sidl_double__array_set2(struct sidl_double__array* array,

int32_t i1,
int32_t i2,
double value));

// C++
void
sidl::array<double>::set(int32_t i1, int32_t i2, double value);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

40 SIDL Basics

C FORTRAN 77
subroutine sidl_double__array_set2_f(array, i1, i2, value)
integer*8 array
integer*4 i1, i2
real*8 value

! FORTRAN 90
subroutine set(array, i1, i2, value)

type(sidl_int_2d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2
real (selected_real_kind(17,308)), intent(in) :: value

// Java
public void set(int i, int j, double value) {

This method sets the value in index (i1 , i2) of a two dimensional array to value. The type of the argument value
is the value type for the SIDL type being held (see table 5.2). This method must only be called for two dimensional
arrays. For arrays of objects and interfaces, the array will make its own reference by callingaddRef() on value, so
the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so the client
retains ownership of the value pointer.

Function: set3

/* C */
void
sidl_double__array_set3(struct sidl_double__array* array,

int32_t i1,
int32_t i2,
int32_t i3,
double value));

// C++
void
sidl::array<double>::set(int32_t i1, int32_t i2, int32_t i3, double value);

C FORTRAN 77
subroutine sidl_double__array_set3_f(array, i1, i2, i3, value)
integer*8 array
integer*4 i1, i2, i3
real*8 value

! FORTRAN 90
subroutine set(array, i1, i2, i3, value)

type(sidl_double_3d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3
real (selected_real_kind(17,308)), intent(in) :: value

// Java
public void set(int i, int j, int k, double value) {

This method sets the value in index (i1 , i2 , i3) of a three dimensional array to value. The type of the argument
value is the value type for the SIDL type being held (see table 5.2). This method must only be called for three
dimensional arrays. For arrays of objects and interfaces, the array will make its own reference by callingaddRef()
on value, so the client retains its reference to value. For arrays of strings, the array will make a copy of the string, so
the client retains ownership of the value pointer.

Function: set4

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 41

/* C */
void
sidl_double__array_set4(struct sidl_double__array* array,

int32_t i1,
int32_t i2,
int32_t i3,
int32_t i4,
double value));

//
// C++
void
sidl::array<double>::set(int32_t i1, int32_t i2,

int32_t i3, int32_t i4, double value);
C
C FORTRAN 77

subroutine sidl_double__array_set4_f(array, i1, i2, i3, i4, value)
integer*8 array
integer*4 i1, i2, i3, i4
real*8 value

!
! FORTRAN 90
subroutine set(array, i1, i2, i3, i4, value)

type(sidl_double_4d), intent(in) :: array
integer (selected_int_kind(9)), intent(in) :: i1, i2, i3, i4
real (selected_real_kind(17,308)), intent(in) :: value

// Java
public void set(int i, int j, int k, int l, double value) {

This method sets the value in index (i1 , i2 , i3 , i4) of a four dimensional array to value. The type of the
argument value is the value type for the SIDL type being held (see table 5.2). This method must only be called
for four dimensional arrays. For arrays of objects and interfaces, the array will make its own reference by calling
addRef() on value, so the client retains its reference to value. For arrays of strings, the array will make a copy of
the string, so the client retains ownership of the value pointer.

Function: set5-7

Methodsset5 –set7 are defined in an analogous way.

Function: set

/* C */
void
sidl_double__array_set(struct sidl_double__array* array,

const int32_t indices[],
double value);

// C++
void
sidl::array<double>::set(const int32_t indices[], double value);

C FORTRAN 77
subroutine sidl_double__array_set_f(array, indices, value)
integer*8 array
integer*4 indices()
real*8 value

! FORTRAN 90
subroutine set(array, indices, value)

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

42 SIDL Basics

type(sidl_double_1d), intent(in) :: array ! type depends on dimension
integer (selected_int_kind(9)), intent(in), dimension(:) :: indices
real (selected_real_kind(17,308)), intent(in) :: value

// Java
public native void _set(int i, int j, int k, int l, int m, int n,

int o, double value);

This method sets the value in index indices for an array of any dimension to value. The type of the argument value
is the value type for the SIDL type being held (see table 5.2). For arrays of objects and interfaces, the array will make
its own reference by callingaddRef() on value, so the client retains its reference to value. For arrays of strings, the
array will make a copy of the string, so the client retains ownership of the value pointer.

Function: dimen
/* C */
int32_t
sidl_double__array_dimen(const struct sidl_double__array *array);

// C++
int32_t
sidl::array<double>::dimen() const;

C FORTRAN 77
subroutine sidl_double__array_dimen_f(array, result)
integer*8 array
integer*4 result

! FORTRAN 90
integer (selected_int_kind(9)) dimen(array)

type(sidl_double_1d) :: array ! type depends on dimension

// Java
public native int _dim();

This method returns the dimension of the array.

Function: lower
/* C */
int32_t
sidl_double__array_lower(const struct sidl_double__array *array, int32_t ind);

// C++
int32_t
sidl::array<double>::lower(int32_t ind) const;

C FORTRAN 77
subroutine sidl_double__array_lower_f(array, ind, result)
integer*8 array
integer*4 ind, result

! FORTRAN 90
integer (selected_int_kind(9)) function lower(array, ind)

type(sidl_double_1d), intent(in) :: array ! type depends on dimension
integer (selected_int_kind(9)) :: ind

// Java
public native int _lower(int dim);

This method returns the lower bound on the index for dimensionind of array.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 43

Function: upper

/* C */
int32_t
sidl_double__array_upper(const struct sidl_double__array *array, int32_t ind);

// C++
int32_t
sidl::array<double>::upper(int32_t ind) const;

C FORTRAN 77
subroutine sidl_double__array_upper_f(array, ind, result)
integer*8 array
integer*4 ind, result

! FORTRAN 90
integer (selected_int_kind(9)) function upper(array, ind)

type(sidl_double_1d), intent(in) :: array ! type depends on dimension
integer (selected_int_kind(9)), intent(in) :: ind

// Java
public native int _upper(int dim);

This method returns the upper bound on the index for dimension ind of array. If the upper bound is greater than or
equal to the lower bound, the upper bound is a valid index (i.e., it is not one past the end).

Function: stride

/* C */
int32_t
sidl_double__array_stride(const struct sidl_double__array *array, int32_t ind);

// C++
int32_t
sidl::array<double>::stride(int32_t ind) const;

C FORTRAN 77
subroutine sidl_double__array_stride_f(array, ind, result)
integer*8 array
integer*4 ind, result

! FORTRAN 90
integer (selected_int_kind(9)) function stride(array, ind)

type(sidl_double_1d), intent(in) :: array ! type depends on dimension
integer (selected_int_kind(9)) :: ind

// Java
public native int _stride(int dim);

This method returns the stride for a particular dimension. This stride indicates how much to add to a pointer to get
for the current element this the particular dimension to the next.

Function: length

/* C */
int32_t
sidl_double__array_length(const struct sidl_double__array *array, int32_t ind);

// C++ Default dimension is 1.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

44 SIDL Basics

int32_t
sidl::array<int32_t>::length(int32_t ind = 0) const;

C FORTRAN 77
subroutine sidl_double__array_length_f(array, ind, result)
integer*8 array
integer*4 ind, result

! FORTRAN 90
integer (selected_int_kind(9)) function length(array, ind)

type(sidl_double_1d), intent(in) :: array ! type depends on dimension
integer (selected_int_kind(9)) :: ind

// Java
public native int _length(int dim);

// For one dimensional Java arrays. Array1:
public int lenth();

This method returns the length for a particular dimension. It is equivalent to the statementupper(dim) -
lower(dim) + 1 .

There is also a shortcut for one-dimensional arrays available in C++ and Java. In C++, iflength is called with
no arguments, it defaults to the first dimension. In JavaArray1 one-dimensional Java arrays have a length function
that takes no arguments.

Function: isColumnOrder

/* C */
sidl_bool
sidl_double__array_isColumnOrder(const struct sidl_double__array *array);

// C++
bool
sidl::array<double>::isColumnOrder() const;

C FORTRAN 77
subroutine sidl_double__array_isColumnOrder_f(array, result)
integer*8 array
logical result

! FORTRAN 90
logical function isColumnOrder(array)

type(sidl_double_2d), intent(in) :: array ! type depends on dimension

// Java
public native boolean _isColumnOrder();

This method returns a true value if and only ifarray is dense, column-major ordered array. It does not modify
the array at all.

Function: isRowOrder

/* C */
sidl_bool
sidl_double__array_isRowOrder(const struct sidl_double__array *array);

// C++
bool
sidl::array<double>::isRowOrder() const;

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 45

C FORTRAN 77
subroutine sidl_double__array_isRowOrder_f(array, result)
integer*8 array
logical result

! FORTRAN 90
logical function isRowOrder(array)

type(sidl_double_1d), intent(int) :: array ! type depends on dimension

// Java
public native boolean _isRowOrder();

This method returns a true value if and only ifarray is dense, row-major ordered array. It does not modify the
array at all.

Function: copy

/* C */
void
sidl_double__array_copy(const struct sidl_double__array *src

struct sidl_double__array *dest);

// C++
void
sidl::array<double>::copy(const sidl::array<double> &src);

C FORTRAN 77
subroutine sidl_double__array_copy_f(array, dest)
integer*8 array, dest

! FORTRAN 90
subroutine copy(array, dest)

type(sidl_double_1d), intent(in) :: array ! type depends on array dimension
type(sidl_double_1d), intent(in) :: dest ! type depends on array dimension

// Java
public void _copy(sidl.Double.Array dest);

This method copies the contents ofsrc to dest . For the copy to take place, both arrays must exist and be of the
same dimension. This method will not modifydest ’s size, index bounds, or stride; only the array element values of
dest may be changed by this function. No part ofsrc is changed by this method.

If dest has different index bounds thansrc , this method only copies the elements where the two arrays overlap.
If dest andsrc have no indices in common, nothing is copied. For example, ifsrc is a 1-d array with elements
0-5 and dest is a 1-d array with element 2-3, this function will copy element 2 and 3 fromsrc to dest . If dest had
elements 4-10, this method could copy elements 4 and 5.

Function: ensure

/* C */
struct sidl_double__array *
sidl_double__array_ensure(const struct sidl_double__array *src,

int32_t dimen,
int ordering);

// C++
void
sidl::array<double>::ensure(int32_t dimen, int ordering);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

46 SIDL Basics

C FORTRAN 77
subroutine sidl_double__array_ensure_f(src, dimen, ordering, result)
integer*8 src, result
integer*4 dimen, ordering

! FORTRAN 90
subroutine ensure(src, dimen, ordering, result)

type(sidl_double_1d), intent(in) :: src ! type depends on array dimension
type(sidl_double_1d), intent(out) :: result! type depends on array dimension
integer (selected_int_kind(9)) :: dimen, ordering

This method is used to obtain a matrix with a guaranteed ordering and dimension from an array with uncertain
properties. If the incoming array has the required ordering and dimension, its reference count is incremented, and it is
returned. If it doesn’t, a copy with the correct ordering is created and returned. In either case, the caller knows that the
returned matrix (if not NULL) has the desired properties.

This method is used internally to enforce the array ordering constraints in SIDL. Clients can use it in similar ways.
However, because the method was intended as an internal Babel feature, is not available in Java or Python.

The ordering parameter should be one of the constants defined inenum sidl array ordering (e.g.
sidl general order , sidl column major order , or sidl row major order). If you pass in
sidl general order , this routine will only check the dimension of the matrix.

Function: first

/* C */
double *
sidl_double__array_first(const struct sidl_double__array *src);

// C++
double* first() throw();

C FORTRAN 77
subroutine sidl_double__array_access_f(array, ref, lower, upper,

$ stride, index)
integer*8 array
integer*4 lower(), upper(), stride(), index
integer*4 ref()

This method provides direct access to the element data. Using this pointer and the stride information, you can
perform your own array accesses without function calls. This method isn’t available for arrays of strings, interface
and objects because of memory/reference management issues. There is no equivalent of this of this function in Java or
Python. To see how to get direct array access in FORTRAN 90, see Chapter 9.

The FORTRAN versions of the method return the lower, upper and stride information in three arrays, each with
enough elements to hold an entry for each dimension ofarray . Because FORTRAN 77 does not have pointers, you
must pass in a reference array,array . Upon exit,ref(index) is the first element of the array. The type ofref
depends on the type of the array.

While calling the FORTRAN direct access routines, there is a possibility of an alignment error be-
�� ��WARNING:

tween your reference pointer,ref , and the pointer to the first element of the array data. The problem
is more likely with arrays ofdouble or dcomplex ; although, it could occur with any type on some
future platform. If index is zero on return, an alignment error occurred. If an alignment error oc-
curs, you may be able to solve it by recompiling your FORTRAN files with flags to force doubles to
be aligned on 8 byte boundaries. For example, the-malign-double flag for g77 forces doubles
to be aligned on 64-bit boundaries. An alignment error occurs when(char *)ref minus (char
*)sidl double array first(array) is not integer divisible bysizeof(datatype) where
ref refers to the address of the reference array.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 47

Here is an example FORTRAN 77 subroutine to output each element of a 1-dimensional array of doubles using the
direct access routine. FORTRAN 90 has a pointer in the array derived type when direct access is possible.

C This subroutine will print each element of an array of doubles
subroutine print_array(dblarray)
implicit none
integer*8 dblarray
real*8 refarray(1)
integer*4 lower(1), upper(1), stride(1), index, dimen, i
if (dblarray .ne. 0) then

call sidl_double__array_dimen_f(dblarray, dimen)
if (dimen .eq. 1) then

call sidl_double__array_access_f(dblarray, refarray,
$ lower, upper, stride, index)

if (index .ne. 0) then
do i = lower(1), upper(1)

write(*,*) refarray(index + (i-lower(1))*stride(1))
enddo

else
write(*,*) ’Alignment error occured’

endif
endif

endif
end

For a 2-dimensional array, the loop and array access is

do i = lower(1), upper(1)
do j = lower(2), upper(2)

write(*,*) refarray(index+(i-lower(1))*stride(1)+
$ (j - lower(2))*stride(2))

enddo
enddo

Suppose you are wrapping a legacy FORTRAN application and you need to pass a SIDL array to a FORTRAN
subroutine. Further suppose there is a FORTRAN 77 and FORTRAN 90 version of the subroutine. For example, the
FORTRAN 77 subroutine has a signature such as:

subroutine TriedAndTrue(x, n)
integer n
real*8 x(n)

C insert wonderful, efficient, debugged code here
end

The FORTRAN 90 subroutine has basically the same signature as follows:

subroutine TriedAndTrue(x, n)
integer (selected_int_kind(9)) :: n
real (selected_real_kind(17, 308)) :: x(n)

! insert wonderful, efficient, debugged code here
end subroutine TriedAndTrue

Here is one way to wrap this method using SIDL. First of all, the SIDL method definition specifies that the array
must be a 1-dimensional, column-major ordered array. This forces the incoming array to be a dense column.

static void TriedAndTrue(inout array<double,1,column-major> arg);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

48 SIDL Basics

Given that method definition in a class named Class and a package named Pkg, the implementation of the wrapper
should look something like the following for FORTRAN 77:

subroutine Pkg_Class_TriedAndTrue_fi(arg)
implicit none
integer*8 arg

C DO-NOT-DELETE splicer.begin(Pkg.Class.TriedAndTrue)
real*8 refarray(1)
integer*4 lower(1), upper(1), stride(1), index
integer n
call sidl_double__array_access_f(arg, refarray,

$ lower, upper, stride, index)
if (index .ne. 0) then

c we can assume stride(1) = 1 because of column-major specification
n = 1 + upper(1) - lower(1)
call TriedAndTrue(refarray(index), n)

else
write(*,*) ’ERROR: array alignment’

endif
C DO-NOT-DELETE splicer.end(Pkg.Class.TriedAndTrue)

end

Similarly, it should look something like the following for FORTRAN 90, where the include statements are required
at the top of the Impl file to ensure proper handling of subroutine names that have automatically been mangled by the
Babel compiler:

#include "Pkg_Class_fAbbrev.h"
#include "sidl_BaseClass_fAbbrev.h"
#include "sidl_BaseInterface_fAbbrev.h"
! DO-NOT-DELETE splicer.begin(_miscellaneous_code_start)
#include "sidl_double_fAbbrev.h"
! DO-NOT-DELETE splicer.end(_miscellaneous_code_start)
.
.
.
subroutine Pkg_Class_TriedAndTrue_mi(arg)

! DO-NOT-DELETE splicer.begin(Pkg.Class.TriedAndTrue.use)
use SIDL_double_array
! DO-NOT-DELETE splicer.end(Pkg.Class.TriedAndTrue.use)
implicit none
type(sidl_double_a) :: arg

! DO-NOT-DELETE splicer.begin(Pkg.Class.TriedAndTrue)
real (selected_real_kind(17,308)), dimension(1) :: refarray
integer (selected_int_kind(8)), dimension(1) :: low, up, str
integer (selected_int_kind(8)) :: index, n
call access(arg, refarray, low, up, str, index)
if (index .ne. 0) then

! We can assume stride(1) = 1 because of column-major specification
n = 1 + upper(1) - lower(1)
call TriedAndTrue(refarray(index), n)

else
write(*,*) ’ERROR: array alignment’

endif
! DO-NOT-DELETE splicer.end(Pkg.Class.TriedAndTrue)
end subroutine Pkg_Class_TriedAndTrue_mi

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.4 Arrays 49

The C Macro API

For all the SIDL basic types except string, there is a C macro API for those who fear the function overhead of the C
function API. When efficiency is not a concern, I recommend using the function API, but the C macro API is preferable
to the direct access to the data structure. The macro API is not available for arrays of strings, interfaces or objects
because the issues associated with memory and object reference management.

The macro API is very similar to the function API; however, a single set of macros applies to all the supported
array types. The macro names are independent of the type of array you’re accessing.

sidlArrayDim(array)

Return the dimension of array.

sidlLower(array,ind)

Return the lower bound on dimension ind.

sidlUpper(array,ind)

Return the upper bound on dimension ind.

sidlStride(array,ind)

Return the stride for dimension ind. The stride is the offset between elements in a particular dimension. It can be
positive or negative. It is in terms of number of value types (i.e., it’s 1 means contiguous regardless of what data type).

sidlArrayElem1(array, ind1)
sidlArrayElem2(array, ind1, ind2)
sidlArrayElem3(array, ind1, ind2, ind3)
sidlArrayElem4(array, ind1, ind2, ind3, ind4)
sidlArrayElem5(array, ind1, ind2, ind3, ind4, ind5)
sidlArrayElem6(array, ind1, ind2, ind3, ind4, ind5, ind6)
sidlArrayElem7(array, ind1, ind2, ind3, ind4, ind5, ind6, ind7)

Provide access to array elements to arrays of dimension 1–7. This macro can appear on the left hand side of an
assignment or on the right hand side in an expression. These macros blindly assume that the dimension and indices
are correct.

sidlArrayAddr1(array, ind1)
sidlArrayAddr2(array, ind1, ind2)
sidlArrayAddr3(array, ind1, ind2, ind3)
sidlArrayAddr4(array, ind1, ind2, ind3, ind4)
sidlArrayAddr5(array, ind1, ind2, ind3, ind4, ind5)
sidlArrayAddr6(array, ind1, ind2, ind3, ind4, ind5, ind6)
sidlArrayAddr7(array, ind1, ind2, ind3, ind4, ind5, ind6, ind7)

Return the address of elements in arrays of dimension 1–7. This macro can appear on the left hand side of an as-
signment or on the right hand side in an expression. These macros blindly assume that the dimension and indices are
correct.

The C Data Structure

If even the macro interface is not fast enough for you, you can access the internal data structure for all the basic types
except string. You cannot access the internal data structure for arrays of strings, interfaces and objects.

The basic form of the C data structure for type XXXX is:

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

50 SIDL Basics

struct sidl__array_vtable {

/* Release resources associted with the array (refcount at zero) */
void (*d_destroy)(struct sidl__array *);

/* Clone or addRef depending on whether data is borrowed */
struct sidl__array *(*d_smartcopy)(struct sidl__array *);

/* Return the type of the array. */
int32_t (*d_arraytype)(void);

};

struct sidl__array {
int32_t *d_lower;
int32_t *d_upper;
int32_t *d_stride;
const struct sidl__array_vtable *d_vtable;
int32_t d_dimen;
int32_t d_refcount;

};

struct sidl_XXXX__array {
struct sidl__array d_metadata;
<value type for XXXX> *d_firstElement;

};

The string “<value type for XXXX>” should be replaced by something likesidl bool for an array ofbool ,
int32 t for any array ofint , double for an array ofdouble , int64 t for an array oflong , etc. (See Table 5.2)

d dimen tells the dimension of the multi-dimensional array.d lower , d upper , andd stride each point to
arrays ofd dimen int32 t ’s. d lower[i] provides the lower bound for the index in dimensioni , and
d upper[i] provides the upper bound for the index in dimensioni . Both the lower and upper bounds are
valid index values; the upper bound is not one past the end.

d borrowed is true if the array does not managed the data thatd firstElement points too, and it is false
otherwise. This mainly influences the behavior of the destructor.

Clients should not modifyd lower , d upper , d stride , d dimen , d borrowed or (in the case of point-
ers) the values to which they point.

d stride[i] determines how elements are packed in dimensioni . A value of 1 means that to get from elementj
to j+1 in dimensioni , you add one to the data pointer. Negative values ford stride can be used to express
a transposed matrix. The definition also allows either column or row major ordering for the data, and it also
allows treating a subsection of an array as an array.

The data structure was inspired by the data structure used by Numeric Python; although, in Numeric Python, the
stride is in terms of bytes. In SIDL, the stride is in terms of number of objects. One can convert to the Numeric Python
view of things by multiplying the stride by the sizeof the value type.

5.5 SIDL Runtime

Inheritance

There is a small collection of interfaces and classes that are defined by the SIDL runtime library. Some of these objects
are implicitly inherited by objects and classes.

All classes that do not explicitly extend another class implicitly extendsidl.BaseClass . All interfaces that do
not explicitly extend another interface implicitly extendsidl.BaseInterface . Furthermore,sidl.BaseClass

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.5 SIDL Runtime 51

implementssidl.BaseInterface . This means that all classes can be cast to asidl.BaseClass and all ob-
jects can be cast tosidl.BaseInterface .

All exceptions must explicitly implement the interfaces insidl.BaseException . The easiest way to do this
is to is to extend the provided classsidl.SIDLException . This is a class the implements the basic Exception
functionality for you, includinggetNote andsetNote . You may also override one or more of these functions if
you wish.

If a method in SIDL claims to throw an object that does not inherit fromsidl.BaseException , this is an error
and will be reported by Babel.

Interfaces

The SIDL runtime library provides three sets of interfaces:

Base The base class, interface, and exception upon which all Babel-enabled software builds.

Library Handler The DLL and Loader classes facilitate dynamic loading of objects at runtime.

Introspection The ClassInfo interface and ClassInfoI class enable checking meta-data associated with a class.

The interfaces for the runtime library, as described in SIDL, are:

//
// File: sidl.sidl
// Release: $Name: $
// Revision: @(#) $Revision: 1.4 $
// Date: $Date: 2004/01/28 19:32:28 $
// Description: SIDL interface description for the basic SIDL run-time library
//
// Copyright (c) 2001, The Regents of the University of Calfornia.
// Produced at the Lawrence Livermore National Laboratory.
// Written by the Components Team <components@llnl.gov>
// UCRL-CODE-2002-054
// All rights reserved.
//
// This file is part of Babel. For more information, see
// http://www.llnl.gov/CASC/components/. Please read the COPYRIGHT file
// for Our Notice and the LICENSE file for the GNU Lesser General Public
// License.
//
// This program is free software; you can redistribute it and/or modify it
// under the terms of the GNU Lesser General Public License (as published by
// the Free Software Foundation) version 2.1 dated February 1999.
//
// This program is distributed in the hope that it will be useful, but
// WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
// conditions of the GNU Lesser General Public License for more details.
//
// You should have recieved a copy of the GNU Lesser General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

/**
* The <code>SIDL</code> package contains the fundamental type and interface
* definitions for the <code>SIDL</code> interface definition language. It
* defines common run-time libraries and common base classes and interfaces.
* Every interface implicitly inherits from <code>sidl.BaseInterface</code>
* and every class implicitly inherits from <code>sidl.BaseClass</code>.
*

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

52 SIDL Basics

*/
package sidl version 0.9.0 {

/**
* Every interface in <code>SIDL</code> implicitly inherits
* from <code>BaseInterface</code>, and it is implemented
* by <code>BaseClass</code> below.
*/

interface BaseInterface {

/**
* <p>
* Add one to the intrinsic reference count in the underlying object.
* Object in <code>SIDL</code> have an intrinsic reference count.
* Objects continue to exist as long as the reference count is
* positive. Clients should call this method whenever they
* create another ongoing reference to an object or interface.
* </p>
* <p>
* This does not have a return value because there is no language
* independent type that can refer to an interface or a
* class.
* </p>
*/

void addRef();

/**
* Decrease by one the intrinsic reference count in the underlying
* object, and delete the object if the reference is non-positive.
* Objects in <code>SIDL</code> have an intrinsic reference count.
* Clients should call this method whenever they remove a
* reference to an object or interface.
*/

void deleteRef();

/**
* Return true if and only if <code>obj</code> refers to the same
* object as this object.
*/

bool isSame(in BaseInterface iobj);

/**
* Check whether the object can support the specified interface or
* class. If the <code>SIDL</code> type name in <code>name</code>
* is supported, then a reference to that object is returned with the
* reference count incremented. The callee will be responsible for
* calling <code>deleteRef</code> on the returned object. If
* the specified type is not supported, then a null reference is
* returned.
*/

BaseInterface queryInt(in string name);

/**
* Return whether this object is an instance of the specified type.
* The string name must be the <code>SIDL</code> type name. This
* routine will return <code>true</code> if and only if a cast to
* the string type name would succeed.
*/

bool isType(in string name);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.5 SIDL Runtime 53

/**
* Return the meta-data about the class implementing this interface.
*/

ClassInfo getClassInfo();
}

/**
* Every class implicitly inherits from <code>BaseClass</code>. This
* class implements the methods in <code>BaseInterface</code>.
*/

class BaseClass implements BaseInterface {
/**

* <p>
* Add one to the intrinsic reference count in the underlying object.
* Object in <code>SIDL</code> have an intrinsic reference count.
* Objects continue to exist as long as the reference count is
* positive. Clients should call this method whenever they
* create another ongoing reference to an object or interface.
* </p>
* <p>
* This does not have a return value because there is no language
* independent type that can refer to an interface or a
* class.
* </p>
*/

final void addRef();

/**
* Decrease by one the intrinsic reference count in the underlying
* object, and delete the object if the reference is non-positive.
* Objects in <code>SIDL</code> have an intrinsic reference count.
* Clients should call this method whenever they remove a
* reference to an object or interface.
*/

final void deleteRef();

/**
* Return true if and only if <code>obj</code> refers to the same
* object as this object.
*/

final bool isSame(in BaseInterface iobj);

/**
* Check whether the object can support the specified interface or
* class. If the <code>SIDL</code> type name in <code>name</code>
* is supported, then a reference to that object is returned with the
* reference count incremented. The callee will be responsible for
* calling <code>deleteRef</code> on the returned object. If
* the specified type is not supported, then a null reference is
* returned.
*/

BaseInterface queryInt(in string name);

/**
* Return whether this object is an instance of the specified type.
* The string name must be the <code>SIDL</code> type name. This
* routine will return <code>true</code> if and only if a cast to
* the string type name would succeed.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

54 SIDL Basics

*/
bool isType(in string name);

/**
* Return the meta-data about the class implementing this interface.
*/

final ClassInfo getClassInfo();
}

/**
* Every exception implements <code>BaseException</code>. This interface
* declares the basic functionality to get and set error messages and stack
* traces.
*/

interface BaseException {

/**
* Return the message associated with the exception.
*/

string getNote();

/**
* Set the message associated with the exception.
*/

void setNote(in string message);

/**
* Returns formatted string containing the concatenation of all
* tracelines.
*/

string getTrace();

/**
* Adds a stringified entry/line to the stack trace.
*/

void add[Line](in string traceline);

/**
* Formats and adds an entry to the stack trace based on the
* file name, line number, and method name.
*/

void add(in string filename, in int lineno, in string methodname);
}

/**
* <code>SIDLException</code> provides the basic functionality of the
* <code>BaseException</code> interface for getting and setting error
* messages and stack traces.
*/

class SIDLException implements-all BaseException {
}

/**
* When loading a dynamically linked library, there are three
* settings: LOCAL, GLOBAL and SCLSCOPE.
*/

enum Scope {
/** Attempt to load the symbols into a local namespace. */
LOCAL,

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.5 SIDL Runtime 55

/** Attempt to load the symbols into the global namespace. */
GLOBAL,
/** Use the scope setting from the SCL file. */
SCLSCOPE

}

/**
* When loading a dynmaically linked library, there are three
* settings: LAZY, NOW, SCLRESOLVE
*/
enum Resolve {

/** Resolve symbols on an as needed basis. */
LAZY,
/** Resolve all symbols at load time. */
NOW,
/** Use the resolve setting from the SCL file. */
SCLRESOLVE

}

/**
* The <code>DLL</code> class encapsulates access to a single
* dynamically linked library. DLLs are loaded at run-time using
* the <code>loadLibrary</code> method and later unloaded using
* <code>unloadLibrary</code>. Symbols in a loaded library are
* resolved to an opaque pointer by method <code>lookupSymbol</code>.
* Class instances are created by <code>createClass</code>.
*/

class DLL {

/**
* Load a dynamic link library using the specified URI. The
* URI may be of the form "main:", "lib:", "file:", "ftp:", or
* "http:". A URI that starts with any other protocol string
* is assumed to be a file name. The "main:" URI creates a
* library that allows access to global symbols in the running
* program’s main address space. The "lib:X" URI converts the
* library "X" into a platform-specific name (e.g., libX.so) and
* loads that library. The "file:" URI opens the DLL from the
* specified file path. The "ftp:" and "http:" URIs copy the
* specified library from the remote site into a local temporary
* file and open that file. This method returns true if the
* DLL was loaded successfully and false otherwise. Note that
* the "ftp:" and "http:" protocols are valid only if the W3C
* WWW library is available.
*
* @param uri the URI to load. This can be a .la file
* (a metadata file produced by libtool) or
* a shared library binary (i.e., .so,
* .dll or whatever is appropriate for your
* OS)
* @param loadGlobally <code>true</code> means that the shared
* library symbols will be loaded into the
* global namespace; <code>false</code>
* means they will be loaded into a
* private namespace. Some operating systems
* may not be able to honor the value presented
* here.
* @param loadLazy <code>true</code> instructs the loader to
* that symbols can be resolved as needed (lazy)

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

56 SIDL Basics

* instead of requiring everything to be resolved
* now (at load time).
*/

bool loadLibrary(in string uri,
in bool loadGlobally,
in bool loadLazy);

/**
* Get the library name. This is the name used to load the
* library in <code>loadLibrary</code> except that all file names
* contain the "file:" protocol.
*/

string getName();

/**
* Unload the dynamic link library. The library may no longer
* be used to access symbol names. When the library is actually
* unloaded from the memory image depends on details of the operating
* system.
*/

void unloadLibrary();

/**
* Lookup a symbol from the DLL and return the associated pointer.
* A null value is returned if the name does not exist.
*/

opaque lookupSymbol(in string linker_name);

/**
* Create an instance of the SIDL class. If the class constructor
* is not defined in this DLL, then return null.
*/

BaseClass createClass(in string sidl_name);
}

/**
* Class <code>Loader</code> manages dyanamic loading and symbol name
* resolution for the SIDL runtime system. The <code>Loader</code> class
* manages a library search path and keeps a record of all libraries
* loaded through this interface, including the initial "global" symbols
* in the main program. Unless explicitly set, the search path is taken
* from the environment variable SIDL_DLL_PATH, which is a semi-colon
* separated sequence of URIs as described in class <code>DLL</code>.
*/

class Loader {

/**
* Set the search path, which is a semi-colon separated sequence of
* URIs as described in class <code>DLL</code>. This method will
* invalidate any existing search path.
*/

static void setSearchPath(in string path_name);

/**
* Return the current search path. If the search path has not been
* set, then the search path will be taken from environment variable
* SIDL_DLL_PATH.
*/

static string getSearchPath();

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.5 SIDL Runtime 57

/**
* Append the specified path fragment to the beginning of the
* current search path. If the search path has not yet been set
* by a call to <code>setSearchPath</code>, then this fragment will
* be appended to the path in environment variable SIDL_DLL_PATH.
*/

static void addSearchPath(in string path_fragment);

/**
* Load the specified library if it has not already been loaded.
* The URI format is defined in class <code>DLL</code>. The search
* path is not searched to resolve the library name.
*
* @param uri the URI to load. This can be a .la file
* (a metadata file produced by libtool) or
* a shared library binary (i.e., .so,
* .dll or whatever is appropriate for your
* OS)
* @param loadGlobally <code>true</code> means that the shared
* library symbols will be loaded into the
* global namespace; <code>false</code>
* means they will be loaded into a
* private namespace. Some operating systems
* may not be able to honor the value presented
* here.
* @param loadLazy <code>true</code> instructs the loader to
* that symbols can be resolved as needed (lazy)
* instead of requiring everything to be resolved
* now.
* @return if the load was successful, a non-NULL DLL object is returned.
*/

static DLL loadLibrary(in string uri,
in bool loadGlobally,
in bool loadLazy);

/**
* Append the specified DLL to the beginning of the list of already
* loaded DLLs.
*/

static void addDLL(in DLL dll);

/**
* Unload all dynamic link libraries. The library may no longer
* be used to access symbol names. When the library is actually
* unloaded from the memory image depends on details of the operating
* system.
*/

static void unloadLibraries();

/**
* Find a DLL containing the specified information for a SIDL
* class. This method searches SCL files in the search path looking
* for a shared library that contains the client-side or IOR
* for a particular SIDL class.
*
* @param sidl_name the fully qualified (long) name of the
* class/interface to be found. Package names
* are separated by period characters from each

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

58 SIDL Basics

* other and the class/interface name.
* @param target to find a client-side binding, this is
* normally the name of the language.
* To find the implementation of a class
* in order to make one, you should pass
* the string "ior/impl" here.
* @param lScope this specifies whether the symbols should
* be loaded into the global scope, a local
* scope, or use the setting in the SCL file.
* @param lResolve this specifies whether symbols should be
* resolved as needed (LAZY), completely
* resolved at load time (NOW), or use the
* setting from the SCL file.
* @return a non-NULL object means the search was successful.
* The DLL has already been added.
*/

static DLL findLibrary(in string sidl_name,
in string target,
in Scope lScope,
in Resolve lResolve);

}

/**
* This provides an interface to the meta-data available on the
* class.
*/

interface ClassInfo {
/**

* Return the name of the class.
*/

string getName();

/**
* Get the version of the intermediate object representation.
* This will be in the form of major_version.minor_version.
*/
string getIORVersion();

}

/**
* An implementation of the <code>ClassInfo</code> interface. This provides
* methods to set all the attributes that are read-only in the
* <code>ClassInfo</code> interface.
*/

class ClassInfoI implements-all ClassInfo {
/**

* Set the name of the class.
*/

final void setName(in string name);

/**
* Set the IOR major and minor version numbers.
*/

final void setIORVersion(in int major, in int minor);
}

}

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.6 Objects 59

5.6 Objects

One of the strategies that SIDL uses to enforce language interoperability is to define an object model that it supports
across all language bindings. This enables real object-oriented programming in non OO languages such as C and
FORTRAN 77. This also means that the inheritance mechanisms inside real OO languages may be circumvented.

Contrary to newer scripting languages such as Python and Ruby, not everything in SIDL is an object. Only classes
(abstract or not) and interfaces are objects. Everything else (e.g. arrays, enums, strings, ints) is something other than
an object and therefore outside the scope of this Section.

Babel’s Object Model

SIDL defines three types of objects: interfaces, classes, and abstract classes. A SIDLinterface is akin to a
Java interface or a C++ pure abstract base class. It is an object that defines methods (aka member functions), but
carries no implementation of those methods. Aclass by comparison is always concrete; meaning that there is an
implementation for each of its methods and it can be instantiated. Anabstract class falls somewhere between
an interface and aclass . It has at least one method unimplemented, so it cannot be instantiated, but it also may
have several methods that are implemented and these implementations can be inherited.

SIDL supports multiple inheritance of interfaces and single inheritance of implementation. This is a strategy
found in other OO languages such as Java and ObjectiveC. The words to distinguish these two forms of inheritance are
extends andimplements . Interfaces can extend multiple interfaces, but they cannot implement anything. Classes
can extend at most one other class (abstract or not), but can implement multiple interfaces.

Furthermore, any inherited abstract methods (inherited from either and abstract parent class or and implemented
interface) will default to abstract unless they are re-declared in the current class. If a concrete class implements many
large interfaces, this can result in a fairly large list of redeclared functions in the class definition. As a shortcut,
we included theimplements-all directive, a short hand that states explicitly that we intend to implement every
method in the named interface concretely. That’s why, in the following example, class B must be declared abstract,
but class D is concrete. Class B does not redeclare theprintMe function, but class Dimplements-all . There is
no similar directive for inheritance from abstract classes.

We display a small SIDL file below and finish this Subsection with a discussion of its details.

package object version 1.0 {

interface A {
void display();
void printMe();

}

abstract class B implements A {
void display();

}

class C extends B {
void printMe();

}

class D implements-all A {
}

}

object.A is an interface that has two methodsdisplay() andprint() . Both of these methods take no
arguments and return no value. (We will discuss arguments and return values in the next section.) Sinceobject.A
is an interface, there is no implementation associated with it, and Babel will not generate any implementation code
associated with it.

object.B is an abstract class that inherits fromobject.A . Since it redeclares thedisplay() method, Babel
will generate the appropriate code for an implementation of this method only. It will not generate code for the other
inherited methodprint() (since it wasn’t declared in the SIDL file) and it will not generate constructors/destructors
since the class is abstract.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

60 SIDL Basics

object.C is a concrete class that extends the abstract classobject.B it then lists only the unimplemented
methodprint() , implying that it will use the implementation ofdisplay() it inherited from its parent.

object.D is also a concrete class that uses theimplements-all
directive. This is identical to usingimplements and then listing all the methods declared in the interface. The

implements-all directive was added to SIDL as a convenience construct and to save excessive typing in the
SIDL file. By virtue of theimplements-all directive,object.D will provide its own implementation of all of
object.A ’s methods, namelydisplay() andprint() .

Methods on Objects

Methods in SIDL are virtual by default. This means that the actual binding of a method invocation to an actual
implementation is determined at runtime, based on the concrete type of the object.

SIDL currently defines three modifiers to methods that change their default behavior.

• final : Final methods are the opposite of virtual. While they may still be inherited by child classes, they
cannot be overridden.

• static : Static methods are sometimes called “class methods” because they are part of a class, but do not
depend on an object instance. In non-OO languages, this means that the typical first argument of an instance is
removed. In OO languages, these are mapped directly to an Java or C++ static method.

• oneway : reserved for future use.

Parameter Passing

Each parameter in a method call obeys the following syntax

[(modifier)] (mode) (type) (name)

Where(mode) is one of in , out , or inout ; (type) is any SIDL recognized type; and(name) is any non-
reserved word2. The (modifier) is optional, and currently unimplemented. SIDL currently reserves the word
copy for future use as an parameter modifier, and may add others in the future3.

For new users, the parameter’s mode (e.g.in , out , or inout) is perhaps the most troublesome. On the surface,
it’s easy to explain thatin parameters are passed into the code,out parameters come out, andinout parameters do
both. More specifically the rules are:

1. in does not meanconst .

2. in arguments are passed by value, therefore what happens inside the function has no effect on the value passed
in (from the perspective of the caller).

3. inout arguments are passed by reference. The callee is allowed to do whatever it wants with the data passed
in, and changes made by the callee are sent back to the caller. For interfaces, classes, and normal arrays, the
callee can even destroy the reference, create a new object or array, and return a reference to it.

4. Objects, interfaces and arrays should be allocated using the create methods provided. Types created on the stack
should never be passed as aninout argument, since the implementation may want to destroy it.

5. out arguments are also passed by reference, but the incoming value is ignore and typically overwritten.Do Not
attempt to pass in a value to a function through an out argument. There is no guarantee that the data will make
it to the Implementation, and if the data is lost, there is no guarantee the reference will be correctly destroyed.

2Refer to Section A.2 for the list of reserved words
3Babel is still pre-1.0 after all!

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

5.7 XML Repositories 61

Method Overloading

Method overloading is the object-oriented practice of defining more than one method with the same name in a class.
Doing so allows the convenient reuse of a method name when, for example, the underlying implementations differ
based on the types of the arguments. Actually, support for overloaded methods typically relies on the signature of
each method to ensure uniqueness. In this case, the signature consists of the method name along with the number,
types, and ordering of its arguments.

Since Babel supports languages that do not support method overloading, a mechanism for generating unique names
was needed. These are typically generated by compilers based on hashing the argument types into the method name.
However, developers often manually address this with far fewer characters than would be used by a compiler. Conse-
quently, it was determined it would be more efficient to leave the task of identifying the unique name to the developer.
Therefore, Babel allows the specification of the base, or short, method name along with an optional method name
extension as illustrated in the SIDL file below for thegetValue method.

package Overload version 1.0 {

class Sample {
int getValue ();
int getValue[Int](in int v);
double getValue[Double](in double v);

}
}

Thus, the full method name is the concatenation of the short name followed by the name extension. When gen-
erating code for supported languages, Babel makes use of either the short or full method name as appropriate for the
language(s) involved. For those that support method overloading, such as C++ and Java, Babel relies only on the short
method name, thus ignoring the extension. For the rest, like C, Fortran, and Python, Babel must make use of the full
name to ensure methods are uniquely identified.

In the example above, the first method specification takes no arguments so has no name extension. This is accept-
able because there are no potentially conflicting methods at this point for any programming language supported by
Babel. The second method, with the user-defined name extension ofInt , takes a single int argument, resulting in
the unique method namegetValueInt . The last method, with a user-defined name extension ofDouble , takes a
single double argument, resulting in the unique method name ofgetValueDouble . Examples of calling overloaded
methods from Babel-supported languages can be found in the respective language binding chapters.

5.7 XML Repositories

Even though SIDL is currently the primary input format for Babel, it is not the only format Babel understands. For
type repositories (similar in function to include directories for C/C++ headers) the preferred language to articulate
types is XML.

Babel has the capabilities to convert SIDL files into XML files adhering to theSIDL.dtd . This capability is
explained further in Chapter 13. The XML files in these repositories can be included in subsequent runs quickly since
all the external references were resolved by Babel during their creation. A SIDL file may refer to unresolved types.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

62 SIDL Basics

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Part II

Supported Language Bindings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 6

C Bindings

Contents

6.1 Introduction . 65
6.2 Basic Types . 65
6.3 Header files . 65
6.4 Mapping for classes, interfaces, arrays and r-arrays 66
6.5 Calling SIDL methods from C . 67
6.6 Catching and Throwing Exceptions in C . 68
6.7 Implicitly defined methods . 69
6.8 Invoking Babel to generate C bindings . 70
6.9 Invoking Babel to generate C implementations . 70

6.1 Introduction

This chapter provides an introduction to the C bindings for SIDL. Babel supports both callers and callees written in C
so this chapter illustrates the use of Babel for both. That is, it shows how to use Babel to wrap the implementation of
software written in C as well as how to call software, possibly implemented in any other supported language, from C.

Since Babel’s Intermediate Object Representation (IOR) is written in C, the C bindings are very similar to the IOR.
In addition, all of the objects in the sidl namespace (e.g. sidl::BaseClass, etc.) are implemented in C, so clients can
develop solely with a C compiler if necessary. Of course this seems a little silly since the intent of Babel is to provide
multilingual interoperability.

6.2 Basic Types

The basic types in SIDL are mapped into C according to Table 6.1.

6.3 Header files

If you would like to use typeX.Y.Z from C (package X, subpackage Y, class Z), you should#include "X Y Z.h"
. If you would like to include the header files for a whole packageX.Y , you can#include "X Y.h" . For example,
you can include all the types in thesidl namespace with#include "sidl.h" .

Each client side header file will ensure thatsidl header.h is included.sidl header.h defines:

1. struct sidl dcomplex for the SIDL dcomplex type with parts namedreal andimaginary ;

2. struct sidl fcomplex for the SIDL fcomplex type with parts namedreal andimaginary ;

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

66 C Bindings

Table 6.1: SIDL to C Type Mappings

SIDL TYPE C TYPE
int int32 t
long int64 t
float float
double double
bool typedef sidl bool
char char
string char *
fcomplex struct sidl fcomplex
dcomplex struct sidl dcomplex
enum enum
opaque void *
interface typedef
class typedef
array struct *

3. int32 t andint64 t for the SIDL int and long types;

4. a typedef forsidl bool for the SIDL bool type;

5. preprocessor symbolsTRUEandFALSE; and

6. function prototypes for the multi-dimensional array APIs for the basic SIDL types.

In general, clients don’t need to worry about includingsidl header.h because the Babel generated header files
will include it for you.

6.4 Mapping for classes, interfaces, arrays and r-arrays

Because C doesn’t have built in mechanisms for protecting the global namespace, the C mapping attempts to avoid
namespace collisions by using struct and method names that incorporate all the naming information from the package,
class and method names. For a typeZ in packageX.Y , the name of the type that C clients use for an object reference
is X Y Z. X Y Z is defined as follows in theX Y Z.h header file:

struct X_Y_Z__object;
struct X_Y_Z__array;
typedef struct X_Y_Z__object* X_Y_Z;

This code fragment also shows thatstruct X Y Z array is used for a multi-dimensional array ofX.Y.Z
objects. Here are some additional concrete examples of the object and interface reference types derived by the C
mapping:

/**
* Symbol "sidl.BaseClass" (version 0.5.1)
*
* Every class implicitly inherits from <code>BaseClass</code>. This
* class implements the methods in <code>BaseInterface</code>.
*/

struct sidl_BaseClass__object;
struct sidl_BaseClass__array;
typedef struct sidl_BaseClass__object* sidl_BaseClass;

/**

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

6.5 Calling SIDL methods from C 67

* Symbol "sidl.BaseInterface" (version 0.5.1)
*
* Every interface in <code>SIDL</code> implicitly inherits
* from <code>BaseInterface</code>, and it is implemented
* by <code>BaseClass</code> below.
*/

struct sidl_BaseInterface__object;
struct sidl_BaseInterface__array;
typedef struct sidl_BaseInterface__object* sidl_BaseInterface;

Here is an example of the C client-side binding for an r-array. This example is for thesolve example from
Section 5.4. Here, I assume that the package name isnum, and the class name isLinsol . The data for each array is
passed as adouble pointer, and the index parameters are normalin ints.

/** C client-side API for solve method */
void num_Linsol_solve(/*in*/ num_Linsol self,

/*in*/ double* A,
/*inout*/ double* x,
/*in*/ double* b,
/*in*/ int32_t m,
/*in*/ int32_t n);

The one catch for C programmers is thatA is in column-major order — not the typical row-major ordering used
in C. To access the element in rowi and columnj , you can use theRarrayElem2(A,i,j,m) . RarrayElem2
is a convenience macro for C and C++ programmers to access r-arrays in column-major order. To access memory by
stride one makei your inner loop.

PassingNULL for A, x , or b is not allowed. You must always pass a valid pointer.

6.5 Calling SIDL methods from C

The names of the C functions used to call SIDL methods are a concatenation of the package name, the class or interface
name and the method name(s) with the period characters changed to underscores . If the method is specified as being
overloaded (i.e., has a name extension) , the full method name is the concatenation of the package name, the class or
interface name, the method name,and the type extension. For non-static methods, the object or interface pointer is
passed as the first parameter before any of the formal parameters. This parameter operates like anin parameter.

Examples of calls to SIDL overloaded methods are based on theoverload sample.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of thegetValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

int b1, i1, iresult, nresult;

Overload_Sample t = Overload_Sample__create ();

nresult = Overload_Sample_getValue(t);
iresult = Overload_Sample_getValueInt(t, i1);
bresult = Overload_Sample_getValueBool(t, b1);

Here are the C bindings for the criticaladdRef and deleteRef methods fromsidl.BaseInterface .
These methods are mentioned in particular because C clients must manage object reference counts themselves.

void
sidl_BaseInterface_addRef(

sidl_BaseInterface self);

void
sidl_BaseInterface_deleteRef(

sidl_BaseInterface self);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

68 C Bindings

These same methods can be called from thesidl.BaseClass bindings. In fact, every C binding for an interface
or class will have entries foraddRef anddeleteRef .

void
sidl_BaseClass_addRef(

sidl_BaseClass self);

void
sidl_BaseClass_deleteRef(

sidl_BaseClass self);

6.6 Catching and Throwing Exceptions in C

For methods that can throw exceptions, there is an extraout argument in the generated code that holds the exception.
For maximum backward compatibility and consistency, the extra argument is of typesidl.BaseInterface .
When the exception parameter is notNULL, it indicates that an exception has been thrown. When an exception is
thrown, the caller should ignore the value of the otherout parameters as well as the function’s return value. Every
time you call a method that potentially can throw an exception, you must check the result. Otherwise, those exceptions
will be utterly ignored and leak memory. There are are four macros provided in sidlException.h to help with
exception checking. Their use is fairly obvious from their names. They are:

SIDL_THROW(EX_VAR,EX_CLS,MSG)
SIDL_CHECK(EX_VAR)
SIDL_CLEAR(EX_VAR)
SIDL_CATCH(EX_VAR,sidl_NAME)

In these macros, EXVAR is the exception object itself, EXCLS is the name of the SIDL type we wish the
exception to be in a string, MSG is the message we wish to include with the exception and a string, and sidlNAME is
the type of the exception we expect to catch, as a string.

The following SIDL method taken from the Babel regression tests demonstrates how exceptions are handled.

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

Here is the C binding for this method:

int32_t
ExceptionTest_Fib_getFib(

ExceptionTest_Fib self,
int32_t n,
int32_t max_depth,
int32_t max_value,
int32_t depth,
sidl_BaseInterface *_ex);

Here is an example of how to perform exception handling in C using a package of macros defined insidl Exception.h .
Note that the macros assume the exception class that is being thrown and caught inherits from or implements
sidl.BaseException — something guaranteed by Babel.

#include "sidl_Exception.h"
/* ...numerous lines deleted... */

int x;
sidl_BaseInterface _ex = NULL;

x = ExceptionTest_Fib_getFib(f, 10, 1, 100, 0, &_ex);
if (SIDL_CATCH(_ex, "ExceptionTest.TooDeepException")) {

traceback(_ex);
SIDL_CLEAR(_ex);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

6.7 Implicitly defined methods 69

}
else if (SIDL_CATCH(_ex, "ExceptionTest.TooBigException")) {

traceback(_ex);
SIDL_CLEAR(_ex);

}
else if (_ex == NULL) {

return FALSE;
}
SIDL_CHECK(_ex);
return TRUE;

EXIT:;
traceback(_ex);
SIDL_CLEAR(_ex);
return FALSE;

You do not have to use the macros provided insidl Exception.h if you do no want to. You can checkex by
checking if it is notNULLand then trying to cast it to the various potential exception types.

The following code snippet shows how to throw an exception in C using the macros fromsidl Exception.h .
The first argument toSIDL THROWis the exception output parameter, and the second argument is the type of exception
being thrown. The third argument provides a textual description of the exception.

#include "sidl_Exception.h"
/* ...numerous lines deleted... */
int32_t
impl_ExceptionTest_Fib_getFib(

ExceptionTest_Fib self, int32_t n, int32_t max_depth, int32_t max_value,
int32_t depth, sidl_BaseInterface* _ex)

{
/* DO-NOT-DELETE splicer.begin(ExceptionTest.Fib.getFib) */
if (n < 0) {

SIDL_THROW(*_ex,
ExceptionTest_NegativeValueException,
"called with negative n");

}
/* ...lines deleted... */
EXIT:;

/* SIDL_THROW macro will jump here. */
/* Clean up code should be here. */
return theValue;

/* DO-NOT-DELETE splicer.end(ExceptionTest.Fib.getFib) */
}

The code section labeledEXIT is where you should put clean up code. The caller will ignore all the values leaving
your C function (i.e.,out or inout parameters) because you have thrown an exception, so your code should delete
any references you were planning to return to the caller. It’s good practice to set allinout andout array, interface
or class pointers toNULL. This makes things work out better for clients who forget to check if an exception occurred
or willfully choose to ignore it.

6.7 Implicitly defined methods

The C binding for interfaces and classes includes two methods for perform type casts. The methods are namedcast
and cast2 . The leading underscore prevents these built in methods from conflicting with a user method because user
methods cannot begin with an underscore. Neither of these methods increases the reference count of the underlying
object — this is contrary to standard methods that always return new reference counts. Every object has these two
methods, we will usesidl.BaseClass as an example. Here are the signatures forcast and cast2 from
sidl.BaseClass .

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

70 C Bindings

sidl_BaseClass
sidl_BaseClass__cast(

void* obj);

void*
sidl_BaseClass__cast2(

void* obj,
const char* type);

The cast method attempts to cast a SIDL interface or object pointer to a pointer tosidl.BaseClass . The
cast2 method attempts to cast a SIDL interface or object pointer to a pointer to an interface or object pointer of the

type namedtype . In the case ofcast2 , the client is responsible for casting the return value into the proper pointer
type. Both methods areNULLsafe. ANULLreturn value indicates that the cast failed or thatobj wasNULL.

Non-abstract classes have an additional implicit method calledcreate to create new instances of the class.
Interfaces and abstract classes do not have this method because you cannot instantiate them. Thecreate method
returns a new reference that the client must manage. Here is an example of its signature.

/**
* Constructor function for the class.
*/

sidl_BaseClass
sidl_BaseClass__create(void);

6.8 Invoking Babel to generate C bindings

To create C stubs (i.e. code to support C clients to a set of SIDL classes or interfaces), you should invoke Babel as
follows 1:

% babel --client=C file.sidl

or more cryptically

% babel -cC file.sidl

This will create more files than you can shake a stick at. The files ending inIOR.h and IOR.c are the Interme-
diate Object Representation. The files ending withStub.c are the C stubs — the interface between a C client and
the IOR. The remaining header files have external C API that C clients may use.

To use the C stubs, you must compile the stub files whose file names end withStub.c and link them against the
SIDL runtime library and a backend implementation.

6.9 Invoking Babel to generate C implementations

To implement a set of SIDL classes in C, you should invoke Babel as follows:

% babel --server=C file.sidl

or use the short form

% babel -sC file.sidl

1For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

6.9 Invoking Babel to generate C implementations 71

This will create a Makefile frament calledbabel.make , several C headers and source files. To create a working
C implementation, the only files that need to be hand-edited are the C “Impl” files (header and source files that end
in Impl.h or Impl.c . Changes to these files should be made between code splicer pairs. Code splicing is a
technique Babel uses to preserve hand-edited code between multiple invocations of Babel. This allows a developer to
refine their SIDL file without ruining all their previous implementations. Code between splicer pairs will be retained
by subsequent invocations of Babel; code outside splicer pairs is not.

Here is an example of a code splicer pair in C.

/* DO-NOT-DELETE splicer.begin(num.Linsol._includes) */
/* Put additional includes or other arbitrary code here... */
/* DO-NOT-DELETE splicer.end(num.Linsol._includes) */

The following example shows the Babel generate implementation file for thesolve example from Section 5.4.
The r-array data is presented asdouble pointers, and the index variables are normal integers.

void
impl_num_Linsol_solve(/*in*/ num_Linsol self,

/*in*/ double* A, /*inout*/ double* x,
/*in*/ double* b,
/*in*/ int32_t m, /*in*/ int32_t n)

{
/* DO-NOT-DELETE splicer.begin(num.Linsol.solve) */
/* Insert the implementation of the solve method here... */
/* DO-NOT-DELETE splicer.end(num.Linsol.solve) */

}

The data for the 2-D arrayA is in column-major order. Use of theRarrayElem2 macro to accessA is covered
above in Section 6.4.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

72 C Bindings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 7

C++ Bindings

Contents

7.1 Introduction . 73

7.2 Basic Types . 73

7.3 SIDL C++ Header Suffix . 73

7.4 SIDL’s Main C++ Header File . 74

7.5 Calling Methods from C++ . 74

7.6 Catching and Throwing Exceptions in C++ . 75

7.7 Invoking Babel to generate C++ stubs . 76

7.8 Implementing SIDL Classes in C++ . 76

7.9 Accessing SIDL Arrays From C++ . 77

7.10 C++ Specific Babel Command Line Options . 79

7.1 Introduction

This chapter provides an introduction to Babel’s C++ bindings. It illustrates the support provided for both C++ callers
and C++ implementations, or callees.

Unlike C or FORTRAN 77, there is no runtime library created for a particular C++ compiler at installation. Instead,
when you generate C++ from SIDL, you will find Stubs (aka proxy classes) generated for SIDL base classes and will
have to compile and link them into your application.

That said, if you switch to a different compiler after installation, there may be some values set inbabel config.h
that become invalid. This can be overcome by copying the header file, making the necessary changes, and placing the
modified header file earlier in the include path than the original one.

7.2 Basic Types

The basic types in SIDL are mapped into C++ according to Table 7.1.

7.3 SIDL C++ Header Suffix

The first thing that C++ users will notice is that C++ headers have a ”.hh” suffix to distinguish them from C’s ”.h”
suffix. This convention was born out of necessity to distinguish both differing header files and their include guards.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

74 C++ Bindings

Table 7.1: SIDL to C++ Type Mappings

SIDL TYPE C++ TYPE
int int32 t
long int64 t
float float
double double
bool bool
char char
string std::string
fcomplex sidl::fcomplex
dcomplex sidl::dcomplex
enum enum
opaque sidl::opaque
interface class
class class
array sidl::array (template specialization)

7.4 SIDL’s Main C++ Header File

All C++ code generated by Babel#include ’s a file called ”sidl cxx.hh ”. This file includesbabel config.h ,
the C header file that defines configuration information. Finally,sidl cxx.hh defines some C++ classes in the SIDL
namespace such as

• sidl::StubBase [implementation detail] Common base class for all C++ stubs (proxy classes)

• template<T,U,V> SIDL::arraymixin [implementation detail] Common base class for all C++ array classes.

• typedefs forsidl::fcomplex , sidl::dcomplex , andsidl::opaque (usuallystd::complex ,
std::complex andvoid* , respectively)

• template<T> sidl::array Template array type for SIDL arrays.

• template specializations [implementation detail] specialization of arrays of all SIDL types are defined in this
file.

7.5 Calling Methods from C++

Since C++ is an object-oriented language, there is a lot less programmer overhead in using SIDL from the C++
perspective than from non-OO languages such as C or FORTRAN 77.

These proxy classes (we call ”stubs”) serve as the firewall between the application in C++ and Babel’s internal
workings. As one would expect, the proxy classes maintain minimal state so that, unlike C or FORTRAN 77, there is
no special context argument added to non-static member functions.

Below are examples using standard classes. The first is an example of creating an object of the base class and its
association to the base interface.

sidl::BaseClass object = sidl::BaseClass::_create();
sidl::BaseInterface interface = object;

Here is an example call to the addSearchPath in the SIDL.Loader class:

std::string s("/try/looking/here");
sidl::Loader::addSearchPath(s);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

7.6 Catching and Throwing Exceptions in C++ 75

Table 7.2: SIDL Features Mapped onto C++

SIDL Feature C++ Implementation
packages C++ namespaces (no name transformations)

version numbers ignored
interface C++ class (called ”stub”, serves as a proxy to the implementation)

class C++ class (called ”stub”, serves as a proxy to the implementation)
methods C++ member functions; uses base method name when overloading; no name mangling;

NOTE: Member functions beginning with a leading underscore ”” may be Babel in-
ternals, or specific to C++ binding.

static methods Static C++ member functions; uses base method name when overloading; no name
mangling; even works for dynamically loaded object’s exceptions thrown and caught
using C++ exception handling.

reference counting SIDL C++ stubs can be treated as smart-pointers. Constructors, destructors, and oper-
ators are overloaded so that explicit calls toaddRef() or deleteRef() are rarely
needed.

casting Assignment operators are overloaded to handle safe casting up and down the inheri-
tance hierarchy. User should never calldynamic cast<>() on a SIDL object since
the stubs inheritance hierarchy does not follow the SIDL inheritance hierarchy. At-
tempted downcasts using assignment should be checked by a call to (is nil() , or
not nil()).

instance creation Use static member function ”create ”. The default constructor for a C++ stub cre-
ates the equivalent of a NULL pointer. Works only with non-abstract classes.

Examples of calls to SIDL overloaded methods are based on theoverload sample.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of thegetValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

bool b1, bresult;
int i1, iresult, nresult;

Overload::Sample t = Overload::Sample::_create();

nresult = t.getValue();
bresult = t.getValue(b1);
iresult = t.getValue(i1);

7.6 Catching and Throwing Exceptions in C++

Adapted from the Babel regression tests, the following is an example of a package called ExceptionTest that has a
class named Fib with a method declared in SIDL as follows:

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

The corresponding C++ code fragment to use this method is:

ExceptionTest::Fib fib = ExceptionTest::Fib::_create();
try {

int result = fib.getFib(4, 100, 32000, 0);
cout << "Result of fib.getFib() = " << result << endl;

} catch (ExceptionTest::NegativeValueException e) {
// ...

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

76 C++ Bindings

} catch (ExceptionTest::FibException e) {
// ...

}

This example shows the standard way to throw an exception in C++. You are not strictly required to call the
setNote andadd methods; however, these methods provide information that may be helpful in debugging or error
reporting.

int32_t
ExceptionTest::Fib_impl::getFib (

/*in*/ int32_t n, /*in*/ int32_t max_depth,
/*in*/ int32_t max_value, /*in*/ int32_t depth)

throw (
::ExceptionTest::NegativeValueException,
::ExceptionTest::FibException

){
// DO-NOT-DELETE splicer.begin(ExceptionTest.Fib.getFib)
if (n < 0) {

NegativeValueException ex = NegativeValueException::_create();
ex.setNote("n negative");
ex.add(__FILE__, __LINE__, "ExceptionTest::Fib_impl::getFib");
throw ex;

}
// several lines delete
// DO-NOT-DELETE splicer.end(ExceptionTest.Fib.getFib)

}

7.7 Invoking Babel to generate C++ stubs

To create the C++ stubs from a SIDL file, invoke Babel as follows1:

% babel --client=C++ file.sidl

or simply

% babel -cC++ file.sidl

This will create a babel.make file, some C headers and sources, and many C++ headers and sources. Files ending
in ”.c” or ”.h” are in C, files ending in ”.cc” or ”.hh” are C++.

You will need to compile and link the files together to use the C++ stubs.

7.8 Implementing SIDL Classes in C++

Much of the information from the previous section is pertinent to implementing a SIDL class in C++. The types of the
arguments are as indicated in Table 7.1. Your implementation can call other SIDL methods, in which case follow the
rules for client calls.

To create the implementation, you must first have a valid SIDL file, then invoke Babel as follows:

% babel --server=C++ file.sidl

or simply

1For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

7.9 Accessing SIDL Arrays From C++ 77

% babel -sC++ file.sidl

This will create a makefile fragment called babel.make, several C headers and source files, and numerous C++
header and source files. To create a working implementation, the only files that need to be hand-edited are the C++
”Impl” files (header and source files that end inImpl.hh or Impl.cc). All your additions to this file should
be made between code splicer pairs. Code splicing is a technique Babel uses to preserve hand-edited code between
multiple invocations of Babel. This allows a developer to refine their SIDL file without ruining all their previous
implementations. Code between splicer pairs will be retained by subsequent invocations of Babel; code outside splicer
pairs is not.

Here is an example of a code splicer pair in C++. In this example, you would replace the line ”// Insert code here...
” with your implementation.

void MyPackage::MyClass::myMethod() {
// DO-NOT-DELETE splicer.begin(MyPackage.MyClass.myMethod)
// Insert code here...
// DO-NOT-DELETE splicer.end(MyPackage.MyClass.myMethod)

}

It is important to understand where and why splicer blocks occur. Splicer blocks appear at the beginning and end
of each Impl header and source file; for developers to add#include ’s and other miscellaneous items respectively.
In the headers, there is a splicer block that allows a user to make the impl class inherit from some other class. From
SIDL’s point of view this is private inheritance — meaning that it is useful for inheriting implementation details, but
they can’t be automatically exposed to the SIDL method dispatch mechanism. There is a splicer block inside the class
definition for developers to add any data members the wish to the class. In the source files, splicer blocks appear
in each method implementation. There are two implicit methods (i.e., methods that did not appear in the SIDL file)
that must also be implemented. Thector method is a constructor function that is run whenever an object is created.
The dtor method is a destructor function that is run whenever an object is destroyed. If the object has no state, these
functions are typically empty.

7.9 Accessing SIDL Arrays From C++

Although it is feasible to expose the underlying C array API to create, destroy and access array elements and meta-data,
the C++ bindings provide asidl::array<T> template mechanism that is more in keeping with C++ idioms.

For SIDL built-in types, template specializations ofsidl::array<T> are defined insidl cxx.hh . For SIDL
interface and classes, the array template is again specialized in the corresponding stub header. The reason for the
extensive use of template specialization is an effort to hide the detail that the array implementation is really templated
on three terms: the type of the C struct that represents the array internally, the internal representation of each item in
the array, and the C++ representation of each item in the array. (Seearray mixin in sidl cxx.hh for grungy
implementation details.)

An example is given below.

int32_t len = 10; // array length=10
int32_t dim = 1; // one dimensional
int32_t lower[1] = {0}; // zero offset
int32_t upper[1] = {len-1};
int32_t prime = nextPrime(0);

// create a SIDL array of primes.
sidl::array<int32_t> a = sidl::array<int32_t>::createRow(dim, lower, upper);
for(int i=0; i<len; ++i) {

prime = nextPrime(prime);
a.set(i, v);

}

Of course, the example above is only one way to create an array. The list of member functions for all C++ array
classes is:

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

78 C++ Bindings

// constructors
array (array_ior_t * src); // internal
array () ; // empty

// destructor
˜array() ;

// creation
static array<x>
createRow(int32_t dimen, const int32_t lower[],

const int32_t upper[]);
static array<x>
createCol(int32_t dimen, const int32_t lower[],

const int32_t upper[]);
static array<x>
create1d(int32_t len);
static array<x>
create2dCol(int32_t m, int32_t n);
static array<x>
create2dRow(int32_t m, int32_t n);
array<x>
slice(int32_t dimen, const int32_t numElem[],

const int32_t *srcStart = 0,
const int32_t *srcStride = 0,
const int32_t *newStart = 0);

void borrow(item_ior_t * first_element, int32_t dimen,
const int32_t lower[], const int32_t upper[],
const int32_t stride[]);

void addRef();
void deleteRef();

// get/set
item_cxx_wrapper_t get(int32_t i);
item_cxx_wrapper_t get(int32_t i1, int32_t i2);
item_cxx_wrapper_t get(int32_t i1, int32_t i2, int32_t i3);
item_cxx_wrapper_t get(int32_t i1, int32_t i2, int32_t i3, int32_t i4);
item_cxx_wrapper_t get(const int32_t *indices);

void set(int32_t i, item_cxx_wrapper_t elem);
void set(int32_t i1, int32_t i2, item_cxx_wrapper_t elem);
void set(int32_t i1, int32_t i2, int32_t i3,

item_cxx_wrapper_t elem);
void set(int32_t i1, int32_t i2, int32_t i3, int32_t i4,

item_cxx_wrapper_t elem);
void set(const int32_t *indices, item_cxx_wrapper_t elem);

// other accessors
int32_t dimen() const;

int32_t lower(int32_t dim) const;

int32_t upper(int32_t dim) const;

int32_t stride(int32_t dim) const;

bool _is_nil() const;

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

7.10 C++ Specific Babel Command Line Options 79

bool _not_nil() const;

// get a const pointer to the actual array ior
const array_ior_t* _get_ior() const { return d_array; }

// get a non-const pointer to the actual array ior
array_ior_t* _get_ior() { return d_array;}

where

• array ior t is the type of the C struct that represents the array internally,

• item ior t is the internal representation of each item in the array,

• item cxx wrapper t is the C++ representation of each item in the array

Please note that all SIDL array constructors are static methods returning a newly allocated array. Normally, you
assign the return value to a variable.

The C++ mapping for r-arrays is essentially identical to the mapping for C (see Section 6.4). The only difference
is that the C++ client header provides an overloaded version of each method containing an r-array taking normal SIDL
arrays instead of raw data. For example, thesolve method from Section 5.4 produces the following code in the
client-side header file.

void solve (/*in*/ double* A,
/*inout*/ double* x,
/*in*/ double* b,
/*in*/ int32_t m,
/*in*/ int32_t n) throw ();

void solve (/*in*/ ::sidl::array<double> A,
/*inout*/ ::sidl::array<double>& x,
/*in*/ ::sidl::array<double> b) throw();

Please note that multi-dimensional arrays, such asA in this case, are stored in column-major ordering. Babel
provides macros to access r-array data correctly. In this example, you can useRarrayElem2(A, i, j, m)
to access the element in rowi and columnj . There are similar macros for arrays of dimension 1 through 7 in
sidlArray.h .

If you were implementingsolve in C++, the Babel generated implementation file for it would look like this:

void num::Linsol_impl::solve (/*in*/ double* A,
/*inout*/ double* x,
/*in*/ double* b,
/*in*/ int32_t m,
/*in*/ int32_t n) throw ()

{
// DO-NOT-DELETE splicer.begin(num.Linsol.solve)
// insert implementation here
// DO-NOT-DELETE splicer.end(num.Linsol.solve)

}

To access memory by stride one make the row index your inner loop and the column index your outer loop.

7.10 C++ Specific Babel Command Line Options

The Babel C++ binding has one command line option particular to it. Using the option –cxx-ior-exception (or it’s
short form ’-x’) will generate C++ Babel stubs that check for a null IOR whenever a method is called on them. If a
method is called on a Stub holding a null IOR, it will throw a NullIORException. If this option is not passed to Babel,
the program will simply crash, as C++ would do normally with a null pointer.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

80 C++ Bindings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 8

FORTRAN 77 Bindings

Contents

8.1 Introduction . 81

8.2 Basic Types . 81

8.3 Calling Methods From FORTRAN 77 . 82

8.4 Catching and Throwing Exceptions in FORTRAN 77 83

8.5 Invoking Babel to generate FORTRAN 77 Stubs . 85

8.6 Implementing Classes in FORTRAN 77 . 85

8.7 Accessing SIDL Arrays From FORTRAN 77 . 86

8.8 FORTRAN 77 objects with state . 88

8.1 Introduction

This chapter provides an introduction to Babel’s FORTRAN77 bindings. Babel supports both callers and callees
written in FORTRAN 77 so this chapter illustrates the use of Babel for both. That is, it shows how to use Babel to
wrap the implementation of software written in FORTRAN 77 as well as how to call software, possibly implemented
in any other supported language, from FORTRAN 77.

8.2 Basic Types

For pointer types, such as opaque, interface, class, and array, a 64-bit integer is used, so FORTRAN 77 code will be
portable between systems with a 32 bit address space and systems with a 64 bit address space. On a 32 bit system, the
upper 32 bits of these quantities are ignored. Systems with more than 64-bit pointers aren’t currently supported.

Generally, clients should treat opaque, interface, class and array values as black boxes. However, there is one value
that is special. A value of zero for any of these quantities indicates that the value does not refer to an object. Zero is the
FORTRAN 77 equivalent of NULL . Any nonzero value is or should be a valid object reference. Developers writing
in FORTRAN 77 should initialize values to be passed as in or inout parameters to zero or a valid object reference.

When mapping the SIDL string type into FORTRAN 77, some capability was sacrificed to make it possible to use
normal looking FORTRAN 77 string handling. One difference is that all FORTRAN 77 strings have a limited fixed
size. When implementing a subroutine with an out parameter, the size of the string is limited to 512 characters.

Enumerated types are just integer values. The constants are defined in an includable file assuming your FORTRAN
77 compiler supports some form of including.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

82 FORTRAN 77 Bindings

Table 8.1: SIDL to FORTRAN 77 type mapping
SIDL TYPE FORTRAN 77 TYPE
int INTEGER*4
long INTEGER*8
float REAL
double DOUBLE PRECISION
bool LOGICAL
char CHARACTER*1
string CHARACTER*(*)
fcomplex COMPLEX
dcomplex DOUBLE COMPLEX
enum INTEGER
opaque INTEGER*8

8.3 Calling Methods From FORTRAN 77

All SIDL methods are implemented as FORTRAN 77 subroutines regardless of whether they have a return value or
not. For object methods, the object or interface pointer is passed as the first argument to the subroutine before all the
formally declared arguments. The exception is static methods, where the object or interface pointer does not appear in
the argument list at all.

When a method has a return value, a variable to hold the return value should be passed as an argument following
the formally declared arguments. This extra argument behaves like anout parameter.

The name of the subroutine that FORTRAN 77 clients should call is derived from the fully qualified name of the
class and the name(s) of the method. If the method is specified as overloaded (i.e., has a name extension), the method’s
full name will be used. That is, the concatenation of the short name and the name extension will be used for a unique
method name. Hence, to determine the subroutine name for FORTRAN 77, take the fully qualified name, replace
all the periods with underscores, append an underscore, append the short method name, append the method name
extension (if any) and then append ”f”.

For example, to call thedeleteRef() method on asidl.BaseInterface interface, you would write:

integer*8 interface1, interface2
logical areSame

C code to initialize interface1 & interface 2 here
call sidl_BaseInterface_deleteRef_f(interface1)

To call the isSame method on a sidl.BaseInterface , you would write:

call sidl_BaseInterface_queryInt_f(interface1, ’My.Interface.Name’, interface2)

To call the queryInt method on a sidl.BaseInterface, you would write:

call sidl_BaseInterface_queryInt_f(interface1, ’My.Interface.Name’, interface2)

Examples of calls to SIDL overloaded methods are based on theoverload sample.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of thegetValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

integer*8 t
logical b1, bretval
integer*4 i1, iretval

call Overload_Sample__create_f (t)

call Overload_Sample_getValue_f (t, iretval)
call Overload_Sample_getValueInt_f (t, i1, iretval)
call Overload_Sample_getValueBool_f (t, b1, bretval)

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

8.4 Catching and Throwing Exceptions in FORTRAN 77 83

For interfaces and classes, there are two implicit methods calledcast() and cast2() . Both of these methods
are used to convert from one type to another, and each can be used for upcasting up downcasting. Neither method will
increment the reference count of the object.

cast() is a static method. It tries to convert its opaque argument to the type of the class indicated by the method
name. For example,x y z cast(obj, xyz) will try to convertobj to typex.y.z . If xyz is nonzero, the cast
was successful.

cast2() is an object method. Its return type is opaque, and it has one formal argument, a string in addition to
the implicit object/interface reference. Thecast() method attempts to cast the object/interface to the named type.
It is similar to the queryInt method insidl.BaseInterface except it does not increment the reference count of
the return object or interface, and it may return an object or an interface pointer. ThequeryInt() method always
returns an interface pointer.

For non-abstract classes, there is an implicit method calledcreate() . It creates and returns an instance of the
class.

Here are examples of the use of these two methods:

integer*8 object, interface
call sidl_BaseClass__create_f(object)
call sidl_BaseInterface__cast_f(object, interface)

c the following call to _cast2 is equivalent to the previous _cast call
call sidl_BaseClass__cast2_f(object, ’SIDL.BaseInterface’,

$ interface)

Please note the presence of two underscores between BaseClass and create and between BaseClass and cast; the
extra underscore is there because the first character of the method name is an underscore.

Here is an example call to theaddSearchPath() in thesidl.Loader class:

call sidl_Loader_addSearchPath_f(’/try/looking/here’)

Your FORTRAN 77 must manage any object references created by the calls you make.

8.4 Catching and Throwing Exceptions in FORTRAN 77

When a method can throw an exception (i.e., its SIDL definition has a throws clause), an extra variable of type
INTEGER*8 should be passed to hold a pointer if an exception is thrown. For maximum backward compatibility, the
base exception type argument issidl.BaseInterface though the base exception class issidl.SIDLException .
The exception argument appears after the return value when both occur in a method. After the call, the client must
test this argument. If a function does not test the exception argument, thrown exceptions will be utterly ignored —
not propagated to higher level functions. If the exception parameter is non-zero, an exception was thrown by the
method, and the method should respond appropriately. When an exception is thrown, the value of all other arguments
is undefined.

When the exception parameter is non-zero, your code should try casting it to each of the possible exceptions in
turn. A successful cast indicates the type of exception that has occured. If one of the possible exception types is a
subclass of another one, you should try casting to the subclass before casting to the super class — assuming that the
distinction between the two exception types results in different exception recovery behavior.

sidl.BaseException defines two methods that can be helpful when reporting exceptions to end users:getNote
andgetTrace . getNote often provides some indication of what went wrong. Its contents are provided by the im-
plementor of the function you called, so it can be empty. Similarly,getTrace make provide a summary of the call
stack. Again, it depends on implementors to provide information.

One approach to exception handling is to pass the exception on to your caller. In this case, you should call
sidl.BaseException.add to add another line in the stack trace for the exception.

Here is another example adapted from the Babel regression tests. Package ExceptionTest has a class named Fib
with a method declared in SIDL as follows:

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

84 FORTRAN 77 Bindings

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

Here is the outline of a FORTRAN 77 code fragment to use this method. When an exception is thrown, the value
of theout andinout parameters is unknown, the best practice is to ignore their values.

integer*8 fib, except, except2
integer*4 index, maxdepth, maxval, depth, result
call ExceptionTest_Fib__create_f(fib)
index = 4
maxdepth = 100
maxvalue = 32000
depth = 0
call ExceptionTest_getFib_f(fib, index, maxdepth,

$ maxvalue, depth, result, except)
if (except .ne. 0) then

call ExceptionTest_FibException__cast_f(except, except2)
if (except2 .ne. 0) then

c do something here with the FibException
else

call ExceptionTest_NegativeValueException__cast_f
$ (exception, except2)

c do something here with the NegativeValueException
endif
call sidl_BaseException_deleteRef_f(except)

else
write (*,*) ’getFib for ’, index, ’ returned ’, result

endif
call ExceptionTest_Fib_deleteRef_f(fib)

Here is an example of FORTRAN 77 code that throws an exception.

subroutine ExceptionTest_Fib_getFib_fi(self, n, max_depth,
& max_value, depth, retval, exception)

implicit none
integer*8 self, exception
integer*4 n, max_depth, max_value, depth, retval

C DO-NOT-DELETE splicer.begin(ExceptionTest.Fib.getFib)
character*(*) myfilename
parameter(myfilename=’ExceptionTest_Fib_Impl.f’)

C ...lines of code deleted...
if (n .lt. 0) then

call ExceptionTest_NegativeValueException__create_f(exception)
if (exception .ne. 0) then

call ExceptionTest_NegativeValueException_setNote_f(
$ exception,
$ ’called with negative n’)

call ExceptionTest_NegativeValueException_add_f(
$ exception,
$ myfilename,
$ 57,
$ ’ExceptionTest_Fib_getFib_impl’)

return
endif

C ...lines of code deleted...
C DO-NOT-DELETE splicer.end(ExceptionTest.Fib.getFib)

end

Please note that when your code throws an exception it shoulddeleteRef any references it was planning to
return to its caller. Any caller of a method that returns an exception should ignore the values ofout and inout

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

8.5 Invoking Babel to generate FORTRAN 77 Stubs 85

parameters, so anything you do not free will become a reference and memory leak. In general, it is good practice to
set allout andinout array, class and interface arguments before returning when throwing an exception. This makes
things work out better for clients who forget to check if an exception occurred or willfully choose to ignore it.

8.5 Invoking Babel to generate FORTRAN 77 Stubs

Here is how you should invoke Babel to create the FORTRAN 77 stubs for an IDL file1.

% babel --client=f77 file.sidl

or simply

% babel -c=f77 file.sidl

This will create a babel.make file, numerous C headers, numerous C source files, and some FORTRAN 77 files.
The files ending infStub.c are the FORTRAN 77 stubs that allow FORTRAN 77 to call a SIDL method.

You will need to compile and link the files ending infStub.c into your application (i.e. STUBSRCSin
babel.make). Normally, the IOR files (IOR.c) are linked together with the implementation file, so you prob-
ably don’t need to compile them.

If you have someenum’s defined in your SIDL file, Babel will generate FORTRAN 77 include files in the style
of DEC FORTRAN (Compaq FORTRAN? (now HP Fortran???))%INCLUDE. These files are named by taking the
fully qualified name of theenum, changing the periods to underscores, and appending.inc . Here is an example of
a generated include file.

C File: enums_car.inc
C Symbol: enums.car-v1.0
C Symbol Type: enumeration
C Babel Version: 0.5.0
C Description: Automatically generated; changes will be lost
C
C babel-version = 0.5.0
C source-line = 25
C

integer porsche
parameter (porsche = 911)
integer ford
parameter (ford = 150)
integer mercedes

parameter (mercedes = 550)

8.6 Implementing Classes in FORTRAN 77

Much of the information from the previous section is pertinent to implementing a SIDL class in FORTRAN 77. The
types of the arguments are as indicated in Table 8.1. Your implementation can call other SIDL methods in which case
follow the rules for client calls.

You should invoke Babel:

% babel --server=f77 file.sidl

or simply

1For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

86 FORTRAN 77 Bindings

% babel -s=f77 file.sidl

This will create a babel.make, numerous C headers, numerous C source files and some FORTRAN 77 source files.
Your job is to fill in the FORTRAN 77 source files with the implementation of the methods. The files you need to edit
all end with Impl.f . All your changes to the file should be made between code splicer pairs. Code between splicer
pairs will be retained by subsequent invocations of Babel; code outside splicer pairs is not. Here is an example of a
code splicer pair. In this example, you would replace the line ”C Insert extra code here... ” with your lines of code.

C DO-NOT-DELETE splicer.begin(_miscellaneous_code_start)
C Insert extra code here...
C DO-NOT-DELETE splicer.end(_miscellaneous_code_start)

Each Impl.f file contains numerous empty subroutines. Each subroutine that you must implement is partially
implemented. TheSUBROUTINEstatement is written, and the types of the arguments have been declared. You must
provide the body of each subroutine that implements the expected behavior of the method.

There are two implicit methods (i.e. methods that did not appear in the SIDL file) that must also be implemented.
The ctor() method is a constructor function that is run whenever an object is created. It’s purpose is to initialize
the object to make it ready for any of the other method calls. Thedtor() method is a destructor function that is run
whenever an object is destroyed. The destructor’s purpose is to free any resources allocated by the object. If the object
has no state, these functions are typically empty.

The SIDL IOR keeps a pointer (i.e. C void *) for each object that is intended to hold a pointer to the object’s
internal data. The FORTRAN 77 skeleton provides two functions that the FORTRAN 77 developer will need to use to
access the private pointer. The name of the function is derived from the fully qualified type name as follows. Replace
periods with underscores and appendget data f or set data f . The first argument is the object pointer (i.e.
self), and the second argument is an opaque . These arguments are 64 bit integers in FORTRAN 77, but the number of
bits actually stored by the IOR is determined by the sizeof(void *).

Babel/SIDL does not provide a low level mechanism for FORTRAN 77 to allocate memory to use for the private
data pointer; however, there is an example of a FORTRAN 77 object with state in Section 8.8.

8.7 Accessing SIDL Arrays From FORTRAN 77

For FORTRAN 77, the difference in how you access normal SIDL arrays and r-arrays is profound. Normal SIDL
arrays are passed in as aninteger*8 , and you either access them using an function API or by converting the array
data to a index into a known array. R-arrays appear like normal FORTRAN 77 arrays, so there is a big incentive to use
r-arrays unless you cannot.

The client-side interface for thesolve example introduced in Section 5.4 behaves as if it is a FORTRAN 77
function with the following declarations:

subroutine num_Linsol_solve_f(self, A, x, b, m, n)
implicit none

C in num.Linsol self
integer*8 self
integer*4 m, n

C in rarray<double,2> A(m,n)
double precision A(0:m-1, 0:n-1)

C inout rarray<double> x(n)
double precision x(0:n-1)

C in rarray<double> b(m)
double precision b(0:m-1)
end

FORTRAN 77 programmers should note that the array indices go from 0 tom−1 instead of the normal 1 tom. This
is a concession to the C and C++ programmers who have to deal with the fact that A is stored in column-major order.

On the server-side, the interface forsolve appears as follows:

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

8.7 Accessing SIDL Arrays From FORTRAN 77 87

subroutine num_Linsol_solve_fi(self, A, x, b, m, n)
implicit none

C in num.Linsol self
integer*8 self

C in int m
integer*4 m

C in int n
integer*4 n

C in rarray<double,2> A(m,n)
double precision A(0:m-1, 0:n-1)

C inout rarray<double> x(n)
double precision x(0:n-1)

C in rarray<double> b(m)
double precision b(0:m-1)

C DO-NOT-DELETE splicer.begin(num.Linsol.solve)
C Insert the implementation here...
C DO-NOT-DELETE splicer.end(num.Linsol.solve)

end

Note again that the array indices go from 0 tom−1. The implementation should avoid changing the data inin
parameters.

The remainder of this section is dedicated to how you access normal SIDL arrays. The normal SIDL C function
API is available from FORTRAN 77 to create, destroy and access array elements and meta-data. The function name
for FORTRAN has f appended.

For SIDL types dcomplex, double, fcomplex , float, int and long, SIDL provides a method to get direct access to
the array elements. For the other types, you must use the functional API to access array elements.

For type X, there is a FORTRAN 77 function calledsidl X array access f to provide a method to get direct
access. An example is given below. Of course, this will not work if your FORTRAN 77 compiler does array bounds
checking.

integer*4 lower(1), upper(1), stride(1), i, index(1)
integer*4 value, refindex, refarray(1), modval
integer*8 nextprime, tmp
lower(1) = 0
value = 0
upper(1) = len - 1
call sidl_int__array_create_f(1, lower, upper, retval)
call sidl_int__array_access_f(retval, refarray, lower,

$ upper, stride, refindex)
do i = 0, len - 1

tmp = value
value = nextprime(tmp)
modval = mod(i, 3)
if (modval .eq. 0) then

call sidl_int__array_set1_f(retval, i, value)
else

if (modval .eq. 1) then
index(1) = i
call sidl_int__array_set_f(retval, index, value)

else
C this is equivalent to the sidl_int__array_set_f(retval, index, value)

refarray(refindex + stride(1)*(i - lower(1))) =
$ value

endif
endif

enddo

To access a two dimensional array, the expression referring to element i, j is

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

88 FORTRAN 77 Bindings

refarray(refindex + stride(1) * (i - lower(1)) + stride(2) * (j - lower(2))

To access a three dimensional array, the expression referring to element i, j k is

refarray(refindex + stride(1) * (i - lower(1)) + stride(2) * (j - lower(2))

You can call things like LINPACK or BLAS if you want, but you should check the stride to make sure the array
is packed as you need it to be.stride(i) indicates the distance between elements in dimensioni . A value of 1
means elements are packed densely in dimensioni . Negative stride values are possible, and when an array is a slice
of another array, there may be no dimension with a stride of 1.

For adcomplex array, the reference array should a FORTRAN array ofREAL*8 instead of a FORTRAN array of
double complex to avoid potential alignment problems. For afcomplex array, the reference array is aCOMPLEX*8
because we don’t anticipate an alignment problem in this case.

8.8 FORTRAN 77 objects with state

If you need to implement a FORTRAN 77 class with state, you can use SIDL arrays to store the state information.
This is certainly not the only way to implement a FORTRAN 77 class with state, but it’s one that will work wherever
Babel works. For example, if you have a class whose state requires three boolean variables and two double precision
variables, your constructor might look something like the following:

subroutine example_withState__ctor_fi(self)
implicit none
integer*8 self

C DO-NOT-DELETE splicer.begin(example.withState._ctor)
integer*8 statearray, logarray, dblarray
call sidl_opaque__array_create1d_f(2, statearray)
call sidl_bool__array_create1d_f(3, logarray)
call sidl_double__array_create1d_f(2, dblarray)
if ((statearray .ne. 0) .and. (logarray .ne. 0) .and.

$ (dblarray .ne. 0)) then
call sidl_opaque__array_set1_f(statearray, 0, logarray)
call sidl_opaque__array_set1_f(statearray, 1, dblarray)

else
C a real implementation would not leak memory like this one

statearray = 0
endif
call example_withState__set_data_f(self, statearray)

C DO-NOT-DELETE splicer.end(example.withState._ctor)
end

Of course, it is up to your application make the association between elements of the arrays and particular state
variables. For example, you could say that element 0 of the double array is the kinematic viscosity and element 1
could be the airspeed velocity of an unladen swallow. Element 0 of the boolean array could specify African (true) or
European (false). The destructor for this class could look something like this:

subroutine example_withState__dtor_fi(self)
implicit none
integer*8 self

C DO-NOT-DELETE splicer.begin(example.withState._dtor)
integer*8 statearray, logarray, dblarray
call example_withState__get_data_f(self, statearray)
if (statearray .ne. 0) then

call sidl_opaque__array_get1_f(statearray, 0, logarray)
call sidl_opaque__array_get1_f(statearray, 1, dblarray)
call sidl_bool__array_deleteRef_f(logarray)
call sidl_double__array_deleteRef_f(dblarray)
call sidl_opaque__array_deleteRef_f(statearray)

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

8.8 FORTRAN 77 objects with state 89

C the following two lines are not strictly necessary
statearray = 0
call example_withState__set_data_f(self, statearray)

endif
C DO-NOT-DELETE splicer.end(example.withState._dtor)

end

In this example, an accessor function for the airspeed velocity of an unladen swallow could be implemented as
follows:

subroutine example_withState_getAirspeedVelocity_fi(
$ self, velocity)

implicit none
integer*8 self
real*8 velocity

C DO-NOT-DELETE splicer.begin(example.withState.getAirspeedVelocity)
integer*8 statearray, dblarray
call example_withState__get_data_f(self, statearray)
if (statearray .ne. 0) then

call sidl_opaque__array_get1_f(statearray, 1, dblarray)
call sidl_double__array_get1_f(dblarray, 1, velocity)

endif
C DO-NOT-DELETE splicer.end(example.withState.getAirspeedVelocity)

end

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

90 FORTRAN 77 Bindings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 9

FORTRAN 90 Bindings

Contents

9.1 Introduction . 91

9.2 Basic Types . 91

9.3 Calling Methods From FORTRAN 90 . 92

9.4 Catching and Throwing Exceptions in Fortran 90 94

9.5 Invoking Babel to Generate F90 Stubs . 95

9.6 Implementing Classes in FORTRAN 90 . 96

9.7 Accessing SIDL Arrays From FORTRAN 90 . 98

9.1 Introduction

This chapter provides an introduction to the FORTRAN 90 bindings supported by Babel. Software written in FOR-
TRAN 90 that illustrates both the caller, or client, side as well as the callee, or server side, is provided.

For ease of comparison, this chapter is patterned after the chapter on FORTRAN 77 bindings. Further, the initial
support described below is very similar to that provided for FORTRAN 77.

9.2 Basic Types

The mapping for simple SIDL types to FORTRAN 90 is given in Table 9.1. For opaque pointers, the equivalent of a
SIDL double is used. That is, the intermediate object reference assumes a 64-bit integer is used to enable portability
between systems with a 32 bit address space and those with a 64 bit address space. On a 32 bit system, the upper 32
bits of these quantities are ignored. Systems with more than 64-bit pointers aren’t currently supported.

For interfaces, classes and arrays, there is a derived type that holds an opaque pointer. The derived type for arrays
of numeric types also has a F90 pointer to an array to provide native array access without function calls. For each
interface and class, there are two modules created. In the first module, the derived type for the object and array are
defined. In the second, the methods for the object/interface and arrays of the object/interface are defined. Clients of
a class or interface, typicallyuse the module containing the methods, and it in turn uses the module containing the
types.

Generally, clients should treat opaque, interface, class and array values as black boxes. However, there is one value
that is special. A value of zero for any of these quantities indicates that the value does not refer to an object. Zero
is the equivalent of NULL. Any nonzero value is or should be a valid object reference. The method module provides
functions to test whether an interface, class or array valueis null or is not null . There is also a subroutine
to initialize the value to indexFORTRAN 90!setnullset null . Clients should generally initialize new interface or
class values to NULL.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

92 FORTRAN 90 Bindings

Table 9.1: SIDL to FORTRAN 90 type mapping

SIDL TYPE FORTRAN 90 TYPE
int INTEGER (SELECTEDINT KIND(9))
long INTEGER (SELECTEDINT KIND(18))
float REAL (SELECTEDREAL KIND(6,37))
double REAL (SELECTEDREAL KIND(15, 307))
bool LOGICAL
char CHARACTER (LEN=1)
string CHARACTER (LEN=*)
fcomplex COMPLEX (SELECTEDREAL KIND(6, 37))
dcomplex COMPLEX (SELECTEDREAL KIND(15, 307))
enum INTEGER (SELECTEDINT KIND(9))
opaque INTEGER (SELECTEDINT KIND(18))

The SIDL string type mapping is currently identical to that of the FORTRAN 77 mapping. That is, all FOR-
TRAN 90 strings have a limited fixed size. When implementing a subroutine with an out parameter, the size of
the string is limited to 512 characters. This can be changed when configuring babel by changing the value of
SIDL F90 STR MINSIZE in runtime/sidl/babel config.h before compiling and installing babel.

Enumerated types are just integer values. The integer parameters are defined in a module.

9.3 Calling Methods From FORTRAN 90

All SIDL methods are implemented as FORTRAN 90 subroutines regardless of whether they have a return value or
not. For object methods, the object or interface pointer is passed as the first argument to the subroutine before all the
formally declared arguments. The exception is static methods, where the object or interface pointer does not appear in
the argument list at all.

When a method has a return value, a variable to hold the return value should be passed as an argument following
the formally declared arguments.

The name of the module that holds the method definitions is derived from the fully qualified name of the class or in-
terface. You can generate the module name by replacing all the periods with underscores. For example, the methods for
sidl.SIDLException are defined in a module namedsidl SIDLException in the filesidl SIDLException.F90 .
The name of the module holding the derived type of the class or interface is the same as the one holding the methods ex-
cept that it hastype appended to it. The types forsidl.SIDLException are calledsidl SIDLException t
andsidl SIDLException a, for the array, and they are defined in the filesidl SIDLException type.F90 .

The name of the subroutine that FORTRAN 90 clients is the method’s full name from the SIDL description. If
the method is specified as overloaded (i.e., has a name extension), the method’s full name will be used. That is, the
concatenation of the short name and the name extension will be used for a unique method name.

For example, to call thedeleteRef() method on aSIDL.BaseInterface interface, you would write:

use sidl_BaseInterface
type(sidl_BaseInterface_t) :: interface1, interface2
logical :: areSame
!
! code to initialize interface1 & interface 2 here
!
call deleteRef(interface1)

To call the isSame method on asidl.BaseInterface , you would write:

use sidl_BaseInterface
! later in the code
call isSame(interface1, interface2, areSame)
! areSame holds the return value

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

9.3 Calling Methods From FORTRAN 90 93

To call the queryInt method on asidl.BaseInterface , you would write:
use sidl_BaseInterface
! later
call queryInt(interface1, ’My.Interface.Name’, interface2)
! interface2 holds the return value now

Examples of calls to SIDL overloaded methods are based on theoverload sample.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of thegetValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

use Overload_Sample
type(Overload_Sample_t) :: t
logical :: b1, bretval
integer (selected_int_kind(9)) :: i1, iretval

call new(t)

call getValue (t, iretval)
call getValueInt (t, i1, iretval)
call getValueBool (t, b1, bretval)

Here is an example of what Babel will produce for an enumerated type with some of the whitespace and comments
reduced for brevity.

! File: enums_car.F90
! Symbol: enums.car-v1.0
! Symbol Type: enumeration
! Babel Version: 0.8.2
! Description: Client-side module for enums.car

module enums_car
! Symbol "enums.car" (version 1.0)

integer (selected_int_kind(9)), parameter :: porsche = 911
integer (selected_int_kind(9)), parameter :: ford = 150
integer (selected_int_kind(9)), parameter :: mercedes = 550

end module enums_car

For interfaces and classes, there is an implicit method calledcast() . There are actually a set of overloaded
methods that support every allowable cast between a type an all its parent types (objects and interfaces). The first
argument is the object/interface to be cast, and the second argument is a variable of the desired type. If the value of the
second argument after the call isnot null , the cast was successful; otherwise, the cast failed.cast() is similar
to the queryInt method insidl.BaseInterface except it does not increment the reference count of the return
object or interface, and it may return an object or an interface pointer. ThequeryInt() method always returns an
interface pointer.

For non-abstract classes, there is an implicit method callednew() . It creates and returns an instance of the class.
Here are examples of the use of these two methods:

use sidl_BaseClass
use sidl_BaseInterface
type(sidl_BaseClass_t) :: object
type(sidl_BaseInterface_t) :: interface
! perhaps other code here
call new(object)
call cast(object, interface)

Here is an example call to theaddSearchPath() , a static method, in thesidl.Loader class:
use sidl_Loader
! later
call addSearchPath(’/try/looking/here’)

Your FORTRAN 90 must manage any object references created by the calls you make.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

94 FORTRAN 90 Bindings

9.4 Catching and Throwing Exceptions in Fortran 90

When a method can throw an exception (i.e., its SIDL definition has a throws clause), a variable should be passed to
hold an exception. For maximum backward compatibility, the exception argument type is asidl.BaseInterface
pointer that is assumed to implement thesidl.BaseException interface. The exception argument should appear
after the return value when both occur in a method, and it behaves like anout parameter. After the call, the client
should test this argument usingis null or not null . If it is not null , an exception was thrown by the method,
and the method should respond appropriately. When an exception is thrown, the value of all other arguments is
undefined, and the best course of action is to ignore their values. If your code does not check the exception argument
after each call that can throw an exception, any exceptions that are thrown will be utterly ignored; they will not
propagate automatically to higher level routines.

Here is another example adapted from the Babel regression tests. Package ExceptionTest has a class named Fib
with a method declared in SIDL as follows:

int getFib(in int n, in int max_depth, in int max_value, in int depth)
throws NegativeValueException, FibException;

Here is the outline of a FORTRAN 90 code fragment to use this method.

use ExceptionTest_Fib
use ExceptionTest_FibException
use ExceptionTest_NegativeValueException
use sidl_BaseInterface
type(ExceptionTest_Fib_t) :: fib
type(sidl_BaseInterface_t) :: except
type(ExceptionTest_FibException_t) :: fibexcept
type(ExceptionTest_NegativeValueException_t) :: nvexcept
integer (selected_int_kind(9)) :: index, maxdepth, maxval, depth, result
call new(fib)

index = 4
maxdepth = 100
maxvalue = 32000
depth = 0
call getFib(fib, index, maxdepth, maxvalue, depth, result, except)
if (not_null(except)) then

call cast(except, fibexcept)
if (not_null(fibexcept)) then

! do something here with the FibException
else

call cast(except, nvexcept)
! do something here with the NegativeValueException

endif
call deleteRef(except)

else
write (*,*) ’getFib for ’, index, ’ returned ’, result

endif
call deleteRef(fib)

Here is an example of an implementation subroutine that throws an exception. Note you mustcast the returned
exception object into the exceptionout parameter. ThesetNote method provides a useful error message, and the
add method helps provide a multi-language traceback capability (provided each layer of the call stack callsadd).

recursive subroutine ExceptionTest_Fib_getFib_mi(self, n, max_depth, &
max_value, depth, retval, exception)
use sidl_BaseInterface
use ExceptionTest_Fib
use ExceptionTest_NegativeValueException

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

9.5 Invoking Babel to Generate F90 Stubs 95

use ExceptionTest_FibException
use ExceptionTest_Fib_impl
! DO-NOT-DELETE splicer.begin(ExceptionTest.Fib.getFib.use)
use ExceptionTest_TooBigException
use ExceptionTest_TooDeepException
! DO-NOT-DELETE splicer.end(ExceptionTest.Fib.getFib.use)
implicit none
type(ExceptionTest_Fib_t) :: self
integer (selected_int_kind(9)) :: n, max_depth, max_value
integer (selected_int_kind(9)) :: retval, depth
type(sidl_BaseInterface_t) :: exception

! DO-NOT-DELETE splicer.begin(ExceptionTest.Fib.getFib)
type(ExceptionTest_NegativeValueException_t) :: negexc

! ...lines deleted...
character (len=*) myfilename
parameter(myfilename=’ExceptionTest_Fib_Impl.f’)
retval = 0
if (n .lt. 0) then

call new(negexc)
if (not_null(negexc)) then

call setNote(negexc, &
’called with negative n’)

call add(negexc, myfilename, 57, &
’ExceptionTest_Fib_getFib_impl’)

call cast(negexc, exception)
return

endif
else

! ...numerous lines deleted....
! DO-NOT-DELETE splicer.end(ExceptionTest.Fib.getFib)
end subroutine ExceptionTest_Fib_getFib_mi

Please note that when your code throws an exception it shoulddeleteRef any references it was planning to
return to its caller. Any caller of a method that returns an exception should ignore the values ofout and inout
parameters, so anything you do not free will become a reference and memory leak. In general, it is good practice
to call set null on all out and inout array, class and interface arguments before returning when throwing an
exception. This makes things work out better for clients who forget to check if an exception occurred or willfully
choose to ignore it.

9.5 Invoking Babel to Generate F90 Stubs

Here is how you should invoke Babel to create the FORTRAN 90 stubs for an IDL file1.

% babel --client=f90 file.sidl

or simply

% babel -c=f90 file.sidl

This will create a babel.make file, numerous C headers, numerous C source files, and some FORTRAN 90 files.
The files ending in fStub.c are called by the FORTRAN 90 module which in turn allow FORTRAN 90 to call a
SIDL method. The files ending intype.F90 contain derived type definitions for classes and interfaces., and the
other files ending in.F90 are FORTRAN 90 modules containing methods.

1For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

96 FORTRAN 90 Bindings

You will need to compile and link the files ending infStub.c (i.e., STUBSRCSin babel.make) and all the
files ending in.F90 (i.e., STUBMODULESRCSandTYPEMODULESRCSin babel.make) into your application.
Normally, the IOR files (IOR.c) are linked together with the implementation file, so you probably don’t need to
compile them.

9.6 Implementing Classes in FORTRAN 90

Much of the information from the previous section is pertinent to implementing a SIDL class in FORTRAN 90. The
types of the arguments are as indicated in Table 9.1. Your implementation can call other SIDL methods in which case
follow the rules for client calls.

You should invoke Babel:

% babel --server=f90 file.sidl

or simply

% babel -s=f90 file.sidl

This will create a babel.make, numerous C headers, numerous C source files and some FORTRAN 90 source files.
Your job is to fill in the FORTRAN 90 source files with the implementation of the methods. The files you need to edit
all end with Impl.F90 and Mod.F90 . All your changes to the file should be made between code splicer pairs.
Code between splicer pairs is retained by subsequent invocations of Babel; code outside splicer pairs is not.

Here is an example of the standard code splicer pairs in generated FORTRAN 90 code. You would replace the
comment ”Insert extra code here... ” associated with the ”miscellaneous code start” splicer pair with code needed for
your implementation such as additional abbreviation file(s) and any local, or private, subroutines. For the subroutine’s
”use” splicer pair, you would replace the ”Insert use statements here...” comment with any use statements that are
needed by the subroutine. Finally, you would add the implementation between the subroutine body’s splicer pairs in
the place of the ”Insert the implementation here...” comment.

! DO-NOT-DELETE splicer.begin(_miscellaneous_code_start)
! Insert extra code here...
! DO-NOT-DELETE splicer.end(_miscellaneous_code_start)

.

.

.

subroutine Pkg_Class_name_mi(args)
! DO-NOT-DELETE splicer.begin(Pkg.Class.name.use)
! Insert use statements here...
! DO-NOT_DELETE splicer.end(Pkg.Class.name.use)
implicit none
integer (selected_int_kind(18)) :: arg

! DO-NOT-DELETE splicer.begin(Pkg.Class.name)
! Insert the implementation here...
! DO-NOT-DELETE splicer.end(Pkg.Class.name)

Each Impl.F90 file contains numerous partially implemented subroutines. TheSUBROUTINEandEND SUBROUTINE
statements have been generated and the types of the arguments declared. As mentioned above, you must provide any
needed use statements and the body of each subroutine to implement the expected behavior of the method.

There are two implicit methods (i.e., methods that did not appear in the SIDL file) that must also be implemented
if the object is to have state (i.e., data associated with the instance). Thector() method is a constructor function
that is run whenever an object is created. Thedtor() method is a destructor function that is run whenever an object
is destroyed. If there is not state then these functions are typically empty.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

9.6 Implementing Classes in FORTRAN 90 97

The SIDL IOR keeps a pointer for each object that is intended to hold a pointer to the object’s internal data. The
FORTRAN 90 skeleton provides two functions that the FORTRAN 90 developer will need to use to access the private
pointer. The name of the function is derived from the fully qualified type name by replacing periods with underscores
and appending get data mor set data m. The first argument is the object pointer (i.e., self), and the second
is a derived type defined in theMod.F90 file. Here is an excerpt from aMod.F90 file for an object whose state
requires a single integer value.

#include"sort_SimpleCounter_fAbbrev.h"
module sort_SimpleCounter_impl

type sort_SimpleCounter_private
sequence

! DO-NOT-DELETE splicer.begin(sort.SimpleCounter.private_data)
integer(selected_int_kind(9)) :: count

! DO-NOT-DELETE splicer.end(sort.SimpleCounter.private_data)
end type sort_SimpleCounter_private

type sort_SimpleCounter_wrap
sequence
type(sort_SimpleCounter_private), pointer :: d_private_data

end type sort_SimpleCounter_wrap

end module sort_SimpleCounter_impl

The derived typesort SimpleCounter private is the type where the developer adds data to store the ob-
ject’s state, andsort SimpleCounter wrap exists simply to facilitate transferring the pointer to a
sort SimpleCounter private to and from the IOR.

Typically for a class with state, the developer needs toallocate(pd%d private data) in the constructor,
ctor , anddeallocate(pd%d private data) in the destructor,dtor . Here is a concrete example of a

constructor.

recursive subroutine sort_SimpleCounter__ctor_mi(self)
use sort_SimpleCounter
use sort_SimpleCounter_private
! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._ctor.use)
! DO-NOT-DELETE splicer.end(sort.SimpleCounter._ctor.use)
implicit none
type(sort_SimpleCounter_t) :: self

! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._ctor)
type(sort_SimpleCounter_wrap) :: dp
allocate(dp%d_private_data)
dp%d_private_data%count = 0
call sort_SimpleCounter__set_data_m(self, dp)

! DO-NOT-DELETE splicer.end(sort.SimpleCounter._ctor)
end subroutine sort_SimpleCounter__ctor_mi

Here is the corresponding destructor.

recursive subroutine sort_SimpleCounter__dtor_mi(self)
use sort_SimpleCounter
use sort_SimpleCounter_private
! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._dtor.use)
! DO-NOT-DELETE splicer.end(sort.SimpleCounter._dtor.use)
implicit none
type(sort_SimpleCounter_t) :: self

! DO-NOT-DELETE splicer.begin(sort.SimpleCounter._dtor)
type(sort_SimpleCounter_wrap) :: dp

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

98 FORTRAN 90 Bindings

call sort_SimpleCounter__get_data_m(self, dp)
deallocate(dp%d_private_data)

! DO-NOT-DELETE splicer.end(sort.SimpleCounter._dtor)
end subroutine sort_SimpleCounter__dtor_mi

9.7 Accessing SIDL Arrays From FORTRAN 90

SIDL r-arrays are passed to and from methods as normal FORTRAN 90 arrays. You do not need to include the index
variables because the values are determined from the FORTRAN 90 array extents in each dimension.

The client-side interface for thesolve example introduced in Section 5.4 behaves as if it is a FORTRAN 77
function with the following overloaded interface:

private :: solve_1s, solve_2s
interface solve

module procedure solve_1s, solve_2s
end interface

recursive subroutine solve_1s(self, A, x, b)
implicit none
type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
! in array<double,2,column-major> A
type(sidl_double_2d) , intent(in) :: A
! inout array<double,column-major> x
type(sidl_double_1d) , intent(inout) :: x
! in array<double,column-major> b
type(sidl_double_1d) , intent(in) :: b
! details deleted

end subroutine solve_1s

recursive subroutine solve_2s(self, A, x, b)
implicit none
type(num_Linsol_t) , intent(in) :: self ! in num.Linsol self
! in rarray<double,2> A(m,n)
real (selected_real_kind(15, 307)) , intent(in), dimension(:, :) :: A
! inout rarray<double> x(n)
real (selected_real_kind(15, 307)) , intent(inout), dimension(:) :: x
! in rarray<double> b(m)
real (selected_real_kind(15, 307)) , intent(in), dimension(:) :: b
! details deleted

end subroutine solve_2s

You can use either normal FORTRAN 90 arrays or normal SIDL arrays when calling a FORTRAN 90 method, but
you cannot use a mixture.

The server-side interface forsolve is similar. Note, the lower index each dimension of every incoming array is
always zero.

recursive subroutine num_Linsol_solve_mi(self, A, x, b, m, n)
use num_Linsol
use sidl_double_array
use num_Linsol_impl
! DO-NOT-DELETE splicer.begin(num.Linsol.solve.use)
! DO-NOT-DELETE splicer.end(num.Linsol.solve.use)
implicit none
type(num_Linsol_t) :: self ! in
integer (selected_int_kind(9)) :: m ! in
integer (selected_int_kind(9)) :: n ! in
real (selected_real_kind(15, 307)), dimension(0:m-1, 0:n-1) :: A ! in
real (selected_real_kind(15, 307)), dimension(0:n-1) :: x ! inout

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

9.7 Accessing SIDL Arrays From FORTRAN 90 99

real (selected_real_kind(15, 307)), dimension(0:m-1) :: b ! in

! DO-NOT-DELETE splicer.begin(num.Linsol.solve)
! Insert the implementation here...
! DO-NOT-DELETE splicer.end(num.Linsol.solve)
end subroutine num_Linsol_solve_mi

For normal SIDL arrays, the normal SIDL C function API is available from FORTRAN 90 to create, destroy, and
access array elements and meta-data. The array routines are in a module. Forsidl.SIDLException , the array
module is namedsidl SIDLException array , and the array module is defined in thesidl SIDLException array.F90 .

For SIDL types dcomplex, double, fcomplex , float, int, and long, SIDL provides an array pointer to get direct
access to the array elements. For the other types, you must use the functional API to access array elements.

The SIDL derived type for a SIDL array is named after the class, interface or basic type that it holds and the dimen-
sion of the array. Forsidl.SIDLException , the array derived types are namedsidl SIDLException 1d ,
sidl SIDLException 2d , sidl SIDLException 3d , . . . up tosidl SIDLException 7d . For the basic
types, they are treated assidl.dcomplex , sidl.double , sidl.fcomplex , etc. Each of these derived types
has a 64 bit integer to hold an opaque pointer.

The derived type for SIDL types dcomplex, double, fcomplex , float, int, and long also has a pointer to an array of
the appropriate type and dimension. For example, here is the derived type for 2d and 3d arrays of doubles.

type sidl_double_2d
sequence
integer (selected_int_kind(18)) :: d_array
real (selected_real_kind(15, 307)), pointer, &

dimension(:,:) :: d_data
end type sidl_double_2d

type sidl_double_3d
sequence
integer (selected_int_kind(18)) :: d_array
real (selected_real_kind(15, 307)), pointer, &

dimension(:,:,:) :: d_data
end type sidl_double_3d

You can access the array with the F90 array pointerd data just like any other F90 array. However, youmust
not use the F90 builtinsallocate or deallocate on d data . You must use SIDL functionscreateCol ,
createRow , create1d , create2dRow , create2dCol to create a new array. These SIDL routines initialize
d data to refer to the data allocated ind array .

You can call things like LINPACK or BLAS if you want, but you should check the stride to make sure the array
is packed as needed. You can checkstride(i) , which indicates the distance between elements in dimensioni . A
value of 1 means elements are packed densely in dimensioni . Negative stride values are possible. When an array is
sliced, the resulting array might not even have one densely packed dimension.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

100 FORTRAN 90 Bindings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 10

Java Bindings

Contents

10.1 Introduction . 101

10.2 Basic Types . 101

10.3 Client Side: Using SIDL Classes and Methods . 101

10.4 Server Side: Writing SIDL classes in Java . 102

10.5 Casting Objects . 103

10.6 Out and Inout arguments . 103

10.7 Using SIDL arrays with Java . 103

10.8 Interfaces and Abstract Classes . 104

10.9 Exceptions . 105

10.10Enumerations . 106

10.11Invoking Babel to generate Java bindings . 106

10.12Invoking Babel to generate Java implementations 107

10.13Environment Variables . 107

10.1 Introduction

This chapter provides an introduction to the Java bindings for SIDL, including illustrations of both callers and callees
written in Java. It shows how to use Babel to wrap the implementation of software written in Java as well as how to
call software, possibly implemented in any other supported language, from Java.

10.2 Basic Types

Most SIDL types map directly into Java as shown in Table 10.1.

10.3 Client Side: Using SIDL Classes and Methods

SIDL’s object model is very similar to Java’s, and therefore maps easily into Java’s object model. A SIDL object is
treated almost exactly the same in Java as any other Java object, the only difference being that all data held by the
object is private, and all methods are public.

Importing SIDL packages and classes is also exactly the same as in Java. For example, assume there is a package
test that includes the classHelloWorld , and you wish to print this message in your program. The following code
segment does this.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

102 Java Bindings

Table 10.1: SIDL to Java Type Mappings

SIDL TYPE JAVA TYPE
int int
long long
float float
double double
bool boolean
char char
string String
fcomplex FloatComplex
dcomplex DoubleComplex
enum Enum
opaque long
interface interface
class class
array type.Array

import test.HelloWorld;

public static main(String args[]) {

HelloWorld hi = new HelloWorld();
hi.printMsg();

}

Writing the fully qualified class name would also have sufficed.test.HelloWorld hi = new test.HelloWorld()
Babel also generates Java code in line with Java’s use of directories to organize packages and classes as files. For

example, assume you are generating babel code in a directory namedbabelcode . Assume your packagetest con-
tains 2 classesHelloWorld andGoodbyeWorld . After runningbabel -cJava test.sidl you will have a
new directory inbabelcode namedtest which will contain 2 files,HelloWorld.java andGoodbyeWorld.java .
These classes will be accessible from your Java program as long asbabelcode is in yourCLASSPATH.

10.4 Server Side: Writing SIDL classes in Java

Babel also supports calls to SIDL classes implemented in Java. These classes obey the same rules as the client side
Java classes, except that is this case the file, class, and method names all end inImpl .

As is the case with other Babel server side files, only the code written between splicer blocks will be preserved
between calls of Babel. Make sure any data and code is kept in the designated areas, otherwise it won’t be there after
you run Babel on those files.

Another interesting fact of the Server Side is that it inherits from the Client Side Java class. This allows us to call
local methods directly. Take this recursive Fibonacci function implementation for example:

class Fib_Impl extends Fib {
public int getFib_Impl(int x) {

// DO-NOT-DELETE splicer.begin(ExceptionTest.Fib.getFib)
if(x >= 2) {

return getFib(x-1) + getFib(x-2);
} else {

return 1;
}
// DO-NOT-DELETE splicer.end(ExceptionTest.Fib.getFib)

}
}

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

10.5 Casting Objects 103

Here the client side class is nameFib , and therefore the Server Side class isFib Impl . The same relation is true
for thegetFib method. You can also see that we are able to callgetFib , the client side method, directly. A call
like this will go through Babel glue code, as it should. You should not try to make calls directly toImpl methods. It
won’t work at all on different objects, and it breaks the object model if used on methods in the current object. (That is,
it is possible to callfoo Impl in the current object, but because the call will not go through Babel, any inheritance
information will be lost, and the wrong version of the method may be called. Simply callfoo in the standard way.)

This also means there is no way to have Server Side object inherit from non SIDL Java classes, in fact, there are
no splicer blocks available for inheritance, so implementing interfaces on the Server Side is also not supported. This
is because we feel that having the Server side inherit from non-SIDL classes is probably not a good idea.

10.5 Casting Objects

In some cases it is necessary to cast the internal representation of an object as well as the Java object. (For example,
getting an object from a SIDL array of superclass objects.) In these cases a Java cast is insufficient. Therefore we have
provided two casting functions.

cast(object) is a static function included with every SIDL class that returns object passed in to cast that class.
For example, in order to cast an object of typesidl.BaseClass to foo.Bar simply write foo.Bar newobj
= (foo.Bar) foo.Bar. cast(oldobj) . If this is an invalid cast,cast will return null .

The alternative iscast2(‘‘ClassName’’) . This is a cast function that is included with every SIDL object.
It performs basically the same function ascast , but the form isobject. cast2(‘‘ClassName’’) . It takes a
fully qualified class name. If the cast is invalid, or a class of that name cannot be found, this function returnsnull .

Both of these functions return asidl.BaseClass which then must be Java casted to the correct Java class type.
Also, in casting, they both create a new Java object that owns a new reference to the IOR object. In Java you never
have to worry about reference counting, but this does mean that the pre-cast object still exists and is valid.

10.6 Out and Inout arguments

In C or C++ out and inout arguments are handled by passing pointers to the data so that if the data is changed, the
pointer will be pointing to the new, correct, data. Because Java does not support pointers, each SIDL type and class
has a static innerHolder class. This Holder class can hold a single variable or object of the correct type. There are
functionsget() andset() for getting or setting this object.

10.7 Using SIDL arrays with Java

Every object and type defined in SIDL can be put into a SIDL array of that type. Arrays are a fairly complex topic, and
the specifics of the Babel Array API are discussed earlier in Section 5.4. Suffice to say that the entire API is available
in Java, except for

ensure , borrow , andfirst , all of which have no real use in Java.addRef anddeleteRef exist in Java,
but shouldn’t be used, because the Java decrements the reference count itself when it garbage collects a SIDL object
or array. If it is necessary todeleteRef an array, you should use thedestroy() array function instead.

More to the point are the specifics of the Java implementation. Each SIDL type and class includes a static inner
class namedArray . This is the main Array class, and in order to support up to 7 dimensional arrays, every method
takes either 7 array indices, or an array of indices. For example, in order to get the element (2,3) from a 2 dimensional
array, we would typearry. get(2,3,0,0,0,0,0) .

Since typing all those zeros can get a little tedious, we also implemented a set of subclasses of Array. One subclass
for each dimension. So, if we had andArray2 instead of anArray we could simply typearry2. get(2,3) to
get the correct element.

These numbered Array subclasses improve on the Array API usability somewhat, but that do have a side effect.
In order to avoid conflicts between the Array superclass and the numbered Array subclass functions, all other basic
Array methods found in the Array superclass are preceded by an underscore ’’. For example, in order to get an array’s
dimension, you can typearry. dim() . The numbered arrays all inherit these methods, soarry2. dim() will
also work, although in this case, the answer should be obvious.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

104 Java Bindings

Furthermore, there is another underscore rule for Arrays in Java. All numbered arrays have twoget and two
set functions. The get and set functions are the same in Array and all the Array# subclasses, they simply
pass the arguments of theget call down to the underlying implementation. However, the underscore-lessget and
set do bounds checking in Java before calling the underlying implementation, and, if there is a problem, throw an
ArrayIndexOutOfBoundsException .

Because the numbered arrays are subclasses ofArray , if necessary you can Java cast anArray# to anArray .
However, some functions return anArray . In order to convert anArray to the correctly numbered array, we provided
a function inArray called dcast() . In order to cast anArray object to a numbered array, simply calldcast()
on it. For example, assume we have a 1 dimensional array of typefoo.Bar calledarry that is represented by the
Java classArray . In order to get a correctly numbered array type:

foo.Bar.Array1 arry1 = arry._dcast();

After this cast we have 2 references to the same array,arry andarry1 .
Finally, the Java array constructors are slightly different then they are in other languages. This is the constructor

definition forArray .

public Array(int dim, int[] lower, int[] upper, boolean isRow)

This constructor creates and array of dimensiondim . It takes two arrays of integers to define the lower and upper
bounds of each dimension in the array. If lower or upper has fewer elements than there are dimensions in the array,
or any element in lower is larger than the corresponding element in upper, this constructor will throw an exception.
Finally, this constructor takes a booleanisRow . If isRow is true, this constructor will create a SIDL array in row-
major order, if it is false, it will create an array in column-major order.

The constructors for numbered arrays are simpler. Here’s the constructor for a 2 dimensional array:

public Array2(int l0, int l1, int u0, int u1, boolean isRow)

The dimension argument is no longer necessary, and it is no longer necessary to create arrays of bounds to pass
into the constructor.l0 and l1 are the lower bounds. andu0 andu1 are the upper bounds. This constructor still
includes the choice between column and row major orders.

If all your lower bounds are 0, you can use an even simpler constructor:

public Array2(int s0, int s1, boolean isRow)

Another alternate way to construct sidl arrays is present in numbered arrays. The following constructor takes a
Java 2 dimensional array, and copies it into a SIDL 2 dimensional array:

public Array2(foo.Bar[][] array, boolean isRow)

If you already have a numbered SIDL array of the correct dimension, you can copy a java array into it with the
methodfromArray . The method takes the same arguments as the constructor above, and returns nothing.

If you wish to go the other way, to copy a sidl array into a Java array, you may use the numbered array function
toArray . toArray takes no arguments, and returns a new Java array with the SIDL array elements copied into it.

10.8 Interfaces and Abstract Classes

Babel implements SIDL interfaces as Java interfaces in Java. This is a close mapping in general, but it does have the
problem that Java interfaces can’t hold data. Since we need the correct IOR pointer in order to place that interface in
an array or throw it as an Exception, the lack of data becomes a problem. For this reason, we have created Wrapper
classes for interfaces and abstract classes.

All interfaces and abstract classes have static inner class namedWrapper . ThisWrapper class holds the interface
IOR pointer, and also inherits fromgov.llnl.babel.BaseClass and implements the outer interface. Therefore,
you can call all the interface methods on the wrapper object, as well asgov.llnl.babel.BaseClass methods
such ascast2 , andisType .

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

10.9 Exceptions 105

This wrapper class is what is returned when an interface is gotten out of an array, a method takes or returns an
interface, or when an exception implemented as an interface is caught. (There’s actually a difference here. While
what is gotten out of the Array or returned from a method is a Wrapper object, the programmer doesn’t usually need
to worry about that, as is shown in the example below. In the case of exceptions, you actually do have to catch the
Wrapper. Exceptions are covered in more detail in Subsection 10.9) Because wrapper classes inherit only from an
interface, they can be java casted to their enclosing interface, or it’s super-interfaces, but must be Babel casted to any
classes. In this example, Subclass implements Super-Interface:

SuperInterface.Array1 arry = new SuperInterface.Array1(5, true);
SubClass obj = new SubClass();
arry.set(0, (SuperInterface)obj);
obj = null;
SuperInterface temp = arry.get(0);
obj = (SubClass) temp; //INCORRECT Will throw ClassCastException

obj = (SubClass) SubClass._cast((SuperInterface.Wrapper)temp); //CORRECT

Sometimes you can get away with not Java casting the interface to the Wrapper class before Babel casting it, but
not in general. (Usually you don’t have to when the interface was gotten out of an array)

Here’s an example of casting an interface on the server side:

public objarg.SubClass toClass_Impl (/*in*/ objarg.Iface ifcy) {
// DO-NOT-DELETE splicer.begin(objarg.SubClass.toClass)
objarg.SubClass ret = (objarg.SubClass)

((objarg.Iface.Wrapper)ifcy)._cast2("objarg.SubClass");
return ret;
// DO-NOT-DELETE splicer.end(objarg.SubClass.toClass)

}

10.9 Exceptions

Exceptions are caught and thrown in exactly the same way as Java exceptions. If an exception is defined in SIDL,
Babel will generate the code for it, and the exception can be thrown in Java. The only difference is that SIDL exception
constructor cannot take a String. Instead, the message must be set with SIDL’ssetNote method, the message
is gotten with SIDL’sgetNote method. This is important because SIDL exceptions inherit from the Java Class
Exception . The Java compilerwill not give an error if getMessage is called, but the message returned will not have
been from SIDL.

The other problem is that regular Java exceptions cannot be passed on by Babel. Of course, it’s not possible to
throw normal non-SIDL exceptions from a SIDL Java function, the Java compiler will throw an error. (Unless you
have changed the Java method “throws” statement outside the splicer blocks, which you should never do.) However,
Java runtime exceptions, such asArrayIndexOutOfBoundsException can be thrown. In this case, an error
message and stack trace are printed to stderr, the method returns 0, the values of any out or inout arguments are set to
NULL, and the program proceeds.

Finally, SIDL Exceptions may be interfaces, where as Java exceptions are always classes. This means Babel allows
you to throw an interface. However, in Java we actually need to throw the interface’s Wrapper class.

In this example we have a classFibException which implements two exception interfaces,NegativeValueException
andTooDeepException . These two Exceptions are thrown by a babelized method namedgetFib . getFib is
a standard recursive Fibonacci number generating function, in which if something goes wrong, it throws one of these
two exceptions. First, server side:

public int getFib_Impl (/*in*/ int n)
throws NegativeValueException.Wrapper, TooDeepException.Wrapper {

if (n < 0) {
FibException fex = new FibException();
NegativeValueException.Wrapper neg = (NegativeValueException.Wrapper)

NegativeValueException.Wrapper._cast(fex);

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

106 Java Bindings

neg.setNote("n negative");
throw neg;

}

// Do Fibonacci stuff
}

You can see here some of the hoops you have to jump though to throw an interface. First, since we cannot create
an interface, or it’s Wrapper, directly, we first create a newFibException and cast it to the interface we want.
Secondly, we have to refer to the Wrapper’s full name in this case, because it is impossible to throw interfaces in Java.
Finally, as with all SIDL Exceptions, we usesetNote to set the exception’s message, as we cannot pass in a message
with the constructor.

Next the client side:

try {
fib.getFib(-1);

} catch (NegativeValueException.Wrapper ex) {
System.err.println(ex.getNote());

} catch (TooDeepException.Wrapper ex) {
System.err.println(ex.getNote());

} catch (java.lang.Exception ex) {
if (((sidl.BaseInterface)ex).isType("sidl.SIDLException")) {

check(PASS, true, "Unexpected SIDL Exception thrown");
} else {

check(PASS, false, "Unexpected and unkown exception thrown");
}

}

In order to differentiate between the two different interfaces in this case we must catch the Wrappers explicitly by
their fully qualified names. In theexceptions regression test we discover the types of the Exceptions by calling the
SIDL function isType on them. However, because SIDL can cast between the two interfaces, in this caseisType
would return true no matter what the exception originally was. The final catchjava.lang.Exception ex should
not ever be executed in out example code.getFib does not throw any other kinds of exceptions, and babel cannot
throw non-SIDL Exceptions. This was included because it demonstrates the most basic way to differentiate a SIDL
exception from a Java exception.

10.10 Enumerations

Enumerations are implemented asfinal static ints in their own Java class, and as such, are accessed just like
variables in that class. For example, if we had a sidl package nameddealership that contained the following code
segment:

enum car {
porsche = 911,
ford = 150,
mercedes = 550

};

we would be able to get the value assigned to a Porsche by typingdealership.car.porsche .

10.11 Invoking Babel to generate Java bindings

To create Java stubs (i.e. code to support Java clients to a set of SIDL classes or interfaces), you should invoke Babel
as follows1:

1For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

10.12 Invoking Babel to generate Java implementations 107

% babel --client=Java file.sidl

or more cryptically

% babel -cJava file.sidl

This will create a great plethora of files, including a directory namedfile . This directory contains the Java client
classes, if you want to take a look at them. The files ending inIOR.h and IOR.c are the Intermediate Object
Representation. The files ending withjniStub.c are the JNI stubs — the interface between a Java client and the
IOR. The “jni” in the filename represents the fact that we use the Java Native Interface to communicate between Java
and the IOR representation. The remaining header files have external Java API that Java clients may use.

To use the Java stubs, you must compile the stub files whose file names end withjniStub.c and link them
against the SIDL runtime library and a backend implementation. The resulting library needs to be referenced in a
.scl file listed in the SIDLDLL PATH environment variable so that the Babel runtime library loader can find it.
Also, the current directory needs to be in the CLASSPATH environment variable so that Java can find thefile and
sidl directories that contain the Java component of the client side.

10.12 Invoking Babel to generate Java implementations

To implement a set of SIDL classes in Java, you should invoke Babel as follows:

% babel --server=Java file.sidl

or use the short form

% babel -sJava file.sidl

The directory structure that results from this command is that same as the client side, there are just a bunch more
files. In thefile directory there are new files that end inImpl.java . These are the java files where you should
write your implementation. All of your methods in this class now also end inImpl . In the current directory there are
also new files that end injniSkel.c . These files are the equivalent to thejniStub.c for the client side.

You should also notice that all the Client side files have been generated in addition to the new Server side files.
These files are present to allow for calling methods on the current object in the Implementation java file. You can
safely ignore them.

10.13 Environment Variables

There are some environment variables associated with running Java with Babel. You can find examples for some of
these in the regression tests included with babel.

CLASSPATH: The CLASSPATH is an environment variable that Java uses to find.class files. It’s is not specific
to Babel, but it is necessary. It consists of a colon delimited series of directories to search for Java classes. In addition
to any of your own Class files for use in Java server side, you should includebuild dir/lib/sidl-ver.jar
where ver is the current sidl version, andbuild dir/runtime/java .

BABEL JVM FLAGS: This environment variable is usedonly when passing java command line variables to Java
server side. It consists of a semi-colon delimited list of command line variables you wish to pass to Java server side.
(A useful one might be -Xcheck:jni))Here’s an example:

BABEL_JVM_FLAGS="-verbose:gc;-Xmx500m"

It is also necessary to set your LDLIBRARY PATH (or LIBPATH on AIX) and SIDLDLL PATH correctly. Not
including all the necessary files in the SIDLDLL PATH and LDLIBRARY PATH can crash the JVM in unhelp-
ful ways. Babel tries to generate helpful error messages, but sometimes the JVM crashes due to missing files and
doesn’t generate very helpful output. If the JVM crashes, make sure you’ve included all the necessary files in your
SIDL DLL PATH and LDLIBRARY PATH.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

108 Java Bindings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 11

Python Bindings

Contents

11.1 How to Create a SIDL Object in Python . 109
11.2 How to Cast SIDL Objects in Python . 109
11.3 How to Call Methods from Python . 110
11.4 Catching and Throwing Exceptions in Python . 110
11.5 Building Python Extension Modules . 111
11.6 Setting up to Run Python . 111
11.7 Notes . 112
11.8 How to Implement SIDL Objects in Python . 112

Babel requires a Python shared library. Because Python 2.3 has a configure/build system that builds shared libraries
on many architectures, we recommend that you use Python 2.3 or beyond.

11.1 How to Create a SIDL Object in Python

(once you’ve built the Python extension module)
You need to import the extension module and then calling a method to create an instance. If you have a class whose

fully qualified name is x.y.z, you would say:

>>> import x.y.z
>>> obj = x.y.z.z()

The last part of the class name is repeated. You can also usefrom x.y.z import * if you prefer; although,
you must guarantee that there are no namespace collisions.

In some cases, the Python extension module may be namezmodule.so instead of simplyz.so . This might
tempt you to sayimport x.y.zmodule instead of justimport x.y.z ; resist this temptation!

11.2 How to Cast SIDL Objects in Python

Let’s say you have an objectobj , and you would like to see if it is an instance of a SIDL class or interface whose
fully qualified name isx.y.z . Here is how you do it.

>>> import x.y.z
>>> zobj = x.y.z.z(obj)

Of course, you don’t need the import if you know thatx.y.z has already been imported. Ifzobj is not equal to
None, the cast was successful.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

110 Python Bindings

11.3 How to Call Methods from Python

Once you have created an object, you call methods on it using normal Python method calls. The arguments to the
method only include thein and inout arguments, and the return value of the Python method includes the SIDL
return value and theinout andout parameters. Hopefully, this will seem natural to Python programmers. For the
following example, the objectobj has a methodpasseverywhere with the following SIDL declaration:

double passeverywhere(in double d1, out double d2, inout double d3);

You can see the Python calling signature withprint obj.passeverywhere. doc . Here is what that
shows for this example:

$ python
>>> import Args.Cdouble
>>> obj = Args.Cdouble.Cdouble()
>>> print obj.passeverywhere.__doc__
passeverywhere(in double d1,

inout double d3)
RETURNS

(double _return,
out double d2,
inout double d3)

In the method documentation, the SIDL method’s return value is calledreturn ; and unless the method isvoid ,
the return value always appears first. The fact thatreturn starts with an underbar should alert you to the fact that it
is not a parameter because parameter names cannot start with an underbar. The document comments from the SIDL
file (i.e. comments enclosed in/** */ comments) appear below the Babel generated signature documentation.

Static methods of a class are available in the Pythonx.y.z namespace assuming you use theimport x.y.z
command. Static methods have documentation just like class methods.

Examples of calls to SIDL overloaded methods are based on theoverload sample.sidl file shown in Sec-
tion 5.6. Recall that the file describes three versions of thegetValue method. The first takes no arguments, the
second takes an integer argument, and the third takes a boolean. Each is called in the code snippet below:

b1 = 1
i1 = 1

t = Overload.Sample.Sample()

nresult = t.getValue()
iresult = t.getValueInt(i1)
bresult = t.getValueBool(b1)

11.4 Catching and Throwing Exceptions in Python

Python exceptions must be Python classes; they cannot be a C extension type — the mechanism used to wrap SIDL
objects as Python objects. Because of this, Babel defines an exception class for each SIDL type that implements
sidl.BaseException . For a type calledx.y.z , the Python exception class is namedx.y.z. Exception . In
Babel 0.10.2 and previous releases, the Python exception class was namedx.y.z.Exception , but this name can
potentially collide with the class constructor or a static method namedException . For backwards compatibility,
Babel definesx.y.z.Exception if the nameException is not used in the class.

SIDL exceptions are caught and thrown very much like normal Python exceptions are caught and thrown ex-
cept you need to use the Python exception class for the SIDL type. The exception value holds the SIDL object
as attributeexception . Here is an example of a code catching exceptions from a call togetFib . Note that
eobj.exception is an instance ofExceptionTest.NegativeValueException.NegativeValueException ,
the Python type corresponding to the SIDL typeExceptionTest.NegativeValueException .

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

11.5 Building Python Extension Modules 111

try:
fib.getFib(-1, 10, 10, 0)

except ExceptionTest.NegativeValueException._Exception:
(etype, eobj, etb) = sys.exc_info()
eobj is the SIDL exception object
print eobj.exception.getNote() # show the exception comment
print eobj.exception.getTrace() # and traceback

Here is an example of a Python implementation function that throws an exception. ThesetNote method provides
a useful error message, and theadd method helps provide a multi-language traceback capability (provided each layer
of the call stack callsadd).

def getFib(self, n, max_depth, max_value, depth):
sidl EXPECTED INCOMING TYPES
============================
int n, max_depth, max_value, depth
#
sidl EXPECTED RETURN VALUE(s)
=============================
int _return
DO-NOT-DELETE splicer.begin(getFib)
if (n < 0):

ex = ExceptionTest.NegativeValueException.NegativeValueException()
ex.setNote("n negative")
ex.add(__name__, 0, "ExceptionTest.Fib.getFib")
raise ExceptionTest.NegativeValueException._Exception, ex

numerous lines deleted
DO-NOT-DELETE splicer.end(getFib)

11.5 Building Python Extension Modules

SIDL creates asetup.py file that can be used to build the Python extension modules that you create.setup.py
uses the Python distutils package to build the Python extension modules. There are two extra command line arguments.

• --include-dirs= — Use this to specify extra directories for the preprocessor include path. This is like-I
for most C compilers.

• --library-dirs= — Use this to specific extra directories for static or shared libraries. This is like-L for
most C compilers/loaders.

Normally, you need to specify the directory where the SIDL runtime headers and SIDL Python headers are stored
with --include-dirs= . You also need to specify the directory wherelibsidl.so is stored. Here is a hypo-
thetical example:

setup.py --include-dirs=/usr/local/include
--include-dirs=/usr/local/include/python
--library-dirs=/usr/local/lib build ext --inplace

It is unlikely that any installation actually uses those settings.

11.6 Setting up to Run Python

Here I assume that you’ve installed Babel in directories rooted at$PREFIX. You need to have$PREFIX/python
in yourPYTHONPATHenvironment variable in addition to the directory where you are doing your work.

On many systems, you will need$PREFIX/lib in your LD LIBRARY PATH(or whatever system setting con-
trols which directories are searched for shared libraries/dynamic link libraries).

You will likely need to useSIDL DLL PATH(a semicolon separated path) to provide the path to the directory that
holds the shared library/dynamic link library containing the implementation of the SIDL objects.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

112 Python Bindings

11.7 Notes

The Python binding for SIDL long uses Python’s unlimited precision integer data type, so it will not behave exactly like
a 64 bit integer (i.e. there is no overflow). For Python versions before 2.2, your code needs to guarantee that a Python
unlimited precision integer is used whenever a SIDL long is needed. For example, if you want to call a method whose
SIDL signature isbool isPrime(long num) , calling isPrime(1) will fails; but calling isPrime(1L) will
work fine.

The Python binding for an array of SIDL longs may use an array of 64 bit integers if Numeric Python supports a
64 bit integer. Otherwise, it uses an array of Python’s indefinite precision integers (i.e., integers with unlimited bits).

What does this error message mean?

>>> import x.y.Zmodule
Traceback (innermost last):
File "<stdin>", line 1, in ?
ImportError: dynamic module does not define init function (initZmodule)

Is the name of your SIDL interface/classx.y.Z or x.y.Zmodule , if it’s the former, you should sayimport
x.y.Z . If this isn’t the problem, submit a bug report for Babel. It might be informative to look at the symbol of
the shared library/dynamic link library using a tool like nm. I suppose it’s also worth checking the PYTHONPATH
environment variable to make sure it’s pointing to the right place.

>>> import x.y.Z
Fatal Python error: Cannot load implementation for SIDL class x.y.Z
Abort (core dumped)

This means that the Python stub code (the code that links Python to SIDL’s independent object representation
(IOR)) failed in its attempt to load the shared library or dynamic link library containing the implementation of SIDL
classx.y.Z . Make sure the environment variableSIDL DLL PATH lists all the directories where the shared li-
braries/dynamic link libraries for your SIDL objects/interfaces are stored.SIDL DLL PATHis a semicolon separated
list of directories where SIDL client stubs will search for shared libraries required for SIDL classes and interfaces.
Make sure the directory in which the SIDL runtime resides is in theLD LIBRARY PATH(or whatever your machine’s
mechanism for locating shared library files is).

>>> import x.y.Z
Fatal Python error: Cannot load implementation for SIDL interface x.y.Z
Abort (core dumped)

This is the same problem for an interface as described immediately above for a class.

11.8 How to Implement SIDL Objects in Python

To build server side Python, you must have Python compiled as a shared library or dynamically link library. The
standard Python build only builds the necessary shared library on a few platforms — none of which are target platforms
for Babel. Some Linux distributions include a Python shared library, and it is possible to make a Python shared library
on Solaris. The Python shared library should contain the objects from libpythonx.y.a where x.y is your Python version.
Making a shared library is different on each platform, so it is not covered here.

To implement an object in Python, first you must run Babel to create the Python server side bindings1.

% babel --server=python file.sidl

1For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

11.8 How to Implement SIDL Objects in Python 113

or simply

% babel -s=python file.sidl

This creates the IOR, Python skeleton (pSkel), and Python launch (pLaunch) files in your currect directory, and it
will create tree of subdirectories based on the package hierarchy found in file.sidl. The IOR, pSkel and pLaunch files
must be compiled and place in a shared library (in most cases).

The tree of subdirectories created by Babel includes Python implementation files whose name ends withImpl.py
and Python extension modules for the Python client side binding (Module.h and Module.c). The extension
modules need to be compiled as above in section 11.5, and you need to fill in the implementations in theImpl.py
files.

Babel generates the outline of the implementation. It creates a class definition and empty methods for you to fill
in the each Impl.py file. If you put your code between the comments as indicated, your code will be preserved if
you rerun Babel. Any changes out side the comment blocks will be lost if you rerun Babel. Here is an example of a
method implementation:

def passeverywhere(self, d1, d3):
#
SIDL EXPECTED INCOMING TYPES
============================
double d1
double d3
#

#
SIDL EXPECTED RETURN VALUE(s)
=============================
(_return, d2, d3)
double _return
double d2
double d3
#

DO-NOT-DELETE splicer.begin(passeverywhere)
if (d1 == 3.14):

retval = 3.14
else:

retval = 0
return (retval, 3.14, -d3)
DO-NOT-DELETE splicer.end(passeverywhere)

Babel generated everything except the code that appears between thesplicer.begin and splicer.end
comments.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

114 Python Bindings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 12

SIDL Backend

Contents

12.1 Introduction . 115

12.2 Purpose . 115

12.3 Generated versus Original SIDL files . 115

12.4 XML File Comparison . 117

12.5 Babel Command Line Options . 117

12.1 Introduction

This chapter introduces the SIDL backend associated with symbols that may originate from a SIDL file or the corre-
sponding Extensible Markup Language (XML) representation. Unlike most of the other supported language bindings,
the output from this backend is textual in nature. That is, it is the textual, human-readable form of the interfaces
description. An alternative text form, XML that is, which is also supported is described in Chapter 13.

12.2 Purpose

The primary reason for having a SIDL backend is to provide a mechanism for generating human-readable text for
interfaces that are written in conformant XML. It is important to emphasize that Babel requires the XML to conform
to the SIDL DTD in order to benefit from this feature.

Generating SIDL provides a feature to collaborators who are interested in experimenting with the XML form
of the interfaces. Such groups should find the more human-readable descriptions of the interfaces to be helpful for
distribution and discussion.

12.3 Generated versus Original SIDL files

Generated SIDL files may differ from their original SIDL files in several respects in terms of content as well as layout.
These differences are summarized below.

Packages.The code generation is limited to one high-level package per generated file. In fact, the name of the
generated file is currently defined to be the concatenation of the name of the highest-level package and.̈sidl̈.

Versioning. The generation of requires statements is inferred from the symbols that actually appear in the associated
interface descriptions. The intent is to provide a requires statement for only the highest level package needed of a
given version. Consequently, requires and imports statements that were not necessary for resolving symbols will
not appear. Also, fully qualified names will be shortened in the generated files due to the automatic generation

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

116 SIDL Backend

of the associated requires statement(s). Finally, since an import and require statement can be used in a SIDL file
and no distinction is made in the XML, only a require statement will appear in the generated file.

Implements. Since there is no distinction betweenimplements-all and implements in the XML version of
the interfaces, the generated code outputsimplements along with the inherited methods.

Comments. Babel preserves only document, or doc, comments so any comments that do not conform will not appear
in the generated file1.

Whitespace. Obviously there may be whitespace differences in the generated file. These include indentation, blank
spaces and lines, and brace placement.

As an example, suppose we have a package in the filefoo.sidl . The original file’s contents are:

package foo version 1.0 {

class A {}

package bar version 2.0 {
class B {}

}

}

The resulting contents of the generated SIDL file are:

package foo version 1.0 {

class A {
}

package bar version 2.0 {

class B {
}

}

}

Notice the differences in white space. To illustrate more features, further suppose we have a package in the file
fooTest.sidl . The original file’s contents are:

// An ignored comment
require foo version 1.0;
require foo.bar version 2.0;

/**
* Test of doc comment with XML special characters < & >.
*/

package fooTest version 0.1 {

/**
* Another doc comment for an empty class.
*/

class A extends foo.bar.B {}

class B extends foo.A {}
}

1For more information on comments and doc-comments, refer toComments and Doc-Commentsin Section 5.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

12.4 XML File Comparison 117

The resulting contents of the generated SIDL file are:

require foo version 1.0;
require foo.bar version 2.0;

/**
* Test of doc comment with XML special characters < & >.
*/

package fooTest version 0.1 {

/**
* Another doc comment for an empty class.
*/

class A extends foo.bar.B {
}

class B extends foo.A {
}

}

Here we see the exclusion of non-document comments and the retention of document comments. Refer to Sec-
tion 5.2 and Appendix C for more information about document comments.

12.4 XML File Comparison

Testing has revealed that XML generated from the original SIDL file compared to XML generated from generated
SIDL files have only minor differences. In fact, the differences are limited to specific metadata fields. Specifi-
cally, the date, source-url, and source-line entries can differ. The dates, however, will be the same if the-̈–suppress-
timestamp̈option was used when both XML files were generated. Similarly, the source-line entries will be the same
if the package started on the same line in both the original and generated SIDL files. The latter can happen if, for
instance, there are no non-doc comments in the original file.

12.5 Babel Command Line Options

To generate SIDL from a file using the default repository to resolve symbols, you should invoke Babel as follows2:

% babel --text=SIDL file.sidl

or use the short form

% babel -tSIDL file.sidl

Alternatively, you can generate SIDL from XML symbols, again assuming the default repository is used to resolve
symbols, by typing the following at the command line:

% babel --text=SIDL packagename

or use the short form

% babel -tSIDL packagename

2For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

118 SIDL Backend

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 13

XML Backend

Contents

13.1 Introduction . 119

13.2 Purpose . 119

13.3 Basic Structure . 119

13.4 Command Line Options . 125

13.1 Introduction

This chapter introduces the XML representation supported by Babel. Here we describe the motivation for having an
XML backend and the basic structure of a conformant XML file. To illustrate, a few of the SIDL symbol XML files
will be presented.

Details regarding the layout of XML files can be obtained by referring to the Document Type Definition (DTD)
provided in Appendix C. For more on the type repositories, refer to[XML Repositories in Section 5.2.

13.2 Purpose

The XML backend is a key feature of Babel. It provides the basis upon which the symbol, or type, repository depends.
SIDL files should be translated into their XML representations and stored in the type repository. This is the case for
the SIDL interfaces and classes that are provided as part of the Babel toolkit.

13.3 Basic Structure

Each generated XML file specifies the interfaces for a given SIDL Symbol in an expanded textual representation.
Although the structure of a given file depends upon the type of symbol it contains, the basic layout consists of a set of
common elements followed by symbol-specific elements.

Common Elements

The common elements areprolog, document type, name, metadata, andcomment. These elements, which are described
below, are followed by symbol-specific information.

Prolog. The prolog simply identifies the XML version and encoding scheme associated with the file.

Document Type. The document type declaration states the document contains aSymboland it identifies the associated
DTD (i.e.,SIDL.dtd).

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

120 XML Backend

Name. The symbol name is the first element within the symbol tag pair and it identifies the name and version of the
SIDL symbol that is described in the file.

Metadata. The metadata element identifies the date the XML file was generated1 along with a set of three key-value
pair entries. The first,source-url, identifies the URL of the SIDL file that was used to generate the XML file.
The second,source-line, identifies the line within the SIDL file at which the symbol was first detected. Finally,
babel-versionidentifies the version of Babel that was used to generate the XML file.

Comment. The comment tag is used to save off any comment that is associated with the symbol.

Packages

In addition to the common elements, packages retain elements and attributes associated with SIDL packages. These
include whether or not the package isfinal along with a list of the symbols contained within the package. The list of
symbols consists of the tuple: name, type, and version.

For example, the XML representation of the toplevel SIDL package (i.e.,sidl) is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Symbol PUBLIC "-//CCA//SIDL Symbol DTD v1.1//EN" "SIDL.dtd">
<Symbol>

<SymbolName name="sidl" version="0.8.2"/>
<Metadata date="20030320 13:29:02 PST">

<MetadataEntry key="source-url" value="file:/home/dahlgren/RELEASE/linux_kcc/share/../../babel/runtime/sidl/sidl.sidl"/>
<MetadataEntry key="source-line" value="40"/>
<MetadataEntry key="babel-version" value="0.8.2"/>

</Metadata>
<Comment>

The <code>sidl</code> package contains the fundamental type and interface
definitions for the <code>SIDL</code> interface definition language. It
defines common run-time libraries and common base classes and interfaces.
Every interface implicitly inherits from <code>sidl.BaseInterface</code>
and every class implicitly inherits from <code>sidl.BaseClass</code>.

</Comment>
<Package final="false">

<PackageSymbol name="BaseInterface" type="interface" version="0.8.2"/>
<PackageSymbol name="BaseClass" type="class" version="0.8.2"/>
<PackageSymbol name="BaseException" type="class" version="0.8.2"/>
<PackageSymbol name="DLL" type="class" version="0.8.2"/>
<PackageSymbol name="Loader" type="class" version="0.8.2"/>
<PackageSymbol name="ClassInfo" type="interface" version="0.8.2"/>
<PackageSymbol name="ClassInfoI" type="class" version="0.8.2"/>

</Package>
</Symbol>

Interfaces

Similarly, the XML for interface symbols contain the common elements. In addition, they retain elements and at-
tributes associated with SIDL interfaces. These include any extensions, parent interfaces it implements, and its meth-
ods. Method information includes its name, communication mode, short name, name extension (for languages that
don’t support method overloading), comment, return type, argument list, and exception list.

For example, the XML representation ofsidl.BaseInterface is:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Symbol PUBLIC "-//CCA//SIDL Symbol DTD v1.1//EN" "SIDL.dtd">
<Symbol>

1Assuming thë-–suppress-timestampöption was not used.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

13.3 Basic Structure 121

<SymbolName name="sidl.BaseInterface" version="0.8.2"/>
<Metadata date="20030320 13:29:02 PST">

<MetadataEntry key="source-url" value="file:/home/dahlgren/RELEASE/linux_kcc/share/../../babel/runtime/sidl/sidl.sidl"/>
<MetadataEntry key="source-line" value="47"/>
<MetadataEntry key="babel-version" value="0.8.2"/>

</Metadata>
<Comment>

Every interface in <code>SIDL</code> implicitly inherits
from <code>BaseInterface</code>, and it is implemented
by <code>BaseClass</code> below.

</Comment>
<Interface>

<ExtendsBlock/>
<AllParentInterfaces/>
<MethodsBlock>

<Method communication="normal" copy="false" definition="abstract" extension="" shortname="addRef">
<Comment>

<p>
Add one to the intrinsic reference count in the underlying object.
Object in <code>SIDL</code> have an intrinsic reference count.
Objects continue to exist as long as the reference count is
positive. Clients should call this method whenever they
create another ongoing reference to an object or interface.
</p>
<p>
This does not have a return value because there is no language
independent type that can refer to an interface or a
class.
</p>

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="deleteRef">

<Comment>
Decrease by one the intrinsic reference count in the underlying
object, and delete the object if the reference is non-positive.
Objects in <code>SIDL</code> have an intrinsic reference count.
Clients should call this method whenever they remove a
reference to an object or interface.

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="isSame">

<Comment>
Return true if and only if <code>obj</code> refers to the same
object as this object.

</Comment>
<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="iobj">
<Type type="symbol">

<SymbolName name="sidl.BaseInterface" version="0.8.2"/>
</Type>

</Argument>
</ArgumentList>

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

122 XML Backend

<ThrowsList/>
</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="queryInt">

<Comment>
Check whether the object can support the specified interface or
class. If the <code>SIDL</code> type name in <code>name</code>
is supported, then a reference to that object is returned with the
reference count incremented. The callee will be responsible for
calling <code>deleteRef</code> on the returned object. If
the specified type is not supported, then a null reference is
returned.

</Comment>
<Type type="symbol">

<SymbolName name="sidl.BaseInterface" version="0.8.2"/>
</Type>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="isType">

<Comment>
Return whether this object is an instance of the specified type.
The string name must be the <code>SIDL</code> type name. This
routine will return <code>true</code> if and only if a cast to
the string type name would succeed.

</Comment>
<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="abstract" extension="" shortname="getClassInfo">

<Comment>
Return the meta-data about the class implementing this interface.

</Comment>
<Type type="symbol">

<SymbolName name="sidl.ClassInfo" version="0.8.2"/>
</Type>
<ArgumentList/>
<ThrowsList/>

</Method>
</MethodsBlock>

</Interface>
</Symbol>

Classes

Class definitions are almost identical to that of interfaces except for additional attributes. The additional attribute,
which include whether or not the class isfinal. Recall that Babel/SIDL supports only single inheritance of classes;
therefore, only a single class will appear in the extends block. If one does not appear in the original SIDL file, by
default the class will extendsidl.Baseclase .

For example, the XML representation ofsidl.BaseClass is:

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

13.3 Basic Structure 123

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE Symbol PUBLIC "-//CCA//SIDL Symbol DTD v1.1//EN" "SIDL.dtd">
<Symbol>

<SymbolName name="sidl.BaseClass" version="0.8.2"/>
<Metadata date="20030320 13:29:02 PST">

<MetadataEntry key="source-url" value="file:/home/dahlgren/RELEASE/linux_kcc/share/../../babel/runtime/sidl/sidl.sidl"/>
<MetadataEntry key="source-line" value="109"/>
<MetadataEntry key="babel-version" value="0.8.2"/>

</Metadata>
<Comment>

Every class implicitly inherits from <code>BaseClass</code>. This
class implements the methods in <code>BaseInterface</code>.

</Comment>
<Class abstract="false">

<Extends/>
<ImplementsBlock>

<SymbolName name="sidl.BaseInterface" version="0.8.2"/>
</ImplementsBlock>
<AllParentClasses/>
<AllParentInterfaces>

<SymbolName name="sidl.BaseInterface" version="0.8.2"/>
</AllParentInterfaces>
<MethodsBlock>

<Method communication="normal" copy="false" definition="final" extension="" shortname="addRef">
<Comment>

<p>
Add one to the intrinsic reference count in the underlying object.
Object in <code>SIDL</code> have an intrinsic reference count.
Objects continue to exist as long as the reference count is
positive. Clients should call this method whenever they
create another ongoing reference to an object or interface.
</p>
<p>
This does not have a return value because there is no language
independent type that can refer to an interface or a
class.
</p>

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="final" extension="" shortname="deleteRef">

<Comment>
Decrease by one the intrinsic reference count in the underlying
object, and delete the object if the reference is non-positive.
Objects in <code>SIDL</code> have an intrinsic reference count.
Clients should call this method whenever they remove a
reference to an object or interface.

</Comment>
<Type type="void"/>
<ArgumentList/>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="final" extension="" shortname="isSame">

<Comment>
Return true if and only if <code>obj</code> refers to the same
object as this object.

</Comment>

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

124 XML Backend

<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="iobj">
<Type type="symbol">

<SymbolName name="sidl.BaseInterface" version="0.8.2"/>
</Type>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="normal" extension="" shortname="queryInt">

<Comment>
Check whether the object can support the specified interface or
class. If the <code>SIDL</code> type name in <code>name</code>
is supported, then a reference to that object is returned with the
reference count incremented. The callee will be responsible for
calling <code>deleteRef</code> on the returned object. If
the specified type is not supported, then a null reference is
returned.

</Comment>
<Type type="symbol">

<SymbolName name="sidl.BaseInterface" version="0.8.2"/>
</Type>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="normal" extension="" shortname="isType">

<Comment>
Return whether this object is an instance of the specified type.
The string name must be the <code>SIDL</code> type name. This
routine will return <code>true</code> if and only if a cast to
the string type name would succeed.

</Comment>
<Type type="boolean"/>
<ArgumentList>

<Argument copy="false" mode="in" name="name">
<Type type="string"/>

</Argument>
</ArgumentList>
<ThrowsList/>

</Method>
<Method communication="normal" copy="false" definition="final" extension="" shortname="getClassInfo">

<Comment>
Return the meta-data about the class implementing this interface.

</Comment>
<Type type="symbol">

<SymbolName name="sidl.ClassInfo" version="0.8.2"/>
</Type>
<ArgumentList/>
<ThrowsList/>

</Method>
</MethodsBlock>

</Class>
</Symbol>

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

13.4 Command Line Options 125

13.4 Command Line Options

XML must be generated from a SIDL file. The Babel command line is as follows2:

% babel --text=XML file.sidl

or simply

% babel -tXML file.sidl

In both cases, the use of the default repository is assumed for resolving symbols. In addition, the output will appear
in the default output directory.

2For information on additional command line options, refer to Section 3.2.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

126 XML Backend

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 14

HTML Interface Documentation

Contents

14.1 Introduction . 127

14.1 Introduction

Babel can automatically create interface documentation using the HTML backend. This capability is modeled after
the javadoc documentation available with Java. It is invoked with the--text=html command line option.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

128 HTML Interface Documentation

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Part III

Advanced Topics

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 15

Building Portable Polyglot Software

Babel generates very portable source code for multilingual programing. There is also an art and science to trans-
forming the source code to binary assets without breaking the language encapsulation Babel is trying to create. This
chapter discusses the details: from the mundane issues of file layout, to the arcana of linker and loader flags.

Contents

15.1 Layout of Generated Files . 131

15.2 Grouping compiled assets into Libraries . 132

15.2.1 Basics of Compilation and Linkage . 132

15.2.2 Circular Dependencies and Single-Pass Linkers 133

15.2.3 IOR as single point of access . 133

15.3 Dynamic vs. Static Linking . 133

15.3.1 Linkers and Position Independent Code (PIC) 134

15.3.2 Tracking Down Problems . 134

15.4 SIDL Library Issues . 135

15.5 Language Bindings for thesidl Package . 135

15.6 SCL Files for Dynamic Loading . 135

15.7 Deployment of Babel Enabled Libraries . 136

15.1 Layout of Generated Files

Babel generates a lot of files. Many of these files you never have to look at in an editor, but they must all be compiled
and properly linked into an application (see Section 15.2). In this section we discuss a host of flags that can affect
where files get generated.

• -- output-directory =path
This sets the root directory of where your files will be generated. The path can be absolute, or relative to the
current working directory.

• -- generate-subdirs
This option forces files to be laid out in a directory hierarchy following the package hierarchy in the SIDL file.
This arrangement is required for the Java and Python languages, so those generators force this option on and
allow no means to turn it off. For C/C++ and Fortran 77/90, the default is that all files be generated in the single
output directory with no package-named subdirectories.

• -- language-subdir
This option was contributed by a user. This option appends a language-specific subdirectory (e.g. c, python,
f77) to the end of the path.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

132 Building Portable Polyglot Software

• -- hide-glue
This option was contributed by a user. The intent here is to separate the Impl files (which must be modified)
from all other files. If this flag is set, then wherever an Impl file gets generated, all the corresponding Skels,
Stubs, IORs, etc get generated in a subdirectory namedglue .

Arbitrary combinations of the above flags are allowed. Regardless of the order they appear in the commandline,
they are applied to the resulting path in the order they are presented above. For example if a SIDL filepkg.sidl
defines aCls class in thepkg package, and the user runs Babel as follows:

% babel -lugo there -sc

Then the majority of the sources will be generated in thethere/pkg/c/glue/ directory (except the Impl files
which will occur one directory up inthere/pkg/c/). Note the use of equivalent short-form commands in this
example. If readers wish to review long and short forms of command line arguments, see Tabel 3.1 on page 13.

Note that many of these options were contributed by users and are not employed in Babel’s own build. Instead, we
tend to put a SIDL file in a directory and then generate client-side or server-side bindings in in eitherrunXXX/ or
libXXX/ subdirectories, respectively (whereXXXis a language name). We don’t use the-- generate-subdirs
or -- hide-glue flags because they place source files that belong in the same library in different directories. Au-
tomake, which Babel uses as part of its build system, works much more reliably when all the sources that go into a
library appear in the same directory as the library to be. The-- language-subdir has a similar effect to what we
do manually, but doesn’t capture if it was client-side or server-side. In our tests and demos, we tend to build these
separately because we want to exercise different drivers with different implementations.

15.2 Grouping compiled assets into Libraries

Babel enables one to completely encapsulate language dependencies inside a static or dynamically loaded library. This
means that one can take a SIDL file and a compiled library, generate the bindings they want in their language of choice
from the SIDL file, link against the library, and use it. . . never knowing what the original implementation language is
for the library.

Babel generates the source code to accomplish this level of language interoperability, but users must use their
compilers and linkers correctly for the effect to be complete. This section deals with many of the details that

15.2.1 Basics of Compilation and Linkage

What we generally think of as a compiler is really an ensemble of related tools. Generally there is a preprocessing
step where very simple transformations occur (e.g. #define, #include directives and others). Next, the compiler
proper executes and typically transforms your sourcecode into assembler or some other intermediate form. Optimizers
work on this intermediate form and do perform additional transformations. Most big vendors of C, C++, and Fortran
compilers have a common optimizer for all languages. Next, assemblers transform the optimized codes into platform-
specific binaries. But this is not the end. The binaries may be linked together into libraries or programs. Libraries
can be linked against other libraries, and eventually multiple programs. The main difference is that a program has
additional instructions to bootstrap itself, do some interaction with the operating system, receive an argument list, and
call main() . To see all this in action, try building a “hello world” type program in your favorite language, and run
the “compiler” with an additional flag such as-v , -- verbose , or whatever.

For example, this is what I get from a g77 compiler.

% g77 hello world.f
% ./a.out
Hello World! % g77 -v hello world.f
Driving: g77 -v hello world.f -lfrtbegin -lg2c -lm -shared-libgcc
Reading specs from /usr/local/gcc/3.2/lib/gcc-lib/i686-pc-linux-gnu/3.2/specs
Configured with: ../gcc-3.2/configure --prefix=/usr/local/gcc/3.2
Thread model: posix
gcc version 3.2

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

15.3 Dynamic vs. Static Linking 133

/usr/local/gcc/3.2/lib/gcc-lib/i686-pc-linux-gnu/3.2/f771 hello world.f
-quiet -dumpbase hello world.f -version -o /tmp/ccp2GBGE.s
GNU F77 version 3.2 (i686-pc-linux-gnu)
compiled by GNU C version 3.2.
as --traditional-format -V -Qy -o /tmp/ccEiIsHc.o /tmp/ccp2GBGE.s
GNU assembler version 2.11.90.0.8 (i386-redhat-linux) using BFD version
2.11.90.0.8
/usr/local/gcc/3.2/lib/gcc-lib/i686-pc-linux-gnu/3.2/collect2 -m elf i386
-dynamic-linker /lib/ld-linux.so.2 /usr/lib/crt1.o /usr/lib/crti.o /usr/local/gcc/3.2/lib/gcc-lib/i686-pc-linux-gnu/3.2/crtbegin.o
-L/usr/local/gcc/3.2/lib/gcc-lib/i686-pc-linux-gnu/3.2 -L/usr/local/gcc/3.2/lib/gcc-lib/i686-pc-linux-gnu/3.2/../../..
/tmp/ccEiIsHc.o -lfrtbegin -lg2c -lm -lgcc s -lgcc -lc -lgcc s -lgcc /usr/local/gcc/3.2/lib/gcc-lib/i686-pc-linux-gnu/3.2/crtend.o
/usr/lib/crtn.o

For the purposes of this discussion, we will make a big distinction between linking to build a library and linking
to build and executable. Even though these transformations have similar names, they perform very different kinds of
transformations to the code.

15.2.2 Circular Dependencies and Single-Pass Linkers

Almost all linkers are single pass. This means that when linking an executable, linkers will run through the list of
libraries exactly once trying to resolve symbols Ever get libraries listed in the wrong order and an executable wouldn’t
get built? Ever have to list the same libraries over and over again to build an executable? These are both side-effects of
single pass linkers. The symbols in question are essentially jumps in the instruction code corresponding to subroutines
that are defined elsewhere. When linking a final executable, all these symbols need to be resolved. When linking
libraries, multiple undefined symbols are commonplace.

Having to list libraries over and over again in the link line when compiling the final executable typically indicates
a circular dependency between libraries. Circular dependencies are much better kept within a single library. Even
though linkers are single-pass between libraries, they exhaustively search within them.

This is important because all the files generated by Babel have a circular dependency in each Babel type. The
stub makes calls on the IOR, the IOR calls the Skel, the Skel calls the Impl, but the Impl also may make calls on a
Stub. Just like C++ has athis object, and Python has aself , Babel objects have a stub for them to call methods on
themselves and dispatch properly through Babel’s IOR layer.

15.2.3 IOR as single point of access

When building a Babelized library, its also important to note if your code has dependencies to other Babel types not in
your library. These types often appear as base classes, argument types, or even exception types. Your library will need
stubs corresponding to all these types, so it is best to put these in your library as well. We call these external stubs.

Many have tried to minimize replication of Babel stubs by removing the external stubs and letting the library link
directly against the stubs in an external library. This is a mistake because the external library may be implemented in
a different language, and the stubs may be for a different language binding. By bundling the external stubs specific to
your implementation with the implementation’s library, you are ensuring that the only access your library has with any
other Babelized library is through the IOR. This is a good thing. The Babel IOR is the same for all language bindings
and essentially forms the binary interface by which all Babel objects interact.

15.3 Dynamic vs. Static Linking

Most UNIX users are very comfortable with statically linked libraries (e.g.libXXX.a). Most are aware of “shared
object files” in UNIX (with the formlibXXX.so) though few actually build them. Even fewer still are familiar
with dynamically linked libraries, called DLL’s in Microsoft (after the common.dll suffix), which involve actu-
ally selecting and loading dynamic libraries at run time based on their string name. MacOSX uses the novel suffix
libXXX.dynlib . (In most UNIX systems, including Linux and Solaris, .so “shared object files” are actually dy-

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

134 Building Portable Polyglot Software

namically linked libraries.) This section serves as a quick overview of how Babel handles both static and dynamic
libraries, including runtime loading.

15.3.1 Linkers and Position Independent Code (PIC)

In a static library, the linker simply copies needed compilation units from the library to the executable. The static
library can subsequently be deleted with no adverse affects to the executable. This also causes common libraries to be
duplicated in every executable that links against it, and for the resulting executables to be quite large.

In a shared library, the linker simply inserts in the executable enough information to find the library and load it when
the executable is invoked. This typically happens before the program ever gets tomain() . This keeps executables
small and allows commonly used libraries to be reused without copying, but it also means that the executable can fail
if the library is renamed, moved, deleted, or even if the user’s environment changes sufficiently.

A necessary (but not sufficient) condition for shared libraries to work is that all the compilation units (*.o) con-
tained must be explicitly compiled asposition independent code(PIC). Position independent code has an added level of
indirection in critical areas since details (such as addresses to jump to in subroutine calls) are not known until runtime.
Even though shared libraries are very useful, PIC causes a small but measurable degradation in performance, making
static linked libraries with non-PIC code a viable option for performance-critical situations.

A dynamic-linked library is a shared library with one added feature, it can be loaded explicitly by the user at
runtime by passing the string name intodlopen() . Dynamic-linked libraries (DLL’s) also require compilation as
PIC, though many compilers (including GCC) have special commands for each1.

15.3.2 Tracking Down Problems

When tracking down problems with Babel libraries, to UNIX toolsnmand ldd are your friends.nmwill print the
list of linker symbols in a file, including details such as whether the symbol is defined or not.ldd lists dynamic
dependencies of a shared libraries or executables, indicating where it will look for these symbols when loaded.

Recall the Fortran hello world example in section 15.2.1. Even though we may think this is all done with static
linking, using these tools we find out the truth.

% ldd a.out
libg2c.so.0 => /usr/local/gcc/3.2/lib/libg2c.so.0 (0x400180000)
libm.so.6 => /lib/i686/libm.so.6 (0x4004a000)
libgcc s.so.1 => //usr/local/gcc/3.2/lib/libgcc s.so.1 (0x4006d000)
libc.so.6 => /lib/i686/libc.so.6 (0x40076000)
/lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Here, we clearly see that five libraries are shared libraries that will be loaded after the executable is invoked, but
before we get to the main program. Some of these libraries make sense:libg2c is a Fortran to C support library,
libc is the C standard library, but why islibm listed... its a library of transcendental functions (e.g. sin(), cos())
why would it be included? The answer becomes obvious when using ldd onlibg2c . The fortran support library has
dependencies on the math library, so our FORTRAN executable inherits that dependency too.

% nm a.out | grep ’ U ’
U cxa atexit@@GLIBC 2.1.3
U libc start main@@GLIBC2.0
U do lio
U e wsle
U exit@@GLIBC 2.0
U f exit
U f init
U f setarg
U f setsig

1-fpic for SO’s,-fPIC for DLL’s

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

15.4 SIDL Library Issues 135

U s stop
U s wsle

nm(and grep) shows us 11 symbols that are were left undefined in our final hello world application. A little more
nm—greping about will help us find that symbols starting withf are defined in libg2c.

15.4 SIDL Library Issues

As mentioned in Section 5.5, the Babel toolkit includes the SIDL runtime library. The library provides a base interface,
class, and exception as the foundation. This is how Babel provides object-oriented features to non-object-oriented
languages. In order to support the runtime system and build the SIDL library, it also provides DLL and Loader classes.

Babel generated code depends critically onbabel config.h to correctly define a lot of platform specific details.
One detail that changes too frequently to encode inbabel config.h is whether or not the software is being com-
piled is position independent code (PIC). This detail is commonly added to the compilation instruction using the flags
(e.g. -fPIC -DPIC 2). The first flag tells the compiler to generate position independent code. The second defines
the preprocessor macroPIC . Looking now atbabel config.h , we see that eitherSIDL DYNAMICLIBRARY or
SIDL STATIC LIBRARY are defined depending on whether or notPIC is defined.

As described in Section 15.3.1, Babel tends to focus on static libraries and dynamic linked libraries; not worrying
much about shared libraries. The main reason is that for every last drop of performance, people would want static
libraries. To support Java and Python (and the CCA model) dynamic loading is required. There’s no real benefit to
doing shared libraries that can’t be dynamically loaded, so in developing Babel, we focus on the other two linkage
situations.

15.5 Language Bindings for thesidl Package

The implementation and C stubs for thesidl package are stored inlibsidl.so and libsidl.a , shared and
static libraries that are installed when you install babel. You can determine the directory where these libraries are stored
by runningbabel-config --libdir . Normally, runningbabel-config --libdir will yield something
like /usr/lib or /usr/local/lib ; however, your system administrator may have chosen a different directory
by specifying a--prefix when they configured Babel (see Section 2.1.1). The IOR header files and C stub header
files are installed in the directory shown bybabel-config --includedir .

Babel also provides precompiled stubs for thesidl package for the C++, F77, F90, Java and UC++ language bind-
ings. These libraries are also installed inbabel-config --libdir , and they are namedlibsidlstubs cxx.so ,
libsidlstubs ucxx.so , Codelibsidlstubsf77.so, andlibsidlstubs f90.so . Similarly named static archives
and libtool.la files are also inalled inbabel-config --libdirst . The header files for these languages are
installed in subdirectories ofbabel-config --includedir namedCxx, F77, F90, andUCxx.

15.6 SCL Files for Dynamic Loading

If you generate a dynamic-linked library containing implementations of SIDL classes, you must also generate a SIDL
Class List file (SCL file). An SCL file contains metadata about zero or more dynamic-linked libraries; for each
dynamic-linked library, the SCL file has the list of SIDL classes implemented in that library. Thesidl.Loader.findLibrary
method searches SCL files when trying to find the implementation (or some other aspect) of a SIDL class.

The SCL file is an XML file with three kinds of elements. The top level element isscl which contains zero or more
library elements. Thelibrary element has several attributes, and it contains zero or moreclass elements. The
library element has three required attributes,uri , scope andresolution , and two optional attributes,md5
and sha1 . The uri is a local filename including path or a networkurl indicating where the library is stored.
Thescope attribute allows developers to suggest whether the library should be loaded in alocal or theglobal
namespace. The developer can suggestlazy or now symbol resolution using thescope attribute. Themd5 and
sha1 are optional message digests to confirm that the library has not been modified or replaced. Theclass element
has two required elements,nameanddesc . Thenamefield is the name of the class, anddesc indicates what kind of

2The actual command to the compiler varies,-fPIC is understood by GCC

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

136 Building Portable Polyglot Software

information is held in the library. Each class contained in the dynamic-linked library should be listed in the SCL file.
For now, the onlydesc values with standardized meanings ofior/impl , java andpython/impl . ior/impl
indicates the dynamic-linked library contains the IOR object and implementation for the class, andjava indicates
that the library has the Java JNI wrapper object code.python/impl has the Python skeletons and implementation
libraries.

Here is an the SCL file for the SIDL runtime library installed in/usr/local .

<?xml version="1.0" ?>
<scl>

<library uri="/usr/local/lib/libsidl.la" scope="global" resolution="now" >
<class name="SIDL.BaseClass" desc="ior/impl" />
<class name="SIDL.ClassInfoI" desc="ior/impl" />
<class name="SIDL.DLL" desc="ior/impl" />
<class name="SIDL.Loader" desc="ior/impl" />
<class name="SIDL.Boolean" desc="java" />
<class name="SIDL.Character" desc="java" />
<class name="SIDL.DoubleComplex" desc="java" />
<class name="SIDL.Double" desc="java" />
<class name="SIDL.FloatComplex" desc="java" />
<class name="SIDL.Float" desc="java" />
<class name="SIDL.Integer" desc="java" />
<class name="SIDL.Long" desc="java" />
<class name="SIDL.Opaque" desc="java" />
<class name="SIDL.SIDLException" desc="ior/impl" />
<class name="SIDL.String" desc="java" />

</library>
</scl>

It’s worth noting that theuri can be a libtool metadata file (.la) when the library is located on the local file system
or a dynamic-linked library file (.so or another machine dependent suffix). You cannot have a libtool.la when the
library is remote (e.g.,ftp: or http:) because libtool expects the files references in the.la file to be local and in
particular directories.

15.7 Deployment of Babel Enabled Libraries

At this point, there is no standard — or even recommended — model for deploying Babel enabled libraries. Below
are a few examples of how our developer-customers are currently packaging their code.

Server Source Only With this option your users are expected to have Babel installed on their system. In this mode,
developers simply include a SIDL file and their corresponding implementation files. The user in this case must
build the software, call Babel to generate the client bindings in the language of choice, and link it all together
into a final application.

Client and Server Source This option tries to hide Babel as much as possible. In this mode, the developer pre-
generates many different client language bindings and distributes them along with their code and the sources for
the Babel runtime library. Then the user has a “batteries included” package that’s ready to run out of the box.
The user may not even be aware that Babel has been used unless they pay careful attention to how the package
was built.

Server Libraries Only Finally, in this mode only the SIDL file and the precompiled shared library files are dis-
tributed. This is not an open-source solution, though users still need to build the language bindings to access the
shared library.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 16

Troubleshooting

Contents

16.1 Introduction . 137
16.2 Common Errors . 137
16.3 Common Warnings . 137

16.1 Introduction

This appendix provides an overview of common problems that Babel users have encountered. Additional insights may
be found in Chapter 17.

16.2 Common Errors

This section focuses on common errors encountered by Babel users. The errors have been separated into those related
to SIDL parsing, XML parsing, and compilation.

SIDL Parsing Errors

• Babel: Error: when trying to resolve remaining args...Error :̈AnArgumenẗfails to resolve as a symbol or file.
For a symbol, Babel attempts to find it in the repository(ies) specified on the command line or, if none specified,
in the default repository. Check the repository being used to ensure that XML exists for the appropriate version
of the symbol. If it is not present, generate the XML for it first then try again.

XML Parsing Errors

Compilation Errors

16.3 Common Warnings

This section focuses on common warnings encountered by Babel users. Again, warnings have been separated into
those related to SIDL parsing, XML parsing, and compilation.

SIDL Parsing Warnings

• Babel: Warning: When creating repository...FilëRepository+Filëıs not a repository directory”. First verify
that the specified directory is actually a repository directory. That is, that it contains symbol interfaces defined

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

138 Troubleshooting

by XML files. If not, correct the repository option then try again.

XML Parsing Warnings

Compilation Warnings

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Chapter 17

Lessons Learned

Contents

17.1 Introduction . 139

17.2 Compilation Consistency is Key . 139

17.1 Introduction

This appendix focuses on providing tips, tricks, and advice submitted by Babel/SIDL users. We have generally pro-
vided the information verbatim.

17.2 Compilation Consistency is Key

Steve Smith, 24 September 2001
Basically ”be consistent” is the biggest lesson we found.
When compiling C++ codes, you may have conflicts if you use different compile options. Under KCC we found

-no exceptions caused problems if parts were compiled with/without the flag. There are most likely other compile
flags which turn features on/off which would cause similar problems. This caused a core dump immediately when
core file was loaded. This is somewhat obvious but if you are linking together several different codes from a variety
of developers you need to examine the compile flags very carefully. This problem is probably more likely with C++
due to the greater number of code generation options (e.g. RTTI, exceptions etc).

A much more subtle problem occurred when we had a C shared library which called functions in a C++ shared
library. We initially used gcc to create the C shared library and KCC to create the C++ shared library. The application
would core dump when a dynamic cast was attempted. This was solved by using the ”cc” compiler wrapper that is
part of the KCC distribution (which uses the native ”cc”). So you need to be aware of not only what is in your .so and
how it is compiled but all the .so’s that you are using.

If you have several versions of a library, say during a debugging process, make sure you are using the correct
versions of things. The ”ldd” command is very useful for making sure you getting the shared libraries that you think
you should be linking to. Along these lines, keep your LDLIBRARY PATH as simple as possible when debugging.

In retrospect this does not look like a large number of problems, but figuring out the second problem took a
long time since I focused on how the C++ library was being created rather than where the real problem was being
introduced. It wasn’t until after I had exhausted a long list of other potential conflicts that I started messing with the C
library compilation.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

140 Lessons Learned

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Part IV

Appendices

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Appendix A

Reserved Words

Contents

A.1 Introduction . 143

A.2 Reserved Words . 143

A.3 Suggested Things To Avoid . 143

A.1 Introduction

This appendix lists SIDL’s reserved words. Other words and constructs that are problematic in particular language
bindings are also listed.

A.2 Reserved Words

Table A.1 lists all the words that are part of the SIDL grammar and cannot be used as a package, enum, interface,
class, or argument name.

A.3 Suggested Things To Avoid

Since SIDL maps onto many other languages there are a great number of words and constructs that are harmless in
SIDL, but cause great trouble in generated language bindings. We list known problems in Table A.2.

In addition, the following should be avoided:

• Reserved words in all of the supported languages. This is a long list only some of which appear here.

• Methods with the same name as a class (this is a constructor in C++).

• Packages, Classes, Interfaces, Methods or Arguments that differ only by case. Not all languages are case
sensitive but, since Babel’s focus is language interoperability, Babel must make allowances.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

144 Reserved Words

Table A.1: SIDL Reserved Words

RESERVED WORD ROLE
abstract optional modifier forclass

array datatype
bool builtin datatype
char builtin datatype

class user defined datatype
copy (future) argument modifer

dcomplex builtin datatype
double builtin datatype

enum user defined datatype
extends inheritance mode

fcomplex builtin datatype
final package and method modifier
float builtin datatype

implements inheritance mode
implements-all inheritance mode

import bring other packages into current scope
in argument mode

inout argument mode
int builtin datatype

interface user defined datatype
local (future) method modifier
long builtin datatype

oneway (future) method modifier
opaque builtin datatype

out argument mode
package scoping construct

static method modifier
string builtin datatype
throws exception declaration

version assign version number to package
void declares method as not returning a type

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

A.3 Suggested Things To Avoid 145

Table A.2: Other words/constructs to avoid

WORD C C++ Java Python word C C++ Java Python
abstract X lambda X
and X X long X X X
andeq X mutable X
asm X X namespace X
assert X native X
auto X X new X X
bitand X not X X
bitor X not eq X
bool X null X
boolean X operator X
break X X X X or X X
case X X X or eq X
catch X X package X
char X X X pass X
class X X print X
compl X private X X
const X X X protected X X
constcast X public X X
continue X X X X raise X
def X register X X
default X X X reinterpretcast X
del X return X X X X
delete X short X X X
do X X X signed X X
double X X X sizeof X X
dynamiccast X static X X X
elif X static cast X
else X X X X strictfp X
enum X X struct X X
except X super X
exec X switch X X X
explicit X synchronized X
export X template X
extends X this X X
extern X X throw X X
false X X throws X
final X transient X
finally X X true X X
float X X X try X X X
for X X X X typedef X X
friend X typeid X
from X typename X
global X union X X
goto X X X unsigned X X
if X X X X using X
implements X virtual X
import X void X X X
inline X volatile X X X
instanceof X wchar t X
int X X X while X X X X
interface X xor X
is X xor eq X

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

146 Reserved Words

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Appendix B

SIDL Grammar

Contents

B.1 Introduction . 147
B.2 Backus-Naur Form . 147

B.1 Introduction

This appendix provides an overview of the Scientific Interface Definition Language (SIDL) grammar. For simplicity,
the grammar is described in extended BNF.

B.2 Backus-Naur Form

The grammar described here was extracted from the JavaCC productions defined in the Babel source code. Since the
comments associated with the productions appeared to be sufficiently descriptive, they have been retained to serve as
the explanation of the key productions.

/*
* The following lexical tokens are ignored.
*/

SKIP : {
< " " >

| < "\n" >
| < "\r" >
| < "\t" >
| < "//" (˜["\n","\r"])* ("\n" | "\r" | "\r\n") >
| < "/**/" >
| < "/*" (˜["*"])+ "*" ("*" | ˜["*","/"] (˜["*"])* "*")* "/" >

{ checkComment(image, input_stream.getBeginLine(),
input_stream.getEndLine()); }

| < "[" >
| < "]" >

}

/*
* The following lexical states define the transitions necessary to
* parse documentation comments. Documentation comments may appear
* anywhere in the file, although they are only saved if they preceed
* definition or method productions. Documentation comments are
* represented by "special tokens" in the token list.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

148 SIDL Grammar

*/
SPECIAL_TOKEN : {

< T_COMMENT : "/**" > : BEGIN_DOC_COMMENT
}

<BEGIN_DOC_COMMENT> SKIP : {
< " " >

| < "\t" >
| < "*/" > : DEFAULT
| < ("\n" | "\r" | "\r\n") > : LINE_DOC_COMMENT
| < "" > : IN_DOC_COMMENT

}

<LINE_DOC_COMMENT> SKIP : {
< " " >

| < "\t" >
| < "*/" > : DEFAULT
| < "*" (" ")?> : IN_DOC_COMMENT
| < "" > : IN_DOC_COMMENT

}

<IN_DOC_COMMENT> SPECIAL_TOKEN : {
< "*/" > { trimMatch(matchedToken); } : DEFAULT

| < ("\n" | "\r" | "\r\n") > { trimMatch(matchedToken); } : LINE_DOC_COMMENT
}

<IN_DOC_COMMENT> MORE : {
< ˜[] >

}

/*
* The following keywords are the lexical tokens in the SIDL grammar.
*/

TOKEN : {
< T_ABSTRACT : "abstract" >

| < T_CLASS : "class" >
| < T_COPY : "copy" >
| < T_ENUM : "enum" >
| < T_EXTENDS : "extends" >
| < T_IMPORT : "import" >
| < T_IN : "in" >
| < T_INOUT : "inout" >
| < T_FINAL : "final" >
| < T_IMPLEMENTS : "implements" >
| < T_IMPLEMENTS_ALL : "implements-all" >
| < T_INTERFACE : "interface" >
| < T_LOCAL : "local" >
| < T_ONEWAY : "oneway" >
| < T_OUT : "out" >
| < T_PACKAGE : "package" >
| < T_REQUIRE : "require" >
| < T_STATIC : "static" >
| < T_THROWS : "throws" >
| < T_VERSION : "version" >
| < T_VOID : "void" >

| < T_ARRAY : "array" >
| < T_RARRAY : "rarray" >
| < T_BOOLEAN : "bool" >

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

B.2 Backus-Naur Form 149

| < T_CHAR : "char" >
| < T_DCOMPLEX : "dcomplex" >
| < T_DOUBLE : "double" >
| < T_FCOMPLEX : "fcomplex" >
| < T_FLOAT : "float" >
| < T_INT : "int" >
| < T_LONG : "long" >
| < T_OPAQUE : "opaque" >
| < T_STRING : "string" >

| < T_IDENTIFIER : <T_LETTER> (<T_LETTER> | <T_DIGIT> | "_")* >
| < T_VERSION_STRING : <T_INTEGER> ("." <T_INTEGER>)+ >
| < T_INTEGER : (["-","+"])? (<T_DIGIT>)+ >
| < T_DIGIT : ["0"-"9"] >
| < T_LETTER : ["a"-"z","A"-"Z"] >

| < T_CLOSE_ANGLE : ">" >
| < T_CLOSE_CURLY : "}" >
| < T_CLOSE_PAREN : ")" >
| < T_COMMA : "," >
| < T_EQUALS : "=" >
| < T_OPEN_ANGLE : "<" >
| < T_OPEN_CURLY : "{" >
| < T_OPEN_PAREN : "(" >
| < T_SEMICOLON : ";" >
| < T_SCOPE : "." >

| < T_COLUMN_MAJOR : "column-major" >
| < T_ROW_MAJOR : "row-major" >

| < T_CATCH_ALL : ˜[] >
}

/**
* A SIDL Specification contains zero or more version productions followed
* by zero or more import productions followed by zero or more package
* productions followed by the end-of-file. Before leaving the specification
* scope, resolve all references in the symbol table.
*/

Specification ::= (Require)* (Import)* (Package)* <EOF>

/**
* A SIDL Require production begins with a "require" token and is followed
* by a scoped identifer, a "version" token, and a version number. The
* scoped identifier must be not defined. The version number is specified
* in the general form "V1.V2...Vn" where Vi is a non-negative integer.
*/

Require ::=
<T_REQUIRE> ScopedIdentifier
<T_VERSION> (<T_INTEGER> | <T_VERSION_STRING>) <T_SEMICOLON>

/**
* A SIDL Import production begins with an "import" token and is followed
* by a scoped identifier which is optionally followed by a "version" token
* and a version number. The scoped identifier must be defined and it must
* be a package. The version number is specified in the general form
* "V1.V2...Vn" where Vi is a non-negative integer. A particular package
* may only be included in one import statement. The import package name
* is added to the default search path. At the end of the parse, any import

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

150 SIDL Grammar

* statements that were not used to resolve a symbol name are output as
* warnings.
*/

Import ::=
<T_IMPORT> ScopedIdentifier
[<T_VERSION> (<T_INTEGER> | <T_VERSION_STRING>)] <T_SEMICOLON>

/**
* The SIDL package specification begins with a "package" token followed by
* a scoped identifier. The new package namespace begins with an open curly
* brace, a set of zero or more definitions, and a close curly brace. The
* closing curly brace may be followed by an optional semicolon. The package
* identifier must have a version defined for it, and it must not have been
* previously defined as a symbol or used as a forward reference. The parent
* of the package must itself be a package and must have been defined. The
* symbols within the curly braces will be defined within the package scope.
*/

Package ::=
[<T_FINAL>] <T_PACKAGE> ScopedIdentifier
[<T_VERSION> (<T_INTEGER> | <T_VERSION_STRING>)]
<T_OPEN_CURLY> (Definition)* <T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* A SIDL Definition production consists of a class, interface, enumerated
* type, or package.
*/

Definition ::= (Class | Enum | Interface | Package)

/**
* A SIDL class specification begins with an optional abstract keyword
* followed by the class token followed by an identifier. The abstract
* keyword is required if and only if there are abstract methods in the
* class. The class keyword is followed by an identifer. The identifier
* string may not have been previously defined, although it may have been
* used as a forward reference. The identifier string may be preceeded
* by a documentation comment. A class may optionally extend another class;
* if no class is specified, then the class will automatically extend the
* SIDL base class (unless it is itself the SIDL base class). Then parse
* the implements-all and implements clauses. The interfaces parsed during
* implements-all are saved in a set and then all those methods are defined
* at the end of the class definition. The methods block begins with an
* open curly-brace followed by zero or more methods followed by a close
* curly-brace and optional semicolon.
*/

Class ::=
[<T_ABSTRACT>] <T_CLASS> Identifier
[<T_EXTENDS> ScopedIdentifier]
[<T_IMPLEMENTS_ALL> AddInterface (<T_COMMA> AddInterface)*]
[<T_IMPLEMENTS> AddInterface (<T_COMMA> AddInterface)*]
<T_OPEN_CURLY> (ClassMethod)* <T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* The SIDL enumeration specification begins with an "enum" token followed by
* an identifier. The enumerator list begins with an open curly brace, a set
* of one or more definitions, and a close curly brace. The closing curly
* brace may be followed by an optional semicolon. The enumeration symbol
* identifier must have a version defined for it, and it must not have been
* previously defined as a symbol. Forward references are not allowed for
* enumerated types. This routine creates the enumerated class and then

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

B.2 Backus-Naur Form 151

* grabs the list of enumeration symbols and their optional values.
*/

Enum ::=
<T_ENUM> Identifier <T_OPEN_CURLY> Enumerator (<T_COMMA> Enumerator)*
<T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* The SIDL enumerator specification consists of an identifier followed
* by an optional assignment statement beginning with an equals and followed
* by an integer value. This routine adds the new enumeration symbol to
* the list and then returns.
*/

Enumerator ::= Identifier [<T_EQUALS> <T_INTEGER>]

/**
* A SIDL interface specification begins with the interface token followed
* by an identifier. An interface may have an extends block consisting of
* a comma-separated sequence of interfaces. The methods block begins with
* an open curly-brace followed by zero or more methods followed by a close
* curly-brace and optional semicolon. Interfaces may be preceeded by a
* documentation comment. The identifier string may not have been previously
* defined, although it may have been used as a forward reference. If the
* interface does not extend another interface, then it must extend the base
* SIDL interface (unless, of course, this is the definition for the base
* SIDL interface).
*/

Interface ::=
<T_INTERFACE> Identifier [<T_EXTENDS> AddInterface
(<T_COMMA> AddInterface)*]
<T_OPEN_CURLY> (InterfaceMethod)* <T_CLOSE_CURLY> [<T_SEMICOLON>]

/**
* This production parses the next scoped identifier and validates that
* the name exists and is an interface symbol. Then each of its methods
* are checked for validity with the existing methods. If everything
* checks out, then the new interface is added to the existing object.
*/

AddInterface ::= ScopedIdentifier

/**
* This production parses the SIDL method description for a class method.
* A class method may start with abstract, final, or static. An error is
* thrown if the method has already been defined in the class object or if
* the method name is the same as the class name. An error is also thrown
* if a method has been defined in a parent class and (1) the signatures
* do not match, (2) either of the methods is static, (3) the existing method
* is final, or (4) the new method is abstract but the existing method was
* not abstract.
*/

ClassMethod ::= [(<T_ABSTRACT> | <T_FINAL> | <T_STATIC>)] Method

/**
* This method parses a SIDL method and then checks whether it can be
* added to the interface object. An error is thrown if the method has
* already been added to the interface object or if the method name is
* the same as the interface name. An error is also thrown if a previous
* method was defined with the same name but a different signature.
*/

InterfaceMethod ::= Method

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

152 SIDL Grammar

/**
* The SIDL method production has a return type, a method identifier,
* an optional argument list, an optional communication modifier, and
* an optional throws clause. The return type may be void (no return
* type) or any valid SIDL type. The method is built piece by piece.
*/

Method ::=
(<T_VOID> | [<T_COPY>] Type()) Identifier [<T_IDENTIFIER>]
<T_OPEN_PAREN> [Argument (<T_COMMA> Argument)*] <T_CLOSE_PAREN>
[<T_LOCAL> | <T_ONEWAY>] [<T_THROWS> ScopedIdentifier
(<T_COMMA> ScopedIdentifier)*] <T_SEMICOLON>

/**
* Parse a SIDL argument. Arguments begin with an optional copy modifier
* followed by in, out, or inout followed by a type and a formal argument.
* The argument is returned on the top of the argument stack. This routine
* also checks that the copy modifier is used only for symbol objects. For
* all other types, copy is redundant.
*/

Argument ::= [<T_COPY>] (<T_IN> | <T_OUT> | <T_INOUT>)
(Type Identifier | Rarray)

/**
* A SIDL type consists of one of the standard built-in types (boolean,
* char, dcomplex, double, fcomplex, float, int, long, opaque, and string),
* a user-defined type (interface, class, or enum), or an array. This
* production parses the type and pushes the resulting type object on
* the top of the argument stack.
*/

Type ::=
(<T_BOOLEAN>
| <T_CHAR>
| <T_DCOMPLEX>
| <T_DOUBLE>
| <T_FCOMPLEX>
| <T_FLOAT>
| <T_INT>
| <T_LONG>
| <T_OPAQUE>
| <T_STRING>
| Array
| SymbolType)

/**
* Parse an array construct and push the resulting type and ordering
* on top of the stack. Only dimensions one through MAX_ARRAY_DIM
* (inclusive) are supported.
*/

Array ::=
<T_ARRAY> <T_OPEN_ANGLE> Type [<T_COMMA> (<T_INTEGER>
[<T_COMMA> (<T_COLUMN_MAJOR> | <T_ROW_MAJOR>)]
| (<T_COLUMN_MAJOR>| <T_ROW_MAJOR>))] <T_CLOSE_ANGLE>

/**
* Parse an rarray construct and push the resulting type and ordering
* on top of the stack. Only dimensions one through MAX_ARRAY_DIM
* (inclusive) are supported. And don’t forget the indicies!
*/

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

B.2 Backus-Naur Form 153

Rarray ::= <T_RARRAY> <T_OPEN_ANGLE> Type [<T_COMMA> <T_INTEGER>]
<T_CLOSE_ANGLE> Identifier
<T_OPEN_PAREN> Identifier (<T_COMMA Identifier)*
<T_CLOSE_PAREN>

/**
* This production parses a scoped identifier and verifies that it is
* either a forward reference or a symbol that may be used as a type
* (either an enum, an interface, or a class).
*/

SymbolType ::= ScopedIdentifier

/**
* All SIDL scoped names are of the general form "ID (. ID)*". Each
* identifier ID is a string of letters, numbers, and underscores that
* must begin with a letter. The scope resolution operator "." separates
* the identifiers in a name.
*/

ScopedIdentifier ::= Identifier (<T_SCOPE> Identifier)*

/**
* A SIDL identifier must start with a letter and may be followed by any
* number of letters, numbers, or underscores. It may not be a reserved
* word in any of the SIDL implementation languages (e.g., C or C++).
*/

Identifier ::= <T_IDENTIFIER>

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

154 SIDL Grammar

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Appendix C

Extensible Markup Language (XML)

Contents

C.1 Introduction . 155

C.2 SIDL Document Type Declaration (DTD) . 155

C.1 Introduction

This appendix describes the XML representation of SIDL interfaces. Since the format of an XML file is dictated by a
Document Type Declaration (DTD) file, the description will focus on the DTD associated with SIDL.

C.2 SIDL Document Type Declaration (DTD)

Babel relies on several DTDs to describe and enforce the layout of conformant XML files. The DTD of primary
importance for Babel isSIDL.dtd because it describes the requisite tags and attributes corresponding to SIDL files.
The contents of the DTD are given below.

<?xml version="1.0" encoding="UTF-8"?>
<!--

File: sidl.dtd
Package: sidl XML
Release: $Name: $
Revision: @(#) $Id: SIDL.dtd,v 1.3 2005/01/20 05:32:25 epperly Exp $
Description: DTD for the sidl XML database representation

Copyright (c) 2000-2003, The Regents of the University of Calfornia.
Produced at the Lawrence Livermore National Laboratory.
Written by the Components Team <components@llnl.gov>
UCRL-CODE-2002-054
All rights reserved.

This file is part of Babel. For more information, see
http://www.llnl.gov/CASC/components/. Please read the COPYRIGHT file
for Our Notice and the LICENSE file for the GNU Lesser General Public
License.

This program is free software; you can redistribute it and/or modify it
under the terms of the GNU Lesser General Public License (as published by
the Free Software Foundation) version 2.1 dated February 1999.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

156 Extensible Markup Language (XML)

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and
conditions of the GNU Lesser General Public License for more details.

You should have recieved a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

This file describes the DTD for a sidl symbol represented in XML format.
The root element is <Symbol>.

PUBLIC ID "-//CCA//sidl Symbol DTD v1.1//EN"
-->

<!--
Symbol Element

Symbol is the root element for all sidl XML schema. The Symbol contains a
SymbolName (fully qualified symbol name and version), Metadata, Comment,
and one of Class, Enumeration, Interface, or Package.

-->

<!ENTITY % symbols "Class | Enumeration | Interface | Package">
<!ELEMENT Symbol (SymbolName, Metadata, Comment, (%symbols;))>

<!--
SymbolName Element

A SymbolName represents a fully qualified symbol name along with its
version. It is of the form:

<SymbolName name="sidl.SomeName" version="1.3.4"/>
-->

<!ELEMENT SymbolName EMPTY>
<!ATTLIST SymbolName name CDATA #REQUIRED

version CDATA #REQUIRED>

<!--
Metadata Element

The Metadata element contains any useful descriptive data about the symbol.
The time and date of creation is required, but all other information is
optional. The date and time must follow the ISO-8601 standard. The
entries in the metadata element are (key,value) pairs.

-->

<!ELEMENT Metadata (MetadataEntry)*>
<!ATTLIST Metadata date CDATA #REQUIRED>

<!ELEMENT MetadataEntry EMPTY>
<!ATTLIST MetadataEntry key CDATA #REQUIRED

value CDATA #REQUIRED>

<!--
Comment Element

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

C.2 SIDL Document Type Declaration (DTD) 157

Comment elements support a very simple HTML description using the
html-lite.dtd HTML subset. See html-lite.dtd for more details.

-->

<!ENTITY % html-lite PUBLIC "-//CCA//sidl HTML DTD v1.0//EN" "html-lite.dtd">
%html-lite;

<!ELEMENT Comment %html-block;>

<!--
Package Element

The Package element contains the symbols that exist within a package.
In the PackageSymbol element, note that the name is relative to the
package (thus, sidl.Class is represented by Class within package sidl).

A true final attribute indicates that this package is not reentrant. It
defaults to true to handle old XML files. In previous versions, all
packages were non-reentrant.

-->

<!ELEMENT Package (PackageSymbol)*>
<!ATTLIST Package final (false | true) "true">

<!--
If the version attribute isn’t provided, the symbol has the same version
as the containing package. This is to provide backward compatibility with
previous released versions of the DTD. Someday the version may become
REQUIRED, so always include it.
-->
<!ELEMENT PackageSymbol EMPTY>
<!ATTLIST PackageSymbol name CDATA #REQUIRED

type (class | enum| interface | package) #REQUIRED
version CDATA #IMPLIED>

<!--
Enumeration Element

The Enumeration element consists of a collection of Enumerator elements
that describe a relative symbol name, its integer value, and whether the
value was assigned by the parser or in the sidl input file.

-->

<!ELEMENT Enumeration (Enumerator)+>

<!ELEMENT Enumerator (Comment)?>
<!ATTLIST Enumerator name CDATA #REQUIRED

value CDATA #REQUIRED
fromuser (false | true) #REQUIRED>

<!--
Class Element

The Class element consists of a class extended by this class, a block
of interfaces implemented by this class, and a block of methods declared
or defined by this class. The methods block does not include methods
declared or defined by parents. The elements AllParentInterfaces and
AllParentClasses include all parents of this class.

-->

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

158 Extensible Markup Language (XML)

<!ELEMENT Class (Extends, ImplementsBlock,
AllParentClasses, AllParentInterfaces,
MethodsBlock)>

<!ATTLIST Class abstract (false | true) #REQUIRED>

<!ELEMENT Extends (SymbolName)?>

<!ELEMENT ImplementsBlock (SymbolName)*>

<!--
Interface Element

The Interface element constsis of a block of interfaces that this
interface extends (element ExtendsBlock) and a block of methods
declared by this interface (element MethodsBlock). The methods block
element contains only those method declared or re-declared by this
interface and does not include all those methods defined by the
parent interfaces. The AllParentInterfaces element block includes
all parent interfaces that this interface extends.

-->

<!ELEMENT Interface (ExtendsBlock, AllParentInterfaces, MethodsBlock)>

<!ELEMENT ExtendsBlock (SymbolName)*>

<!--
AllParentClasses and AllParentInterfaces Elements

These elements define a collection of zero or more SymbolName elements
that are the parent classes and parent interfaces of a class or interface.

-->

<!ELEMENT AllParentClasses (SymbolName)*>

<!ELEMENT AllParentInterfaces (SymbolName)*>

<!--
MethodsBlock Element

The MethodsBlock element defines a collection of zero or more methods
that belong to a sidl interface or class.

-->

<!ELEMENT MethodsBlock (Method)*>

<!--
Method Element

The Method element defines a single method in a class or interface.
The method is defined by a return type (the Type element), a return
mode (the copy attribute of Method), a method name, an argument list,
a throws clause, definition mode modifiers, and communication mode
modifiers.

-->

<!ELEMENT Method (Comment, Type, ArgumentList, ThrowsList)>
<!ATTLIST Method shortname CDATA #REQUIRED

extension CDATA #REQUIRED

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

C.2 SIDL Document Type Declaration (DTD) 159

copy (false | true) #REQUIRED
definition (normal | abstract | final | static) #REQUIRED
communication (normal | local | oneway) #REQUIRED>

<!ELEMENT ArgumentList (Argument)*>

<!ELEMENT ThrowsList (SymbolName)*>

<!--
Argument Element

The sidl Argument element defines a sidl argument, which consists
of a copy modifier, a parameter passing mode (in, inout, or out),
a parameter type, and a formal parameter name.

-->

<!ELEMENT Argument (Type)>
<!ATTLIST Argument copy (false | true) #REQUIRED

mode (in | inout | out) #REQUIRED
name CDATA #REQUIRED>

<!--
Type Element

The Type element describes a sidl type, which may be a built-in type
such as boolean or int, an array, or a user-defined symbol. If the
type description is a primitive type, then no sub-elements are allowed.
If the type is a symbol, then the single sub-element must be a symbol
name. If the type is an array, then the single sub-element must be
an array element

-->

<!ELEMENT Type (SymbolName | Array)?>
<!ATTLIST Type type (void | boolean | char | dcomplex | double |

fcomplex | float | integer | long |
opaque | string | symbol | array) #REQUIRED>

<!ELEMENT Index EMPTY>
<!ATTLIST Index name CDATA #REQUIRED>

<!ELEMENT Array (Type?,Index?)>
<!ATTLIST Array order (unspecified | column-major | row-major) #REQUIRED
dim CDATA "0" >

Babel assumes that comments will conform to the HTML-lite comment format. So, Babel relies oncomment.dtd
to validate whether SIDL documentation comments follow the HTML-lite comment format, which is described in
html-lite.dtd . The most current versions of all of these DTDs can also be found in the source distribution in the
babel/compiler/gov/llnl/babel/dtds directory.

NOTE: Any XML interface description that complies with the SIDL DTD can be used as input to Babel.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

160 Extensible Markup Language (XML)

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Appendix D

Glossary

abstract

OOP concept: Abstract describes something that is declared but not fully defined. For example, an abstract method
is a method that is declared as a part of a class, but has no implementation. It cannot be called, it is only meant to be
inherited by derived classes.

SIDL keyword: Abstract is an optional modifier for bothclass es andmethod s. An abstract method is a method
that has no implementation, it’s a way of declaring a method that every subclass must implement for itself. An abstract
class has one or more abstract methods, and therefore cannot be instantiated.

array

Datastructure: An array is a fixed size, numerically indexed, set of variables. Arrays have in language support in
almost all modern programming languages.
Babel: Babel has built in support for arrays of every data type, including objects. Babel allows these arrays such that
they may be shared by differing languages.

BLAS

Basic Linear Algebra Subprograms. BLAS is a famous library for doing matrix and vector algebra. More information
may be found at: http://www.netlib.org/blas/

BNF

BackusNaur Form. BNF is a formal way to describe computer languages and other formal languages.

bool

Definition: bool is a short form of the word boolean. A boolean is a logical data type that holds 1 bit of data, i.e. it is
either true or false. It is used for Boolean Algebra.
SIDL keyword: bool is a data type built into SIDL, an instance of which is either true or false. For efficiency sake,
the underlying storage of bool is not 1 bit.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

162 Glossary

borrowed arrays

Babel: A borrowed array is a SIDL array that does not manage its own data. The data is provided by some third party,
who is also in charge of deallocating the data. It is useful for sending data through Babel, but the developer must
beware in case the third party deallocates the array data before the program has finished with it.

CCA

Common Component Architecture http://www.ccaforum.org/

char

Definition: char is a short form of the word character. A character is a letter, number, puctuation mark, or other such
symbol use in writing. In programming, a character is often defined by the 8 bit ASCII encoding.
SIDL keyword: char is a data type built into SIDL. It stores 1 byte of data, or enough for 1 ASCII character.

class

OOP concept: A class is a definition for a particular kind of object. It may define the data and methods that will be
included in an actual instance of the object.
SIDL keyword: class is a SIDL keyword. In SIDL a class definition only defines methods. Methods may be static or
instance methods. (They are instance methods by default.) If any instance method in a class is declared abstract, the
class cannot be instantiated as an object, and is called an abstract class. Otherwise, it can be instantiated and is called
a concrete class.

concrete class

OOP concept:A concrete class is a class where all the class’s instance methods have implementations. (ie. there are
no abstract methods) A concrete class may be instantiated as an object.

COM

Common Object Model http://www.microsoft.com/ Microsoft’s IDL based language interoperability suite.

component

OOP concept:Components are “plug-and-play” software libraries designed with standard, clearly defined interfaces.
They are the epitome of modular design. Because components communicate only through well-defined interfaces,
when an application needs to be modified, a single component can be modified (or exchanged for a similar component),
without fear of disrupting the other components making up the application.

component architecture

OOP concept: A component architecture defines the specifics of setting up a system for programming with compo-
nents in that architecture. For example, how components are imported and how they communicate are some of the
questions that must be answered in a component architecture design.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

163

copy

SIDL keyword: copy is a SIDL keyword. It is planned that in future version of babel it will be used as a parameter
modifier for parameters passed to RMI functions, currently however, this feature is unimplemented.

CORBA

Common Object Request Broker Architecture http://www.omg.org CORBA allows different programs by different
vendors to communicate though an IDL interface specification. In CORBA this glue code is called the “Broker.”

dcomplex

Definition: The sum of a real number and an imaginary number is called a complex number. Babel supports complex
numbers as a basic type via the basic types “fcomplex” and “dcomplex.”
SIDL keyword: dcomplex is a data type built into SIDL. The name is short for “double complex.” It stores a complex
number via 2 64-bit floating point variables, one for the real part, and one for the imaginary part.

dense

Definition: A dense array is an array where all the dimensions are “densely packed,” or, in terms of memory address-
ing, there are no “spaces” between array elements. For example, if a one-dimensional SIDL array of 10 elements is
created, it will be densely packed. However, if a slice of the array is taken with a stride of 2, the resulting array will
use the same data as the original array. However, the new array will be only five elements long, and will only consist
of the even elements of the original array. This is not densely packed. Example:

Array 1: 0 1 2 3 4 5 6 7 8 9
Array 2: 0 – 2 – 4 – 6 – 8 –

developer

Babel: There are two anticipated user types for Babel, both are kinds of programmers. The person referred to as
the “developer” is the person developing a Babelized library. The “user” is the person who writes a program using a
Babelized library.

DLL

Definition: Dynamically Linked Library. A type of library that can be linked to dynamically at runtime by passing its
name as a string to the dlopen() function.

double

Definition: A double is a 64-bit floating point number.
SIDL keyword: SIDL support double as a basic type.

DTD

Document Type Definition. Defines the grammar of the XML files. http://www.w3.org/2002/xmlspec/

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

164 Glossary

dynamic linking

Definition: The action of dynamically linking to DLLs at runtime.

enum

Definition: Enum is a shortend form of the word enumeration. An enumeration is used to assign numbers to a set of
variable names, that is, enumerate the set of variable names.
SIDL keyword: enum is a reserved word in SIDL. It is used for defining enumerations. In Babel, enumerations are a
way of binding integer constants to names.

enumeration

In Babel, enumerations are a way of binding integer constants to names. See subsection 5.3.

exception

Definition: The idea of an exception is that if a method encounters a problem it cannot handle, it interrupts its
execution and “throws” and exception. Hopefully some function up the call stack will “catch” the exception and know
what to do about the problem. It is a useful form of error handing that SIDL supports. Exception is not a reserved
word in SIDL (butthrow is).

extends

OOP concept:See inheritance.
SIDL keyword: extends is a SIDL reserved word. It is used to declare “like-type” inheritance. For example, a class
may extend another class, or an interface may extend multiple interfaces, but a class cannot extend an interface, nor
can an interface extend a class.

external stubs

When building a Babelized library, its also important to note if your code has dependencies to other Babel types not in
your library. These types often appear as base classes, argument types, or even exception types. Your library will need
stubs corresponding to all these types, so it is best to put these in your library as well. We call these external stubs.
See subsection 15.2.3

external types

External Types are variable or object types that are not defined in the current class. In a class foo.Bar, sidl.Integer, or
sidl.BaseClass would be external types.

fcomplex

fcomplex is a data type built into SIDL. The name is short for “float complex.” It stores a complex number via 2 32-bit
floating point variables, one for the real part, and one for the imaginary part.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

165

final

final is a SIDL reserved word. It is a method modifier. A final method is inherited by subclasses, but its implementation
can never be overwritten. It is the “final” version of the implementation.

float

float is a data type built into SIDL. It is a 32-bit floating point number. float is short for floating point.

full name

Overloaded Babelized methods called from non-object oriented languages, such as C and FORTRAN 77, have 2
method names. The full name consists of the concatenation of the package name, class name, method name and type
extension. The short name is missing the type extension. See subsection 5.6.

fundamental types

Fundamental types are the basic types that SIDL supports natively. bool, int, char, long, float, double, fcomplex,
dcomplex, opaque, and string.

glue

Most of the code that Babel generates is “glue” code. “Glue” code sits between the caller and the implementation to
allow communication between them. We use the term glue to refer to the stub, IOR, and skel files.

HTML

Hypertext Markup Language http://www.w3.org/MarkUp/

implementation

In Babel, the implementation is the code placed in the server side Impl files. It is the code that Babel used glue code
to allow you to call to.

implements

implements is a SIDL reserved word. It is used when a class inherits from one or more interfaces. However, in this
case the word “to implement” is not quite taken seriously. If a class implements an interface it inherits its methods,
and may be cast to that interface, but if the programmer actually wished to implement any of the interface methods, he
must redeclare them in the SIDL class. Any un-redeclared method is assumed abstract and will not appear in the Impl
files. If there are any abstract methods in a class, that class is automatically abstract.

implements-all

implements-all is a SIDL reserved word. It takes the place of “implements.” It is used when a class inherits from
one or more interfaces, and the programmer definitely wants to write implementation code for each method in the
named interfaces. If the programmer uses “implements-all” he does not have to redeclare the interface methods. See
Section 5.6

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

166 Glossary

import

import is a SIDL reserved word. It is used to bring other packages into scope. Packages may be accompanied by a
version number.

in

in is a SIDL reserved word. Each parameter passed though Babel must be declared as in, out, or inout. Each of these
modes has certain rules and implication associated with it. In means “pass this variable by value to the implementa-
tion.” See Section 5.2.

independent arrays

Independent arrays are arrays that manage their own data. When all the references to an independent are deleted, the
array data is garbage collected. The other kind of array is a borrowed array.

inheritance

In normal object-oriented programming, inheritance is the ability of a “super” or “parent” class or interface to pass its
characteristics (methods and instance variables) on to its subclasses, allowing subclasses to reuse these characteristics.

Of course, in SIDL we cannot define instance variables, so in SIDL inheritance only refers to method inheritance.
In SIDL inheritance is is declared with the reserved wordsextends andimplements .

inout

inout is a SIDL reserved word. Each parameter passed though Babel must be declared as in, out, or inout. Each of
these modes has certain rules and implication associated with it. Inout means “pass this variable by reference to the
implementation. The implementation may do whatever it wants with the reference, but it should return something.
Possibly a new variable.” See Section 5.2.

instance method

An instance method is a method that must be associated with an object instance. These methods probably rely on some
state in the instance, so they cannot be divorced from it. In Object Oriented languages, you call these methods on an
instance, in Babelized non-OO languages like C, you pass an instance in as the first argument to one of these methods.

int

int is a data type built into SIDL. It is a 32-bit integer variable int is short for integer.

int32 t and int64 t

The ANSI C standard way of declaring an integer that is definitely 32 or 64 bits.

interface

An interface is a declaration of a set of methods with no information given about their implementation. All interface
methods are abstract. An interface cannot be instantiated. However, a class may inherit from multiple interfaces. The

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

167

purpose of interfaces is to give objects that are conceptually similar but internally different a common interface so that
code may treat them the same, or seamlessly exchange them.

interprocess

Interprocess means “between processes.” It is normally used to refer to “interprocess communication,” where two or
more processes find some way to communicate. Interprocess communication is one of the goals of babel with RMI.

IOR

Intermediate Object Representation. IOR code is where Babel does all its work maintaining arrays, Babel objects,
reference counting, etc.

JNI

Java Native Interface. The JNI is what allows Java to call to C and C++. It is referred to as calling native code because
while Java runs in a virtual machine, but C and C++ run on the real machine, or run “natively.”

language interoperability

Language interoperability is Babel’s main purpose. Language interoperability technology allows different computer
languages to call each other methods and communicate despite problems with calling conventions and differing vari-
able types.

local

A method (or other identifier) is considered local if it is defined or declared in the current class or method. Sometimes
a more specific term like, “local to the method” or “local to the class” is used.

long

long is a data type built into SIDL. It is a 64-bit integer variable long is short for long integer. Note: Python sometimes
has trouble with longs, see Section 11.7 for more details.

method

Method is the word commonly used in Java for what is called, in some other languages, a function, subroutine, or
procedure. Methods are a piece a code that is called by a name. Instance methods depend on an object instance, and
are allowed to read and manipulate that objects data. A static method does not depend on an instance, and therefore
can only access class data and what data is passed in to the method.

namespace

A namespace is a way of logically divvying up globally accessible names. This helps in avoiding conflicts between
globally accessible methods, classes, data, etc. They are mainly a feature of C++.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

168 Glossary

non-strided

A non-strided array is a dense array. See the glossary entry for dense.

Object model

The Object Model is the of rules that regulates the definition, creation, and use of classes and objects in a language.
To read about the SIDL object model see Section 5.6

OMG

Object Management Group http://www.omg.org/

oneway

oneway is a SIDL reserved word. It is currently unimplemented, but it planned to be used as a method modifier.

opaque

opaque ia a data type build into SIDL. The word opaque is an adjective meaning “not transparent.” In SIDL, an opaque
is a 64-bit variable that cannot be touched or modified by the holder. It is normally used to hold pointers that cannot
be understood by the current language or in the current context.

out

out is a SIDL reserved word. Each parameter passed though Babel must be declared as in, out, or out. Each of these
modes has certain rules and implication associated with it. Out means “pass this (null) variable by reference to the
implementation. The implementation is expected to fill the reference with a new variable to be passed back to the
client.” See Section 5.2.

package

A package is a container and namespace for conceptually linked classes and interfaces. Generally it is good practice
to have one package per SIDL file.

PIC

Position Independent Code is for making dynamically loadable libraries. PIC contains and extra level of indirection to
allow the correct methods to be found dynamically at runtime.

preprocessing

Code preprocessing is a step, prior to compilation, where various simple, automatic code modifications are made.
For example, int C, #include files are included, and #define macros are textually duplicated throughout the code. In
some cases, such as Babel FORTRAN 90, method names are “mangled” to reduce their size under the method name
character limit.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

169

private data

Private data is data that is only accessible locally, inside an object. In Babel, all Babel object data is private and cannot
be accessed by other SIDL objects.

process

A process is a running program that exists in its own memory space and can therefore run in parallel with other
processes.

reference counting

Reference counting is the form of garbage collection used in Babel. Each object keeps a “reference count.” When
that count reaches zero, the object is destroyed and the memory reclaimed. In some languages teh counting is handled
automatically, in some, like C, the developer must explicitly add and subtract from the reference count. (Using the
functions addRef and deleteRef.) The internal implementation of deleteRef literally has an if statement that says “If
the count is 0, free this memory,” so if the reference count of an object goes below one, all references to the object are
immediately invalid.

reverse engineering

Reverse Engineering is the practice of inspecting the behavior of an existing program to understand more about how
it works. Babel does not support this, or any forms of inspecting or modifying compiled code.

shared library

A shared library is a set of methods that may be used by multiple different programs without recompilation of the
library.

short name

Overloaded Babelized methods called from non-object oriented languages, such as C and FORTRAN 77, have 2
method names. The full name consists of the concatenation of the package name, class name, method name and type
extension. The short name is missing the type extension. See subsection 5.6.

SIDL

Scientific Interface Definition Language. The language used by Babel to describe how Babel glue code should be
generated. See Chapter 5.

single process

A single process program is a program that only uses one process to complete its work. One of the features of Babel is
that it is able to facilitate language interoperability in a single process, which saves the extra overhead of interprocess
communication.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

170 Glossary

skeleton

The Babel skeleton code is the opposite of the Babel stub code. The Stub code facilitates the method call from client
to IOR, and the skeleton code facilitates the method call from IOR to implementation.

SO

Shared Object. A Unix catch all term for shared and dynamically loadable libraries.

SPMD

Single Program Multiple Data. The term used to describe parallel programs that use multiple processes running the
same code working on different data to solve a problem.

state (of an object)

Object state refers to the data that an object holds. For example, if an object holds one integer, that integer holds the
objects state. It is assumed that instance methods modify or use an object’s state in some way. If a method does not
use the object state in any way, it should probably be a static method.

static

A static method is a method that does not depend on an object instance to run. It should have no need of any data of
any particular object, it should only depend on the data that is passed into it. As such, unlike instance methods, it does
not need to run on an instance of the class it is associated with. In Babelized C, this means the first argument to the
function is not an object instance. In Java, this means the function not called on an object, but referenced by the class
name.

static linking

Static linking refers to the practice of linking code at compile time, rather than dynamically at runtime. It has a speed
advantage over dynamically linked code, but lack flexibility.

string

string is a data type built into SIDL. It stores a set of characters. It has no predefined length.

stub

The Babel stub code is the opposite of the Babel skeleton code. The Stub code facilitates the method call from client
to IOR, and the skeleton code facilitates the method call from IOR to implementation.

SWIG

Simplified Wrapper and Interface Generator http://www.swig.org/ SWIG is a language interoperability tool that is not
IDL based, but has certain other drawbacks.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

171

tarball

Tarball is a common way to refer to a set of directories and files organized into a single file using the Unix tar command.
It is often gzipped.

throws

throws is a SIDL reserved word. It is used the tell SIDL that a method may throw the named SIDL exception, and
code should be generated to pass it to the client.

type

A type describes what sort of information a variable stores, and usually how much space that information takes up.
Classes and interfaces are user defined types, there are also fundamental types like int and bool.

URL

Uniform Resource Locater. Often thought of as a pointer to a web resource.

user

There are two anticipated user types for Babel, both are kinds of programmers. The person referred to as the “devel-
oper” is the person developing a Babelized library. The “user” is the person who writes a program using a Babelized
library.

version

version is a reserved word in Babel that is used to declare a version for a given package, or to declare what version of
a given package should be used.

virtual

Virtual is the opposite of final. All SIDL methods are virtual by default. A virtual method is a method that may be
overridden in subclasses.

VM

Virtual Machine

void

a reserved word in Babel, used to state that a function has no return type.

VPATH

If you want to build software in a separate directory from where the tarball was untarred, this is called a “VPATH
build”. VPATH builds are useful if you want to build Babel multiple times with various compilers, flags, or you have
a shared file system across multiple platforms. It separates the code you generate from things that you were given.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

172 Glossary

XML

Extensible Markup Language. http://www.w3.org/XML/ A standardized data exchange format.

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

Bibliography

[1] Babel homepage.http://www.llnl.gov/CASC/components/babel.html .

[2] David E. Bernholdt, Wael R. Elwasif, James A. Kohl, and Thomas G. W. Epperly. A component architecture
for high-performance computing. InProceedings of the Workshop on Performance Optimization via High-Level
Languages (POHLL-02), New York, NY, June 2002.

[3] CCAFE homepage.http://www.cca-forum.org/˜baallan/ccafe .

[4] Bradford Cobb, Gary Hook, Christopher Strauss, Ashok Ambati, Anita Govind-
jee, Wayne Huang, and Vandana Kumar. AIX linking and loading mechanisms.
http://www-1.ibm.com/servers/esdd/pdfs/aix 11.pdf , May 2001.

[5] Common Component Architecture (CCA) Forum homepage.http://www.cca-forum.org .

[6] Tammy Dahlgren, Tom Epperly, and Gary Kumfert.Babel User’s Guide. CASC, Lawrence Livermore National
Laboratory, version 0.8.4 edition, April 2003.

[7] Guy Eddon and Henry Eddon.Inside Distributed COM. Microsoft Press, Redmond, WA, 1998.

[8] Eric Eide, Jay Lepreau, and James L. Simister. Flexible and optimized IDL compilation for distributed appli-
cations. InProceedings of the Fourth Workshop on Languages, Compilers, and Run-time Systems for Scalable
Computers, 1998.

[9] James Gosling, Bill Joy, and Guy Steele.The Java Language Specification, July 1996. Available at
http://java.sun.com .

[10] Michi Hennig and Steve Vinoski.Advanced CORBA Programming with C++. Professional Computing. Addison-
Wesley, 1999.

[11] International Organization for Standardization, Geneva.ISO/IEC 14882 Standard for the C++ Programming
Language, 1998.

[12] Bill Janssen, Mike Spreitzer, Dan Larner, and Chris Jacobi.ILU Reference Manual. Xerox Corporation, Novem-
ber 1997. Available atftp://ftp.parc.xerox.com/pub/ilu/ilu.html .

[13] Scott Kohn, Gary Kumfert, Jeff Painter, and Cal Ribbens. Divorcing language dependencies from a scientific
software library. In10th SIAM Conference on Parallel Processing, Portsmouth, VA, March 2001.

[14] Scott Meyers.More Effective C++: 35 New Ways to Improve your Programs and Designs. Professional Com-
puting. Addision-Wesley, 1996.

[15] Scott Meyers.Effective C++: 50 Specific Ways to Improve your Programs and Designs. Professional Computing.
Addision-Wesley, 2 edition, 1998.

[16] Microsoft Corporation. Component Object Model Specification (Version 0.9), October 1995. See
http://www.microsoft.com/oledev/olecom/title.html .

[17] Object Management Group.The Common Object Request Broker: Architecture and Specification, February
1998. Available athttp://www.omg.org/corba .

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

174 BIBLIOGRAPHY

[18] SciDAC: Scientific Discovery through Advanced Computing.http://www.science.doe.gov/scidac .

[19] SCIRun homepage.http://www.sci.utah.edu .

[20] John Shirley, Wei Hu, and David Magid.Guide to Writing DCE Applications. O’Reilly & Associates, Inc.,
Sebastopol, CA, 1994.

[21] Bjarne Stroustrup.The C++ Programming Language. Addison-Wesley, 3 edition, 1997.

[22] U. S. Department of Energy (DOE) homepage.http://www.energy.gov .

[23] Norm Walsh.DocBook. O’Reilly, 2000.

[24] XCAT homepage.http://www.extreme.indiana.edu/xcat .

babel-0.10.8 Doc Last Modified July 26, 2005 10:47 a.m.

	Preface
	Introduction
	Babel Facilitates Language Interoperability
	Scientific Interface Definition Language (SIDL)
	Benefits to Customers
	Beyond Babel's Scope
	Summary
	Organization

	I Foundations
	Installation
	Simple Installation
	External Software Requirements

	Basic Babel Code Generation
	Babel is a Compiler
	Command Line Options

	Hello World Tutorial
	Introduction
	Writing the SIDL File
	Writing the Implementation
	Writing the Client
	Final Remarks

	SIDL Basics
	Introduction
	SIDL Files
	Fundamental Types
	Arrays
	SIDL Runtime
	Objects
	XML Repositories

	II Supported Language Bindings
	C Bindings
	Introduction
	Basic Types
	Header files
	Mapping for classes, interfaces, arrays and r-arrays
	Calling SIDL methods from C
	Catching and Throwing Exceptions in C
	Implicitly defined methods
	Invoking Babel to generate C bindings
	Invoking Babel to generate C implementations

	C++ Bindings
	Introduction
	Basic Types
	SIDL C++ Header Suffix
	SIDL's Main C++ Header File
	Calling Methods from C++
	Catching and Throwing Exceptions in C++
	Invoking Babel to generate C++ stubs
	Implementing SIDL Classes in C++
	Accessing SIDL Arrays From C++
	C++ Specific Babel Command Line Options

	FORTRAN 77 Bindings
	Introduction
	Basic Types
	Calling Methods From FORTRAN 77
	Catching and Throwing Exceptions in FORTRAN 77
	Invoking Babel to generate FORTRAN 77 Stubs
	Implementing Classes in FORTRAN 77
	Accessing SIDL Arrays From FORTRAN 77
	FORTRAN 77 objects with state

	FORTRAN 90 Bindings
	Introduction
	Basic Types
	Calling Methods From FORTRAN 90
	Catching and Throwing Exceptions in Fortran 90
	Invoking Babel to Generate F90 Stubs
	Implementing Classes in FORTRAN 90
	Accessing SIDL Arrays From FORTRAN 90

	Java Bindings
	Introduction
	Basic Types
	Client Side: Using SIDL Classes and Methods
	Server Side: Writing SIDL classes in Java
	Casting Objects
	Out and Inout arguments
	Using SIDL arrays with Java
	Interfaces and Abstract Classes
	Exceptions
	Enumerations
	Invoking Babel to generate Java bindings
	Invoking Babel to generate Java implementations
	Environment Variables

	Python Bindings
	How to Create a SIDL Object in Python
	How to Cast SIDL Objects in Python
	How to Call Methods from Python
	Catching and Throwing Exceptions in Python
	Building Python Extension Modules
	Setting up to Run Python
	Notes
	How to Implement SIDL Objects in Python

	SIDL Backend
	Introduction
	Purpose
	Generated versus Original SIDL files
	XML File Comparison
	Babel Command Line Options

	XML Backend
	Introduction
	Purpose
	Basic Structure
	Command Line Options

	HTML Interface Documentation
	Introduction

	III Advanced Topics
	Building Portable Polyglot Software
	Layout of Generated Files
	Grouping compiled assets into Libraries
	Dynamic vs. Static Linking
	SIDL Library Issues
	Language Bindings for the sidl Package
	SCL Files for Dynamic Loading
	Deployment of Babel Enabled Libraries

	Troubleshooting
	Introduction
	Common Errors
	Common Warnings

	Lessons Learned
	Introduction
	Compilation Consistency is Key

	IV Appendices
	Reserved Words
	Introduction
	Reserved Words
	Suggested Things To Avoid

	SIDL Grammar
	Introduction
	Backus-Naur Form

	Extensible Markup Language (XML)
	Introduction
	SIDL Document Type Declaration (DTD)

	Glossary
	Bibliography

