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Abstract—High-performance scientific applications are
usually built from software modules written in multiple
programming languages. This raises the issue of lan-
guage interoperability which involves making calls be-
tween languages, converting basic types, and bridging
disparate programming models. Babel provides a feature-
rich, extensible, high-performance solution to the language
interoperability problem currently supporting C, C++,
FORTRAN 77, Fortran 90/95, Fortran 2003/2008, Python,
and Java. Babel supports object-oriented programming
features and interface semantics with runtime-enforcement.
In addition to in-process language interoperability, Babel
includes remote method invocation to support hybrid
parallel and distributed computing paradigms.

I. INTRODUCTION

Babel is a programming language interoperability
toolkit for high-performance scientific computing.
It was designed to address specific functional and
performance needs in the development of large-scale,
multi-physics simulations involving the integration of
multiple mathematical models, libraries, and solvers
implemented in different programming languages.
The inherent complexity of the resulting systems re-
quires the aid of software tools for their development,
evolution, and maintenance.

Multi-disciplinary, multi-physics, and multi-
resolution applications are far too complex to be
developed by a single organization. Hence, the parts
— models, libraries, and solvers — are developed
by code groups with relevant expertise. Each team
often relies on different programming languages
and development platforms. Some critical codes
may have even been developed by experts long
retired. These differences exacerbate the integration

challenges that must be overcome to successfully
create large-scale applications.

Interoperability between languages involving in-
compatible programming paradigms and type sys-
tems is inherently difficult. For example, dynamic
memory management may be a feature of one
language but left to the programmer in another.
Errors may be reported explicitly versus via dynamic
exceptions. Arrays may be represented in column-
versus row-major order and their indices start at 0
versus 1. These incompatibilities can make building,
debugging, and maintaining associated software
systems extremely challenging.

Additional features not natively available across
languages are typically required by the numeri-
cal libraries that dominate scientific applications.
Specifically, dynamic, multi-dimensional arrays, ar-
ray strides, single- and double- precision complex
numbers, and structures are common. The heavy
reliance on arrays for managing numerical data is a
critical aspect of these applications and it can have
a significant impact on performance.

Further adding to the challenges faced by the
scientific computing community is the need for
software tools to run on commercial as well as one-
of-a-kind platforms. Computational scientists often
develop their codes on desktop platforms then port
them to Top 5001 machines for high performance
runs. Machine and language idiosyncrasies present
unique portability challenges requiring a detailed
understanding of binary interfaces and linkage con-

1http://www.top500.org



ventions.
Finally, the often lengthy execution times — on

the order of days to weeks — of scientific simulation
runs result in the need to minimize the introduction
of additional overhead. Babel was initially designed
for fast, in-process communication to address this
important issue. The project won the prestigious
R&D 100 award [23] in 2006 for “the world’s most
rapid communication among many programming
languages in a single application.” While Babel’s
primary focus is efficient interoperability within a
single address space, it also fully supports transparent
remote method invocation (RMI).

Large-scale, multi-physics, and multi-resolution
computational science and engineering applications
of today face significant integration challenges due
to their use of numerically intensive, long-running
codes written in different (including legacy) pro-
gramming languages for deployment on one-of-a-
kind platforms. Babel addresses the functional and
performance needs of the community through a high-
performance interoperability toolkit. The motivation
for and approach taken to develop the technology is
described in Sections II and III, respectively. Details
of the toolkit are provided in Sections IV through VI.
Applications of Babel are presented in Section VII.
Section VIII covers the most relevant related work.
Future work is presented in Section IX.

II. MOTIVATION

Interoperability solutions at the time Babel was ini-
tially conceived, such as CORBA (Common Object
Request Broker Architecture) [35] and COM (Com-
ponent Object Model) [38], tended to be geared more
for general and commercial interests. That is, they
generally lacked support for the legacy programming
languages and native data types commonly used by
computational scientists and engineers. Features for
aiding cross-language debugging were also missing.

Traditional scientific programming languages gen-
erally lack support for object oriented programming
(OOP), which has increasingly been adopted by
the community. OOP codifies the discipline of data
and procedure encapsulation, thereby facilitating the
development of re-usable software. The large set of
supported languages, shown in Figure 1, emphasizes
languages of interest to the community. Support
for traditional scientific programming languages
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Fig. 1. Programming languages supported in the Babel 2.0 release.

is important due to the significant amount and
inherently long lifetimes of legacy codes written
in those languages.

Babel, which bridges the gap among the different
programming paradigms and languages, enables
software written in classical imperative programming
languages, such as Fortran and C, to interoperate with
interpreted scripting languages, such as Python. To
accomplish this feat, Babel must deal with different
binary representations, symbol length limitations,
and inconsistent rules for identifier declarations (e. g.,
case sensitivity or reserved symbols).

The numerically intensive computations performed
in scientific applications are heavily dependent on the
use of array-based and numerical data types. Of par-
ticular importance are dynamic, multi-dimensional
arrays, array strides, single- and double-precision
complex numbers, and structures. Arrays with all
these features are not generally native types in
modern, general-purpose languages.

Both scientific and general-purpose programming
languages lack support for interface contracts, which
are a well-known software engineering technique
for improving testing and debugging [32]. Interface
contracts define and enable the automated enforce-
ment of software behaviors at call boundaries. They
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Fig. 2. Babel translates SIDL specifications to glue code and language-
specific prototypes.

are also a logical extension of language interoper-
ability solutions for the support of cross-language
debugging.

The scientific computing community needs a
tailored, high-performance language interoperability
toolkit to facilitate the development of complex,
large-scale, multi-physics, and multi-resolution appli-
cations. Traditional scientific and modern program-
ming languages must be supported to accommodate
legacy and new codes. Dynamic, multi-dimensional
arrays are critical to the numerically intensive codes
that must interoperate. Ensuring these multiple
programming language applications work correctly
requires mechanisms, like interface contracts, for
cross-language debugging.

III. APPROACH

Restricting our approach to the least common
denominator across supported languages would result
in the loss of critical features in both traditional
and modern programming languages. Combining
scientific data types with the discipline of object
oriented encapsulation led to the development of
technologies based on a scientific object model. The
resulting Babel toolkit consists of three parts: a
programming language-neutral interface specifica-
tion language, compiler, and runtime library. The
Scientific Interface Definition Language (SIDL),
developed at LLNL, is the specification language.
The Babel compiler translates SIDL specifications
into language-specific glue code, prototypes, and

documentation. The supporting library is referred to
as the “SIDL Runtime Library”. Figure 2 shows the
major parts of the toolkit in relation to their use in
a scientific software artifact.

SIDL provides a declarative description of the
public methods of the calling interface as extensions
of the scientific object model. The model is defined
through base classes, interfaces, methods, excep-
tions, and built-in types. SIDL, like the CORBA
Interface Definition Language (IDL) provided by
the Object Management Group (OMG) [35], [10], is
programming language-neutral. Both IDLs support
the modular packaging of full method definitions
specifying the type (e. g., integer, float) and mode
(i. e., in, out, inout) of each parameter. Both also sup-
port enumerations, arrays, and multiple inheritance of
interfaces. Unlike CORBA IDL, SIDL provides basic
types for numeric complex and multi-dimensional,
multi-strided arrays. Another distinguishing feature
is complete support for polymorphism across pro-
gramming language boundaries. For example, Python
may be used to overload a specific method of a
Fortran module, throwing an exception implemented
in C++. Interface contract clauses with a rich set of
expressions are also supported as an aid to testing
and debugging.

The Babel compiler translates SIDL descriptions
into wrappers used to map between programming
language-specific types and the common representa-
tion layer. Native language features, such as built-in
data types and method overloading, are leveraged
in the generated code, whenever possible, with
reasonable alternatives used in the remaining cases.
Babel maps features to the particular native language
ecosystem in order to impose minimal requirements
for existing software packages. There is no major
feature in Babel that cannot be supported in all
existing language bindings. To the user, a component
using Babel always appears to be implemented in
the particular native language, no matter which
combination of languages is actually used. The
common representation layer depends on features
of the SIDL runtime library to support the object
model and contains interface contract enforcement
features, when needed. The layer is also instrumented
with interface contract enforcement checks, when
contracts are defined, that also depend on features
in the runtime library.



The SIDL runtime library essentially provides
language-specific implementations of language-
independent SIDL constructs. It provides basic
operations and capabilities associated with SIDL
types, such as casting, reference counting, reflection,
and implicit exceptions. The runtime also supports
object and library management as well as interface
contract enforcement.

Babel bridges the gap among different scientific
programming paradigms and languages, combining
native support for key scientific data types, object
orientation, and interface contracts, to produce a
tool tailored for scientific language interoperability.
The approach involves the generation of source code
wrappers from specifications of the calling interface,
in SIDL. The generated code is based on an object
model (defined in SIDL and implemented in the
SIDL Runtime library) with built-in scientific data
types and optional interface contracts. The toolkit,
therefore, combines the benefits of object orientation
and programming by contract [32] with scientific
language interoperability.

IV. SCIENTIFIC INTERFACE DEFINITION
LANGUAGE

The Scientific Interface Definition Language
(SIDL) is a programming language-neutral speci-
fication language used to define the calling interface.
SIDL specifications are formed from eight main
elements: packages, interfaces, classes, methods, ex-
ceptions, contract clauses, types, and comments [12].
Figure 3 shows an example SIDL specification. The
remainder of this section describes each element.

A. Packages

Packages are used to define name space hierar-
chies. All SIDL entities are required to be part of
a package. They consist of a combination of types,
primarily in the form of interfaces and classes, and
allow for software composition. Packages may be
nested and versioned, with the latter — identified
through major and minor numbers — being inherited
by class and interface declarations. Types defined
within an external package may be referenced by
importing the package. Package version restrictions
can be enforced by import statements.

import sidl;
package sort version 1.0 {
interface Comparator {

/∗∗
∗ Returns −1 if i1 < i2,
∗ 0 if i1 = i2, and
∗ 1 if i1 > i2.
∗/
int compare(
in BaseInterface i1,
in BaseInterface i2);

};

interface Container {
int getLength();
void swap(
in int i,
in int j);

};

abstract class Algorithm {
abstract static string getName();
abstract void sort(
in Container c,
in Comparator cmp);

};

class List implements−all Container {
void pushBack(BaseInterface elmnt);
};

class QuickSort extends Algorithm {
static string getName();
void sort(
in Container c,
in Comparator cmp);

};
}

Fig. 3. SIDL specification for a simple class hierarchy. Only List and
QuickSort are concrete classes instantiated at runtime. Package sidl,
which is the basis of Babel’s runtime library, provides functionality
associated with abstractions like BaseInterface.

B. Interfaces

Interfaces define a set of methods a caller can
invoke on an object of a class implementing the
methods. Figure 3 illustrates the definition of two
interfaces: Comparator and Container. Inter-
faces are akin to Java interfaces or pure abstract base
classes in C++. All member functions of an interface
are implicitly abstract. Like Java and C#, only
single inheritance and multiple implementation of
interfaces is supported to avoid major complications
and ambiguities caused by multiple inheritance.

C. Classes

Classes define a set of methods a caller can invoke
on an object. Unless explicitly abstract, classes have
implementations of each member function. Abstract



class Output {
/∗ No conflicting declarations. ∗/
static void print();

/∗ User−specified long names are used
∗ only for languages without support
∗ for method overloading.
∗/
static void print[Int](in int v);
static void print[String](in string v);
static void print[Double](in double v);
};

Fig. 4. SIDL fragment illustrating overloaded methods.

classes, however, have at least one unimplemented
method in order to preclude their instantiation.
Figure 3 illustrates the definition of one abstract
class — Algorithm — and two concrete classes
— List and QuickSort. Data members cannot
be declared in SIDL; therefore, the only way to pass
data in or out of objects is through methods.

D. Methods

Methods define routines available for invocation
by a caller. They represent the public interface of an
object, therefore all methods implicitly have public
visibility. There is no notion of private or protected
member functions. SIDL methods are by default
virtual. This means that the actual method being
called is determined at runtime, based on the concrete
type of an object. Methods may be declared final
to prevent them from being overridden.

SIDL also supports the usual notions of static
methods (i. e., conceptually part of the class but
do not execute in the context of a concrete object)
and overloaded methods (i. e., methods with the
same (base) name but different arguments). The
specification of the method name must include an
extension, as shown in Figure 4, to disambiguate
names in languages that do not support overloading.
For languages with built-in support for method
overloading, such as C++ and Java, the short name
is used while for the remaining languages, such as
C, Fortran, or Python, the user-specified suffix is
appended to provide an unique identifier.

All methods inherited from an abstract base class
or interface remain abstract unless they are re-
declared in the class definition. In order to keep
class declarations concise, the implements-all

keyword can be used to revert this behavior for
interfaces.

Similar to CORBA IDL, each parameter decla-
ration is preceded by an explicit mode specifier,
which may either be in, out, or inout, to declare
whether a parameter will be read-only or also written
to by the method. Implementations are explicitly
allowed to return an object different from the one
being passed for inout parameters, except for
special cases such as raw arrays.

Remote Method Invocation (RMI) adds three
additional modifiers: local, oneway, and
nonblocking. Caller and callee of a local
method have to share the same address space
(i. e., they cannot be invoked on a remote
object). A method declared oneway can only
have in arguments and be implemented using
unidirectional network messages. Non-blocking
methods implement asynchronous call semantics.
These methods return a so-called ticket that can be
used to retrieve return values and out arguments.

SIDL methods define the calling routines of
interfaces and classes through method signatures
specifying the arguments and return type, if any.
Standard object oriented mechanisms for controlling
method inheritance, such as virtual, final, and static,
are either implicit or defined with method qualifiers.
Parameter declarations must indicate the mode. Fi-
nally, RMI is supported through additional modifiers
identifying communication semantics.

E. Exceptions

Exceptions are used to indicate errant behavior.
All methods implicitly throw a sidl.Runtime-
Exception should there be errors in the Babel
generated code or communication. Additional ex-
ceptions have to be specified explicitly using a
throws clause, as shown in Figure 5. Exceptions
are mapped to native language features whenever
possible; otherwise, they are communicated using
an additional generated out parameter that must be
explicitly checked by the user.

F. Contract Clauses

Contract clauses, which are optional, define con-
straints on properties of objects as well as argument
and return values. Babel supports three clauses: pre-
conditions, postconditions, and class invariants [14].



/∗∗
∗ Return the dot (, inner, or scalar)
∗ product of the specified vectors.
∗/
double vuDot(in array<double> u,

in array<double> v,
in double tol)

throws
sidl.PreViolation,
sidl.PostViolation;

require
not null u : u != null;
u is 1d : dimen(u) == 1;
not null v : v != null;
v is 1d : dimen(v) == 1;
same size : size(u) == size(v);
non neg tolerance : tol >= 0.0;

ensure
no side effects : is pure;
vuAreEqual(u, v, tol) implies

(result >= 0.0);
(vuIsZero(u, tol) and

vuIsZero(v, tol))
implies

nearEqual(result, 0.0, tol);

Fig. 5. SIDL fragment illustrating precondition and postcondition
clauses for a vector dot product operation. The preconditions for
vuDot require the two normal SIDL arrays, u and v, both be non-
null, one-dimensional arrays of the same size. The tolerance value
must also be non-negative. The postcondition clause indicates all
implementations of the method must ensure the following, assuming
the preconditions are satisfied: 1) if u and v are equal then the result
of calling vuDot will be non-negative and 2) if u and v are both zero
vectors then the result will be within the specified tolerance of 0.0.
The is pure assertion within the postcondition clause indicates
implementations should be side-effect free so they can be specified
within the contract clause of another method; however, the assertion
is not executable since Babel does not statically analyze associated
implementation(s).

The syntax is borrowed from Eiffel [32]. Figure 5
shows the SIDL specification of precondition and
postcondition clauses associated with a vector dot
product method. As illustrated, clauses consist of a
list of assertions optionally preceded by individual
labels used for documentation.

Each clause corresponds to a different set of
enforcement points. Precondition and postcondition
clauses, indicated by the require and ensure
keywords respectively, apply to methods. A precon-
dition declares constraints on invocation of a method
while a postcondition constrains its effects. In some
cases, there may be properties that need to hold
throughout the life of an instance of a class. Rather
than require the assertions be specified in the precon-
dition and postcondition clauses of every method, the
class invariant, which is specified at the interface and

class level, is used for these properties. It is important
to keep in mind that interface assertions only need to
hold at the method call boundary. Depending on the
nature of the algorithm, it may be necessary for the
implementation to temporarily violate the contract
during method processing. However, as long as the
corresponding assertions hold at the call boundary,
the contract is not technically violated.

Babel supports a variety of operators used
to specify the boolean expressions making up
contract clauses. Basic operators found in most
common programming languages are supported.
Conditional operators iff (i.e., if-and-only-if)
and implies enable more expressive contracts.
A case where implies is useful is ensuring a
null pointer is not passed within a contract to a
method incapable of supporting it. For example,
the null check in the assertion (outHandle !=
null) implies (size(outHandle) >= 0)
is needed because the built-in size() function
does not gracefully handle a null array argument.

In order to support assertions on object properties,
which are not visible to the interface, function
calls may be specified in contract clauses. It is
very important that such methods be side effect-
free because the implementation cannot assume
contracts will actually be enforced during runtime.
The functions may be user-defined methods that are
in scope or any of twenty built-in functions listed in
Table I. Built-in array accessor and simple numeric
value comparator function operate in constant-time.
Other array-based operations, including existential
and universal quantifiers, are linear in the size of
the arrays. Contracts may also include user-defined
functions (i.e., methods returning a value) in scope
whose contract includes the is pure annotation in
its postcondition clause. The annotation indicates all
implementations of the method are not (supposed
to) have any side effects. At this point, there are no
tools in the Babel toolkit to verify this property.

Babel interface contracts support the specification
of Eiffel-inspired precondition, postcondition, and
class invariant clauses. Each clause, when specified,

2The expr can be one of: u r v, u r n, and n r v, where u, v ∈
SIDL arrays, n ∈ Numbers, and r ∈ {<,>,<=, >=,==, ! =}. The
relation u r v is equivalent to ∀i ∈ 0 .. (size(u)− 1), u[i] r v[i];
u r n to ∀i ∈ 0 .. (size(u) − 1), u[i] r n; and n r v to ∀i ∈
0 .. (size(v)− 1), n r u[i].



Function Returns
all(expr ) True if the expression expr 2evaluates

to true for each element in the specified
array(s). For example, all(u < v)
returns true if the value of each element
in array u is less than the value of the
corresponding element in array v.

any(expr ) True if at least one element in the
specified array(s) satisfies the expression
expr 2. For example, any(u = 0)
returns true upon encountering the first
element in array u whose value equals
zero but returns false if none of the
element values is zero.

count(expr ) The total number of array elements
satisfying the expression expr 2.

dimen(u) Dimension of array u.
irange(x,
nlow , nhigh )

True if x falls within the integer range
of nlow ..nhigh .

irange(u,
nlow , nhigh )

True if all elements in array u fall
within the integer range nlow ..nhigh .

lower(u, d) Lower index of the dth dimension of
array u.

max(u) The maximum value of the elements in
array u.

min(u) The minimum value of the elements in
array u.

nearEqual(x,
y, t)

True if real values x and y are equal
within the specified tolerance, t.

nearEqual(u,
v, t)

True if the corresponding elements in
arrays u and v are equal within the
specified tolerance, t.

none(expr ) True if none of the elements in the
specified array(s) satisfies the expression
expr 2. For example, none(u >= 0.0)
returns true if no element in array u
has a value greater than or equal to 0.0.

nonDecr(u) True if the elements in array u are in
order by non-decreasing value.

nonIncr(u) True if the elements in array u are in
order by non-increasing value.

range(x, rlow ,
rhigh , t)

True if the real value x falls within
the specified tolerance, t, of the range
rlow ..rhigh .

range(u, rlow ,
rhigh , t)

True if all elements in array u fall
within the specified tolerance, t, of
rlow ..rhigh .

size(u) Allocated size of array u.
stride(u, d) Stride of the dth dimension of array u.
sum(u) Returns the total of the values of all of

the elements in array u.
upper(u, d) Upper index of the dth dimension of

array u.

TABLE I
INTERFACE CONTRACT BUILT-IN FUNCTIONS

SIDL Type Size [bits]
bool 8
char 8
int 32
long 64
float 32
double 64
fcomplex 64
dcomplex 128
opaque 64
string varies
enum 32
struct varies
interface varies
class varies
array<Type,Dim> varies
rarray<Type,Dim> (index variables) varies

TABLE II
FUNDAMENTAL SIDL TYPES

contains one or more assertions. Assertions can be
as simple as basic variable expressions consisting
of arguments, operators, and numeric or boolean
literals. Alternatively, methods — built-in as well
as user-defined — may be used in the expressions.
Overall, Babel supports a rich variety of assertion
expressions within SIDL interface contracts.

G. Types

Types constrain parameter values, exceptions, and
return values associated with methods.

Babel features a complete set of fundamental
types, listed in Table II, including single and double
precision complex numbers. Basic types like bool,
int, or float are fixed size with a native equiva-
lent in most target languages. This is different from
languages like C where only a hierarchy among
types is defined (e. g., the actual size of type int
in ANSI C is completely implementation dependent
but has to be at most the size of long). Whenever
possible, more complex types, such as fcomplex or
string, are mapped to native language equivalents.
Otherwise, a sensible data structure is provided with
a language-dependent runtime library. Strings often
involve a high runtime overhead as they are repre-
sented differently by practically every programming
language.

One of the motivating features that distinguishes
SIDL most from related approaches, such as CORBA
IDL, is its extensive support for arrays. Babel



supports three types of arrays with varying perfor-
mance implications. A simple, regular array type
is provided whose contents can be allocated or
borrowed. Generic arrays, which have no type or
dimensionality, are more flexible than regular arrays,
but have fewer built-in features than regular arrays.
Finally, raw arrays (i.e., rarray) allow low-level
access to numeric array content. Their use is limited,
however, to C, C++, and Fortran.

The first, or regular, array type provides the full set
of features of a SIDL type including reference count-
ing and automatic (de)allocation. Regular arrays are
defined with dimension and base type, which can
be any fundamental type except struct, including
interfaces and classes. They can be passed to and re-
turned from methods in any mode and may optionally
be declared row-major or column-major. The
framework will physically copy the array to adhere
to these specifications, if necessary, which may
involve a large runtime overhead. Due to memory
management issues, copying will always occur in
some cases in the Python and Java bindings. Arrays
may either be allocated or borrowed. The first type
owns and allocates memory for its data. Borrowed
arrays, on the other hand, reference data from another
source and only allocate space for the necessary meta
information. The rationale therefore is to wrap data
from other sources without requiring the data to be
physically copied.

To allow for more flexible interfaces, SIDL sup-
ports the notion of generic arrays, which are array
declarations with no type or dimension information.
Meta data such as length and dimension is available
using an array API in each of the language bindings.
Generic arrays are useful to handle a wide range of
arguments (e. g., for (de)serialization or logging).

SIDL supports the Fortran concept of array strides,
which means that data is not necessarily densely
packed. Each dimension can be strided arbitrarily.
One-dimensional arrays can be declared row-major
or column-major in order to specify dense arrays.
Otherwise, row- and column major one-dimensional
arrays are identical.

Raw arrays provide a lower-level alternative to
numeric arrays in some languages (e. g., a one-
dimensional raw array may appear as a double
pointer and a length parameter in C). To highlight
the contrast, a normal SIDL array is represented

by a struct in C, a template class in C++, a 64-
bit integer in FORTRAN 77, and a derived type in
Fortran 90/95. In higher-level languages such as Java
or Python3, raw arrays appear like regular arrays.

Raw arrays provide for low-level data access but
suffer a series of limitations compared to regular
SIDL arrays. In particular, raw arrays may only
be passed in mode in or inout and cannot be
used as return values. They must be contiguous
and are implicitly stored in column-major order.
Implementations are not allowed to change the shape
of the array or return an array different from the
one being passed. Also, raw arrays are restricted to
fundamental numerical types. As for structs, a major
motivation for raw arrays is to match existing legacy
APIs, requiring less or no code to translate from and
to SIDL interfaces.

The opaque type is a language-independent way
to declare language-dependent interfaces. Babel only
guarantees that opaque arguments are preserved
between caller and callee. In practice, opaque types
are sometimes used for pointers to resource handles
or language-dependent data structures. However,
their use is strongly discouraged as opaque types
have meaning only within a particular process and
introduce limitations in combination with RMI.

Enumerations (enum) provide a way to declare
types with a limited range of values that can be re-
ferred by name instead of hard-codded values. C/C++
developers will find the SIDL syntax very familiar.
Concrete numeric values can either be provided in
the declaration or are assigned automatically in a
meaningful way.

A relatively recent addition to SIDL are structural
data types (struct). These types provide a natural
way to group semantically related data together.
Figure 6 shows an example SIDL specification.
Structural types are more efficient and require less
development effort than regular classes. They also
often allow for SIDL specifications of existing inter-
faces and provide compatibility with related systems
such as CORBA or WSDL [9]. A SIDL struct may
contain fields of arbitrary type, including (raw) arrays
and structs. However, there is currently no support
for arrays of structs. Structs are fully compatible
with RMI and provide for a very efficient way to

3In Python code, SIDL arrays appear as NumPy [24] arrays.



import sidl;
package structs version 1.0 {
struct Rarrays {

int d int;
rarray<double,1> d rarrayFlex(d int);
rarray<double,1> d rarrayFix(3);

}
}

Fig. 6. SIDL specification for a struct containing a fixed-size and a
flexible-size raw array. The size of the flexible array is constrained
by the integer element d_int.

pass data among various programming languages.

H. Comments
Comments are optional annotations for adding

documentation to the SIDL and generated files,
where appropriate. SIDL supports basic Java and
JavaDoc/Doxygen-style comments. Two cases of the
former appear in Figure 4, while examples of the
latter appear in Figures 3 and 5. These annotations
embed class, interface, and method documentation
directly in the SIDL file. JavaDoc-style comments
can also be used to create interface documentation
and are automatically replicated in the generated files,
where appropriate, whenever they directly precede
the corresponding declaration.

V. BABEL COMPILER

The infrastructure required to support SIDL el-
ements is obtained through the automatic transfor-
mation of specifications into client-server language
interoperability source code using the Babel com-
piler. There are actually four layers generated: stub,
intermediate object representation (IOR), skeleton,
and implementation.

A simplified view of the layers involved in a
local Babel method invocation is shown in Figure 7.
On the client side (caller), a so-called stub is
generated that converts arguments to Babel’s IOR
representation, calls the proper method entry point
from the object’s entry point vector (EPV), and
converts eventual return values to the representation
used in the original language. On the server side
(skeleton), the inverse operations are performed, i. e.,
arguments are converted from IOR to the particular
implementation language, the user-supplied imple-
mentation is called, and return values are converted
back to Babel’s IOR. In addition, the skeleton

is responsible to catch exceptions thrown in the
implementation and convert them to a language-
independent representation.

Achieving transparent n-way language interoper-
ability is a non-trivial task. A naı̈ve approach would
lead to a quadratic number of mappings among each
pair of languages. Instead, Babel defines a C-based
intermediate object representation (IOR) that is used
to mediate among arbitrary pairs of languages. The
IOR is exactly the same, no matter which language
has been used to implement or invoke a particular
method. Language bindings only need to generate
the necessary code to translate to and from Babel’s
IOR, which is a significantly simpler problem. This
approach is further motivated by the fact that most
languages provides at least a C interface to build
upon (e. g., JNI, Python extension types, or C Interop
in Fortran 2003/2008).

Babel supports virtual function calls even on top
of procedural languages such as FORTRAN 77.
Consequently, it cannot rely on language features.
Instead, it implements its own virtual function table
and generates the necessary dispatch code for the
various supported languages in the client stubs.
Dynamic dispatch using virtual function tables was
first introduced in Simula [11] and is today the
preferred technique for widely used languages such
as C++ [19].

A. Stubs

Stubs are pieces of glue code generated by Babel
for each member function serving two main purposes:
(a) they convert arguments and return values between
the native language representation and Babel’s IOR
and (b) they dispatch to the skeleton code via an
object’s EPV. There is a strict separation between
client and server code in order to ensure that com-
ponents can be distributed in binary form together
with the corresponding SIDL file. The method entry
points stored in the EPV are the only way to “cross”
the barrier between client and server code.

In most language bindings, stubs are implemented
in C. The C backend itself is a special case as
the IOR is already implemented in C. Thus, no
argument conversions are necessary. The stub directly
dispatches calls to the user-supplied implementation.
For C++, stubs are member functions of a wrap-
per class closely resembling the SIDL declaration.
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Fig. 7. Arguments and return values are converted to Babel’s intermediate object representation (IOR) before being passed.

Wrapper classes are also used for Java and Python.
However, the implementation uses the particular C
native interface, i. e., JNI in the case of Java and C
extension types in the case of Python. FORTRAN 77
and Fortran 90/95 bindings are technically challeng-
ing as there is neither a native C interface nor a well-
defined binary representation. Instead, it depends on
the particular compiler how data structures are laid
out in memory. Babel uses a stripped-down version
of CHASM [37] to handle compiler peculiarities and
initialize and convert complex types such as arrays
for Fortran 90/95 and 2003/2008.

Stubs are also used by Babel in order to expose
built-in SIDL features, such as reference counting
and up-/down-casting, in a way that integrates nicely
with the native language ecosystem. For example,
wrapper classes for C++ and Python implement smart
pointer semantics freeing the user from error-prone
explicit reference counting.

B. Intermediate Object Representation (IOR)

The IOR is a well-defined intermediate represen-
tation for each of the fundamental SIDL types listed
in Table II. For basic algebraic types, Babel uses
the corresponding equivalent in C (e. g., the SIDL
type int is represented by the C99 type int32_t).

Likewise, basic types such as bool or string are
mapped to their C equivalents. Complex numbers
are pairs of single or double precision floating point
numbers.

Arrays are more interesting as they are defined
for a particular base type. They are represented
by a more complex data structure containing meta
information and a pointer to the allocated memory.
Meta information includes lower and upper bounds,
strides, a reference count, and a simple dispatch table
for a small number of support routines. Structs are
recursively defined on top of these types and may
contain arrays, other structs, or interfaces/classes.
However, there is no support for arrays of structs or
arrays of arrays.

By far the most interesting types are classes and
interfaces. In Babel jargon, each object or interface
carries a reference to an entry point vector (EPV)
that defines the set of member functions supported by
the corresponding type. Figure 8 shows the memory
layout for a Babel object with a simple inheritance
structure. Solid lines denote generalization while
dashed lines stand for implementation of interfaces.

Several things are important to note. First, the
memory layout is such that the beginning of an
Object of a derived type is always also the be-
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Fig. 8. Babel object layout for a simple inheritance structure.

ginning of a valid object of its base class. Thus,
up- and down-casting can be implemented without
pointer adjustments. Casting to an interface, however,
will usually return a base address different from
the original object. The only exception is sidl.-
BaseInterface, which is treated differently.

Next, for any object of a given class, the entries
of the entry point vector are exactly the same.
Consequently, dispatch tables are initialized only
once and require only a constant amount of memory.
Each object, however, carries a reference to the entry
point vector of its dynamic type.

Furthermore, there is a private data pointer in each
object that can be used to hold state. The meaning of
this pointer depends on the particular implementation
language. In simple cases such as C or Fortran, it is
just an opaque data pointer provided to the user. For
higher-level languages such as C++, it is usually a
reference to an object of a user-modified class.

In reality, objects optionally carry some additional
state for profiling, contract enforcement, or “hooks”,
which are user-supplied methods invoked before and
after a particular method invocation. The example
also omits implicit base classes and interfaces for
simplicity.

Each EPV contains a set of built-ins provided by
Babel in addition to user-defined methods. Built-ins
always start with an underscore and provide casting,
reference counting, and support routines for object
construction and destruction. The user invokes the
static _create built-in in order to create new SIDL
objects. This will dynamically allocate memory for
the new objects and initiate recursive initialization of
the EPV for each class in the inheritance hierarchy.
Babel will call a user accessible constructor (_ctor)
once basic object initialization is complete. Object
destruction is implicit once the reference count goes
to zero. Again, a destructor (_dtor) is provided to



the user for implementation-specific de-allocation.
In the presence of contract clauses, the Babel

compiler adds check routines to the IOR to support
enforcement. Individual assertions within a contract
clause results in the generation of a corresponding
check in the routine. Preconditions, if any, are
grouped together under a single (compound) if-
statement to ensure they are only executed when
allowed by the current policy. Any invariants are
grouped in the same manner before the call to the
original skeleton method. Finally, postcondition and
invariant checks are generated. Hence, all specified
contracts are translated into enforcement checks
within the new routines, with enforcement decisions
being made based on runtime options.

A key challenge to providing efficient runtime con-
tract enforcement is minimizing performance over-
head. This is accomplished in part by the generation
of a second function pointer table. While the primary
epv table contains pointers to functions defined in
the skeleton layer. The second, or contracts, epv
table contains pointers to the corresponding check
routines.

C. Skeletons

Skeletons are the counterpart to stubs. They
convert the IOR to the particular native language
representation and transfer control over to the user-
supplied member function implementation. For re-
turn values and out arguments, the inverse operations
are applied, i. e., they are converted from their
native language representation to Babel’s IOR. Most
technical considerations discussed in the context
of stubs also apply to skeletons. Except for C++
and Fortran 2003/2008, they are implemented in C
and use some form of native language interface for
argument conversion.

It is important to note that implementations of
SIDL objects can be stateful. This is achieved via the
data pointer shown in Figure 8. For procedural lan-
guages such as C or Fortran, this pointer is exposed
to the user and can be used to hold a private data
structure. However, for object oriented languages
such as C++, Java, or Python, the user implements a
regular class that may contain private data members.
In these cases, Babel implicitly manages a reference
to an object of the user-provided type using the
data pointer. The skeleton is responsible to cast this

reference to the appropriate type and invoke the
implementation within its context.

Another Babel feature mainly implemented in
skeletons are so-called hooks. Hooks provide a
simple form of aspect oriented programming and
allow the user to execute code right before or
after method invocations. They can be dynamically
enabled or disabled. Hooks are useful for a variety
of applications such as logging or profiling. The
skeleton executes pre-hooks immediately prior to the
usual method dispatch. Likewise, if no exceptions
are encountered, post-hooks are invoked immediately
after returning from an implementation.

D. Implementations

Apart from glue code generation, Babel provides
assistance to develop and maintain implementations
for SIDL specifications. This includes the generation
of Makefile templates as well as a set of implemen-
tation files, which are the only Babel generated files
the user is expected to modify. Implementation files
serve as a starting point for developers and contain
all the necessary declarations and prototypes.

Keeping implementations up to date with evolving
interface specifications can be a challenging problem.
Babel provides some assistance therefore via so-
called splicer blocks. Splicer blocks are structured
comments that mark the begin and end of user-
modifiable sections within a file. Babel will pre-
serve these sections across repeated invocations. All
changes outside these splicer blocks may be lost.
Babel automatically adds new methods and changes
prototypes of existing methods as necessary.

E. Special-Purpose Backends

Babel supports an alternative tool-friendly XML
representation for SIDL interfaces. There is both a
XML front- and back-end. This means that XML
can be used as input language for Babel. Babel can
also be used to convert generic SIDL files into XML
specifications. XML files retain references to the
original SIDL file such as line number information.
Both formats are largely equivalent and have uniform
support for doc-comments.

SIDL interfaces can also be used to automatically
generate documentation using a HTML backend
similar to Javadoc [27]. Babel itself uses these
capabilities to generate consistent documentation



for its runtime library. User-provided doc-comments
are properly maintained.

VI. RUNTIME LIBRARY

Babel’s runtime library introduces some support
for reflection, in particular runtime type information
(RTTI). This allows the programmer to determine
the dynamic type and SIDL version of a given object.
Types can be identified by name or via a class info
data structure.

Reference counting is implemented using atomic
compare-and-swap operations instead of global locks.
Babel uses non-standard compiler intrinsics if avail-
able and small chunks of inline assembler otherwise.

There is also extensive support for dynamic
loading and symbol resolution. Symbols can be
resolved ahead of time or as needed (lazy). The
SIDL runtime systems manages a library search path
and keeps track of all libraries loaded through its
interface. Dynamic SIDL libraries are identified by
a SIDL class file (SCL). These files contain meta
data for an arbitrary number of dynamic libraries,
allowing the loader to locate and identify them as
needed. There is optional support for md5 and sha1
message digests to verify that libraries have not been
modified or replaced.

A. Remote Method Invocation

Remote method invocation [31] in Babel is fully
transparent to the user. This means that the user’s
code stays exactly the same, no matter if an object
is local or remote. Babel provides the built-ins
_isRemote and _isLocal to distinguish among
the two cases.

A reference to a remote object can either be
obtained by creating a new remote object via
_createRemote or by connecting a stub to an
existing remote object via _connect. Remote
object stubs differ from local objects mainly in that
their EPV will not directly point to the skeleton,
but to a Babel-generated function that marshals and
un-marshals arguments and performs the necessary
network transfer. All objects are identified by a
protocol-specific URL. Babel itself ships with a
simple TCP/IP based protocol. However, users are
expected and encouraged to provide their own im-
plementations to make use of machine specific high-
speed interconnects or particular communication

patterns [30], [31]. The same mechanism can be
used to provide compatibility with related systems
such as CORBA.

Objects can be passed remotely either by reference
or by copy. A call by reference requires the existence
of a so-called Babel object server (BOS). Call by
value, on the other hand, requires an object to be
serializable and creates an additional local copy on
the remote end. The user is responsible to imple-
ment (de)serialization functionality for a particular
class by implementing the sidl.Serializable
interface. For derived types such as structs, Babel
provides automatically generated support routines.

Distributed reference counting can be a challeng-
ing problem. Babel keeps partial reference counts in
the local stubs. Only when the local reference count
reaches zero, communication occurs to adjust the
reference count on the object itself. This approach
has many advantages since it significantly reduces
the amount of network traffic. However, it may also
lead to resource leakage in case clients are physically
disconnected. As for communication protocols, more
fault-tolerant schemes can be provided by the user
if necessary.

B. Contract Enforcement

The ability to enforce interface contracts, de-
scribed in Section IV-F, at runtime requires library
support. Minimally, there are contract-specific excep-
tions raised when clauses are violated. Support for a
variety of enforcement options across programming
languages also requires option management. Finally,
although earlier work pursued distributed enforce-
ment decision processes [15], [16], the goal of trying
to better control enforcement overhead lead to the
current release containing a centralized enforcement
manager [13].

There are three interface contract exceptions
supported in the runtime library, one per contract
clause. Violations in the assertions within a clause
result in a clause-specific exception being raised
at runtime. For example, an assertion evaluating
to false within a precondition clause results in a
sidl.PreViolation exception. The contracts
are checked and exceptions raised automatically by
the generated middleware. The client side needs to be
aware of and appropriately handle these exceptions.



Contract Enforcement
Classification4 Frequency

All Adaptive Fit
Constant Adaptive Timing
Invariants Always

Linear Never
Method Calls Periodic
Postconditions Random
Preconditions

Results
Simple Expressions

TABLE III
BASE CONTRACT ENFORCEMENT OPTIONS

Babel supports traditional and experimental con-
tract enforcement through runtime options com-
bining the classification of contract clauses to be
enforced with the frequency of their enforcement.
This approach was considered to be the most flexible
for not only enforcement but also classification
purposes [14]. Table III lists the more common
options for each criteria.

Contract clause classification options are based
on either the type of clause or clause contents.
Traditional enforcement options are either all-or-
nothing for precondition, postcondition and/or in-
variant clauses. Babel supports those as well as
options based on clause contents (e.g., presence or
absence of method calls, output and return arguments,
or the complexity of assertions). Determination of
the complexity of actual contract clauses is inferred
by the Babel compiler based on the complexity of
array arguments in the corresponding assertions. The
clause is tagged according to the highest complexity
encountered.

Frequency options further restrict enforcement
of the clauses satisfying the classification option.
The traditional all-or-nothing approach is supported
through the Always and Never options, respectively.
Simple sampling strategies are reflected in Periodic
and Random sampling, where the period (or number)
is specified at runtime. The final options focus on
performance-driven adaptive enforcement with the
goal of reducing the contract enforcement overhead.
The two basic adaptive strategies are: Adaptive Fit

4Additional options, specified in sidl.sidl, enable enforce-
ment of two of the three clause types or clauses with higher complexity
assertions.

and Adaptive Timing. Both rely on execution time
estimates for contract clauses and methods. Adaptive
Fit checks clauses whose execution time will not
result in exceeding the desired overhead limit when
compared to the execution time of the method.
Adaptive Timing, on the other hand, factors in the
cumulative estimates of time spent in methods and
contract checking, enforcing contracts so long as the
clause does not result in exceeding the desired limit.

Enforcement decisions are actually made by an
Enforcer class based on information about the clause
under consideration and the enforcement policy
options in affect. If an assertion within a clause
is determined to be violated, then the appropriate ex-
ception is raised. Statistics on enforcement decisions
and violations are maintained. This is all handled
automatically by the IOR making the necessary calls
to the Enforcer class at the appropriate time.

Babel supports a variety of traditional and ex-
perimental contract (clause) enforcement options.
Traditional all-or-nothing approaches are supple-
mented with selective and sampling-based enforce-
ment techniques. Selective enforcement options can
be used to gather data on the nature of clauses
actually encountered during testing and, potentially,
deployment. Sampling-based enforcement techniques
are intended to enable reduced contract enforcement
during deployment in performance-constrained envi-
ronments.

VII. APPLICATIONS

Babel was born out of a larger approach to
manage the rising software complexity of scientific
applications. The Common Component Architecture
(CCA) [3] is a joint effort by researchers from
both academia and U.S. national laboratories to
establish and adapt component technology for high-
performance scientific computing. The CCA me-
diates how components interact with each other
and with the underlying framework, using Babel
as its language interoperability framework. Babel
can be used stand-alone or as part of the full CCA
framework.

The CCA specification itself is written solely in
SIDL. Thus, each of the languages supported by
Babel is a first class citizen and can be combined
with components written in any other language.
Components interact with each other via ports,



following the provides/uses design pattern. Each
component specifies which ports it uses from oth-
ers and for which it provides an implementation.
Several CCA compliant frameworks focusing on
different programming models are currently available.
Ccaffeine [2] focuses on SPMD-style programming
and supports a native C++ interface; XCAT [22],
[41] focuses on distributed programs; SCIRun [36],
[43] features bridging technologies between CCA,
CORBA, VTK, and shared-memory models. Babel
itself ships with a simple reference implementation
called Decaf [28].

Asynchronous Babel RMI has been used to
develop COOP - a new parallel MPMD (multiple
program multiple data) programming model that
allows applications to distribute work in a flexible
way. Thus, COOP effectively allows applications
to scale to larger and larger machines. COOP has
been successfully used in several high-performance
applications (e. g., in material science [25], [6]).

Another very common use case for Babel is to
provide bindings to scientific libraries for various
languages. One example therefore is hypre – a suite
of scalable parallel linear solvers and preconditioners
for sparse linear equation systems [20]. The user
is not even necessarily aware that he is using
Babel. Language independent SIDL specifications
have also proven to be a valuable tool for stable
interfaces. Furthermore, hypre developers were able
to consolidate multiple versions of algorithms that
only differed in implementation details for matrix
multiplication using polymorphic interfaces. This
shows that Babel can be used to provide benefits
of object oriented design while avoiding portability
problems of real object oriented languages such as
C++.

Experiments for course-grained interface descrip-
tions [26] clearly show that the overhead of Babel
is well within measurement imprecision and usually
below 1%. A more detailed performance study [5]
shows that the call overhead is usually very small
for most data types. Large overheads can only be
observed for a small number of types such as strings
or arrays with explicit order specifications, as Babel
is forced to allocate new memory and physically
copy data.

While some overhead is often unavoidable, con-
verting to and from the IOR is unnecessary if

caller and callee are implemented in the same
language. Recent versions of Babel implement an
experimental feature that allows us to bypass the
IOR in this special case. Experiments for C++
show that the costs for native Babel calls can be
reduced to roughly the costs of native virtual function
calls, effectively eliminating the overhead for native
method invocations.

Babel and/or the CCA has been successfully used
in a large number of projects in various areas such
as chemistry, geomagnetics, sparse linear algebra,
fusion, or nuclear plant simulation. Discussing these
projects is beyond the scope of this paper. A recent
overview can be found elsewhere [29].

VIII. RELATED WORK

Babel is an Interface Definition Language (IDL)-
based tool similar to industry’s CORBA/CCM [35],
[10], Microsoft’s (D)COM [7] and .Net [33],
Mozilla’s XPCOM [42], and Sun’s JavaBeans [40].
There are several existing projects providing lan-
guage interoperability among a limited set of lan-
guages – the most important are shortly discussed
in the following. In many respects, the design con-
siderations are very different from the requirements
of the scientific computing community. The main
differences and limitations of each approach will be
discussed individually.

SWIG [4] is a software development tool that
connects C and C++ libraries to a large set of
scripting languages (e. g., Perl, Python, PHP, Ruby,
or Tcl). Recent versions also include bindings for
non-scripting languages such as C#, Lisp, or Java.

As most approaches, SWIG lacks the support for
Fortran and scientific data types. Its primary purpose
is to provide language-specific bindings for C/C++
libraries. Thus, there is a strong asymmetry between
the native implementation and the supported client
languages. SWIG uses so-called “interface files” that
contain C/C++ style declarations as its input. SWIG
can also be used to package structures and classes
into proxy classes for the particular target language,
exposing data structures in a more direct way.

CORBA [35] is a distributed object specification
maintained and developed by the Object Manage-
ment Group (OMG) – a consortium of several
hundred industry partners. Like Babel, CORBA uses
an interface definition language (IDL) to specify the



interface exposed to the outside. It supports inter-
action among objects written in different languages
with a large set of supported bindings.

CORBA mainly targets distributed systems com-
municating over a physical network. Communication
is managed by a so-called Object Request Broker
(ORB). An abstract protocol (GIOP) is used to com-
municate among different ORBs. Implementations
exists on top of plain TCP/IP as well as higher-level
protocols such as SSL or HTTP.

As all the remaining approaches, CORBA lacks
essential features for high-performance computing
such as Fortran-style arrays, strides, or complex num-
bers. While it provides robust interoperability among
various languages, it is usually far too inefficient for
performance sensitive in-process method invocations
[5]. CORBA also provides a rather limited object
model with no support for polymorphism.

Microsoft’s Component Object Model (COM) and
its distributed version DCOM [38] are Windows-
based interoperability frameworks. Their main focus
is on business and internet applications.

For various reasons, (D)COM is hardly a candidate
for high-performance computing. One major problem
is portability to platforms other than Windows. It
also lacks the necessary abstractions for parallel data
organization and scientific data types. Furthermore,
COM uses a very limited object model with no
support for polymorphism.

XPCOM [42] is a similar approach used by
Mozilla to connect JavaScript and C++ components
for their products, most notably the Firefox web
browser. Because of its high overhead for data mar-
shaling, due to the selection of supported languages,
it is also not well suitable for high-performance
computing.

Sun’s JavaBeans and Enterprise JavaBeans (EJB)
are Java-specific cross-platform architectures. It does
not address the problem of language interoperability.
In a limited way, the Java Native Interface (JNI) [39]
is a way to integrate C and C++. However, the user
has to deal explicitly with argument conversion and
acquire and release global and local references for
garbage collection support.

Protocol Buffers [21] are Google’s approach to
object serialization and is used for remote procedure
calls in Googles internal software. Protocols are spec-
ified in a file format similar to SIDL and a compiler

automatically generates the (de-)serialization code.
They do not support Fortran and also do not include
an RPC mechanism. Apache Thrift [1] is a very
similar product developed at Facebook. It includes an
RPC mechanism but also lacks support for Fortran.
The main difference to Babel is that Babel is highly
optimized for in-process language interoperability,
where code in another language is directely called
without having to serialize the arguments to transmit
them over a network. Both formats are, however, very
interesting alternatives for the Babel RMI protocol.

CHASM [37] is a research effort to automatically
create components from existing Fortran modules.
CHASM generates adapter classes that mediate
among the two languages. Babel is a more general
and flexible tool but builds on a stripped-down
versions of CHASM for some language backends.

PIDL [17] is an experimental extension to SIDL
that can describe interactions between distributed
parallel components.

IX. SUMMARY AND FUTURE WORK

Babel is an open source scientific language in-
teroperability toolkit, distributed under the LGPL
license, with open bug tracking and version control
systems. The latest stable Babel release is version
2.0. Babel is written in Java using the JavaCC parser
generator for the SIDL frontend and Xerces for XML
parsing. The build and configure system is based on
autoconf, automake, and libtool.

Babel is under active development and serves as
testbed for a number of exciting research projects.
We actively work on reducing the overhead of
language interoperability to allow for more fine
grained interfaces. More challenging is support for
emerging parallel PGAS (partitioned global address
space) languages such as Chapel [8], Unified Parallel
C (UPC) [18], or Co-array Fortran [34]. We are also
considering support for GPGPU-oriented languages
such as CUDA and OpenCL.
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