
1

Scott Kohn
with

 Tom Epperly and Gary Kumfert

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

October 3, 2000

Component Technology for High-
Performance Scientific Simulation Software

2CASC

Presentation outline

l Motivation

l DOE community activities (CCA)

l Language interoperability technology (Babel)

l Component type and software repository (Alexandria)

l Research issues in parallel component communication

l Deep thoughts...

Goal: Provide an overview of the approach, techniques,
and tools we are exploring in adopting software
component technology for scientific computing

2

3CASC

Numerical simulation software is becoming
increasingly complex and interdisciplinary

l Scientists are asked to develop 3d, massively parallel,
high-fidelity, full-physics simulations; and do it quickly

l This requires the integration of software libraries
developed by other teams
— local resources are limited and expertise may not exist
— loss of local control over software development decisions
— language interoperability issues (f77, C, C++, Python, Java, f90)

l Techniques for small codes do not scale to 500K lines

4CASC

What are the barriers to software re-use,
interoperability, and integration?

l Technological barriers
— incompatible programming languages (f90 calling C++)
— incompatibilities in C and C++ header files (poor physical design)
— conflicting low-level run-time support (e.g., reference counting)

l Sociological barriers
— trust (“how do I know you know what you’re doing?”)
— “I could re-write it in less time than it would take to learn it…”

l Domain understanding barriers (the interesting one!)
— understand interactions of the math and physics packages
— write software that reflects that understanding
— this is where we gain insights and make scientific progress

3

5CASC

Component technologies address issues
of software complexity and interoperability

l Industry created component technology to address...
— interoperability problems due to languages
— complexity of large applications with third-party software
— incremental evolution of large legacy software

Observation: The laboratory must address similar
problems but in a different applications space (parallel
high-performance scientific simulation, not business).

6CASC

Current industry solutions will not work
in a scientific computing environment

l Three competing industry component approaches
— Microsoft COM
— Sun JavaBeans and Enterprise JavaBeans
— OMG CORBA

l Limitations for high-performance scientific computing
— do not address issues of massively parallel components
— industry focuses on abstractions for business (not scientific) data
— typically unavailable on our parallel research platforms
— lack of support for Fortran 77 and Fortran 90

l However, we can leverage techniques and software

4

7CASC

Component technology extends OO with
interoperability and common interfaces

l Start with object-oriented technology

l Add language interoperability
— describe object calling interfaces independent of language
— add “glue” software to support cross-language calls

l Add common behavior, packaging, and descriptions
— all components must support some common interfaces
— common tools (e.g., repositories, builders, …)

l Component technology is not…
— object-oriented design, scripting, or frameworks
— structured programming (e.g., modules)
— the solution for all of your problems (just some of them)

8CASC

Component technology approaches help to
manage application software complexity

“Monolithic” approach “Building-block” approach

model
equations

solver1
time

stepper

solver2

• tightly-coupled code
• less flexible, extensible
• re-use is difficult
• well-understood by community

• loosely-coupled code
• more flexible, extensible
• high re-use potential
• new to community

timestep loop {
if (test1)
 solver1()

else if (test2)
 solver2()

}

share
“hard-coded”

data

5

9CASC

SAMRAI ALPS application combines three
physics packages with local time refinement

Gradient
Detector

Berger
Rigoutsos
Clustering

Load
Balancer

Time Refinement
Integrator

Hierarchy
Description

Regridding
Algorithm

Ion Advection
Numerical
Routines

Light
Propagation

Routines

Electrostatic
Field Solver

Conservative
Hyperbolic Level

Integrator

Laser-Plasma
Integrator

Poisson Hierarchy Solver

10CASC

CCA is investigating high-performance
component technology for the DOE

l Common Component Architecture (CCA) forum
— regular workshops and meetings since January, 1998
— ANL, LANL, LBNL, LLNL, ORNL, SNL, Indiana, and Utah
— http://z.ca.sandia.gov/~cca-forum

l Goal: interoperability for high-performance software
— focus on massively parallel SPMD applications
— modify industry approaches for the scientific domain

l Writing specifications and reference implementation
— leverage technology developed by CCA participants
— plan to develop a joint reference implementation by FY02

6

11CASC

The CCA is researching a variety of
component issues in scientific computing

l Communication between components via ports

è Standard component repository formats and tools

l Composition GUIs

è Language interoperability technology

l Dynamic component loading

l Distributed components

è Parallel data redistribution between SPMD components

l Domain interface standards (e.g., solvers, meshes, …)

l Efficient low-level parallel communication libraries

12CASC

Presentation outline

l Motivation

l DOE community activities (CCA)

è Language interoperability technology (Babel)

l Component type and software repository (Alexandria)

l Research issues in parallel component communication

l Conclusions

7

13CASC

Motivation #1:
Language interoperability

l Motivated by Common Component Architecture (CCA)
— cross-lab interoperability of DOE numerical software
— DOE labs use many languages (f77, f90, C, C++, Java, Python)
— primary focus is on tightly-coupled same-address space codes

Simulation Framework
(C)

Solver Library
(C++)

Numerical Routines
(f90)

Scripting Driver
(Python)

Visualization System
(Java)

14CASC

Motivation #2:
Object support for non-object languages

l Want object implementations in non-object languages
— object-oriented techniques useful for software architecture
— but … many scientists are uncomfortable with C++
— e.g., PETSc and hypre implement object-oriented features in C

l Object support is tedious and difficult if done by hand
— inheritance and polymorphism require function lookup tables
— support infrastructure must be built into each new class

l IDL approach provides “automatic” object support
— IDL compiler automates generation of object “glue” code
— polymorphism, multiple inheritance, reference counting, RTTI, ...

8

15CASC

There are many tradeoffs when choosing
a language interoperability approach

l Hand generation, wrapper tools (e.g., SWIG), IDLs
l We chose the IDL approach to language interoperability

— goal: any language can call and use any other language
— component tools need a common interface description method
— sufficient information for automatic generation of distributed calls
— examples: CORBA, DCOM, ILU, RPC, microkernel OSes

C

C++

f77

f90

Python

Java

IDL

JNI
Native
SWIG

C

C++

f77

f90

Python

Java

16CASC

An IDL for scientific computing requires
capabilities not present in industry IDLs

l Industry standard IDLs: CORBA, COM, RPC, …

l Desired capabilities for a scientific computing IDL
— attributes for parallel semantics
— dense dynamic multidimensional arrays and complex numbers
— bindings for f77/f90 and “special” languages (e.g., Yorick)
— small and easy-to-modify IDL for research purposes
— rich inheritance model (Java-like interfaces and classes)
— high performance for same address-space method invocations

9

17CASC

SIDL provides language interoperability
for scientific components

l SIDL is a “scientific” interface definition language
— we modified industry IDL technology for the scientific domain
— SIDL describes calling interfaces (e.g., CCA specification)
— our tools automatically generate code to “glue languages”

package ESI {
 interface Vector {
 void axpy(in Vector x, in double a);
 double dot(in Vector x);
 …
 };
 interface Matrix {
 …
 };
};

SIDL
tools

f77

C

C++

Python

f90
library writer develops this

user runs this ...

… and gets this

18CASC

SIDL incorporates ideas from Java and
CORBA to describe scientific interfaces

version Hypre 0.5;
version ESI 1.0;

import ESI;

package Hypre {
 interface Vector extends ESI.Vector {
 double dot(in Vector y);
 void axpy(in double a, in Vector y);
 };
 interface Matrix {
 void apply(out Vector Ax, in Vector x);
 };
 class SparseMatrix implements Matrix, RowAddressible {
 void apply(out Vector Ax, in Vector x);
 };
};

class
enumeration
exception
interface
package

10

19CASC

Users call automatically generated interface
code completely unaware of SIDL tools

integer b, x
integer A
integer smg_solver

b = hypre_vector_NewVector(com, grid, stencil)
...
x = hypre_vector_NewVector(com, grid, stencil)
...
A = hypre_matrix_NewMatrix (com, grid, stencil)
...

smg_solver = hypre_smg_solver_new()
call hypre_smg_solver_SetMaxIter (smg_solver, 10)
call hypre_smg_solver_Solve(smg_solver, A, b, x)
call hypre_smg_solver_Finalize(smg_solver)

hypre::vector b, x;
hypre::matrix A;
hypre::smg_solver smg_solver;

b = hypre::vector::NewVector(com, grid, stencil);
...
x = hypre::vector::NewVector(com, grid, stencil);
...
A = hypre::matrix::NewMatrix (com, grid, stencil);
...

smg_solver = hypre::smg_solver::New();
smg_solver.SetMaxIter(10);
smg_solver.Solve(A, b, x);
smg_solver.Finalize();

C++ Test Code Fortran 77 Test Code

20CASC

SIDL version management

l Simple version management scheme for SIDL types
— all symbols are assigned a fixed version number
— SIDL version keyword requests specified version (or latest)

— supports multiple versions of specs (e.g., ESI 0.5, ESI 0.5.1)

version ESI 0.5.1; // access ESI spec v0.5.1
version HYPRE 0.7; // define HYPRE spec v0.7

package HYPRE {
 // define v0.7 of HYPRE.Vector using v0.5.1
 // of the ESI.Vector interface
 interface Vector extends ESI.Vector {
 ...
 }
}

11

21CASC

Language support in the Babel compiler

l C, f77, C++ mostly finished using old SIDL grammar
— approximately 500 test cases probe implementation
— used by hypre team for exploratory development

l Currently migrating system to use new grammar

l Java, Python, and Yorick support next
— Python and Yorick are scripting languages (Yorick from LLNL)
— hope to begin development in October timeframe
— “should be quick” because of C interface support in languages

l f90 and MATLAB will (hopefully) begin early next year

22CASC

We are collaborating with hypre to explore
SIDL technology in a scientific library

l Collaborators: Andy Cleary, Jeff Painter, Cal Ribbens

l SIDL interface description file generated for hypre
— approximately 30 interfaces and classes for hypre subset
— use Babel tools to generate glue code for object support

l Benefits of SIDL use in the hypre project
— automatic support for object-oriented features in C
— Fortran capabilities through SIDL in upcoming version
— plan to integrate existing C, Fortran, and C++ in one library
— SIDL is a useful language for discussing software design
— creating better hypre design based on SIDL OO support
— cost overhead in same-address space too small to measure

12

23CASC

Presentation outline

l Motivation

l DOE community activities (CCA)

l Language interoperability technology (Babel)

è Component type and software repository (Alexandria)

l Research issues in parallel component communication

l Conclusions

24CASC

We are developing a web-based architecture
to simplify access by scientists and tools

l Scientists and library developers must have easy access
to our technology; otherwise, they simply will not use it

l Our web-based deployment lowers the “threshold of
pain” to adopting component technology

scientist

tool

web server

SIDL tools
servlets

JSP

SQL database

XML

web
pages

13

25CASC

Alexandria is a web-based repository for
component software and type descriptions

l The Alexandria repository supports...
— SIDL type descriptions for libraries and components
— library and component implementations
— an interface to the Babel language interoperability tools

26CASC

The Babel parser converts SIDL to XML
that is stored in the Alexandria repository

l SIDL is used to generate XML interface information

l XML type description used to generate glue code

parserurl://interface.sidl type repositories

url://interface.xml

type repository

code generator

XML
f77

C++

C

...
XML

machine
configuration

14

27CASC

Sample XML file for Hypre.Vector

<?xml version="1.0" encoding="UTF-8”?>
<!DOCTYPE Symbol PUBLIC “-//CCA//SIDL Symbol DTD v1.0//EN” “SIDL.dtd”>
<Symbol>
 <SymbolName name="Hypre.Vector" version="1.0" />
 <Metadata date="20000816 08:47:22 PDT">
 <MetadataEntry key="source-url" value="file:/home/skohn/hypre.sidl" />
 ...
 </Metadata>
 <Comment />
 <Interface>
 <ExtendsBlock>
 <SymbolName name="Hypre.Object" version="1.0" />
 </ExtendsBlock>
 <AllParentInterfaces>
 <SymbolName name="SIDL.Interface" version="0.5" />
 <SymbolName name="Hypre.Object" version="1.0" />
 </AllParentInterfaces>
 <MethodsBlock>
 <Method communication="normal" copy="false" definition="abstract" name="Axpy">
 ...
 </Method>
 </MethodsBlock>
 </Interface>
</Symbol>

28CASC

Presentation outline

l Motivation

l DOE community activities (CCA)

l Language interoperability technology (Babel)

l Component type and software repository (Alexandria)

è Research issues in parallel component communication

l Conclusions

15

29CASC

Parallel redistribution of complex data
structures between components

l Parallel data redistribution for non-local connections
— example: connect parallel application to visualization server
— cannot automatically redistribute complex data structures
— must support redistribution of arbitrary data structures

l Approach - modify SIDL and special interface support

30CASC

Parallel components will require special
additions to SIDL interface descriptions

l Special RMI semantics for parallel components
— provide a local attribute for methods
— will also need a copy attribute for pass-by-value, etc.
— however, no data distribution directives - must be done dynamically

package ESI {
 interface Vector {
 double dot(copy in Vector v);
 int getGlobalSize();
 int getLocalSize() local;
 }
}

16

31CASC

Dynamic redistribution of arbitrary data:
Ask the object to do it for you!

l Irregular data too complex to represent in IDL
l Basic approach:

— objects implement one of a set of redistribution interfaces
— library queries object at run-time for supported method

interface ComplexDistributed {
 void serialize(in Array<Stream> s);
 void deserialize(in Array<Stream> s);
}
...
interface ArrayDistributed {
 // use existing array description
 // from PAWS or CUMULVS
}

two streams on M1
three streams on M2

M1

B

A

A

A

B

M2

32CASC

Will component technology be part of the
future of scientific computing?

l Well, maybe - or maybe not

l Component technology does offer new capabilities
— techniques to manage large-scale application complexity
— language interoperability and easier plug-and-play
— leverage technology, not re-invent the wheel
— bridges to interoperate with industry software (e.g., SOAP)

l However, capabilities come at a price
— ties scientists to using component technology tools
— steep learning curve (needs to become part of culture)
— different paradigm for developing scientific applications

17

33CASC

Acknowledgements

l Work performed under the auspices of the U.S. Department
of Energy by University of California Lawrence Livermore
National Laboratory under Contract W-7405-Eng-48.

l Document UCRL-VG-140549.

