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In 2015, the three Department of Energy (DOE) National Laboratories that make up the Advanced Scientific
Computing (ASC) Program (Sandia, Lawrence Livermore, and Los Alamos) collaboratively explored perfor-
mance portability programming environments in the context of several ASC co-design proxy applications as
part of a tri-lab L2 milestone executed by the co-design teams at each laboratory. The programming envi-
ronments that were studied included Kokkos (developed at Sandia), RAJA (LLNL), and Legion (Stanford
University). The proxy apps studied included: miniAero, LULESH, CoMD, Kripke, and SNAP. Each lab
focused on a particular combination of abstractions and proxy apps, with the goal of assessing performance
portability using those. Performance portability was determined by: a) the ability to run a single applica-
tion source code on multiple advanced architectures, b) comparing runtime performance between “native”
and “portable” implementations, and c) the degree to which these abstractions can improve programmer
productivity by allowing non-portable implementation details to be hidden from application developers. The
goal was approach to another since each environment is a work-in-progress and trade-offs are not always
objective. Instead, the aim was to enumerate lessons learned in developing each approach, and to present an
honest assessment of the performance portability each offers and the amount of work needed to transform
an application to use it. This report contains a description of the work that was completed at LLNL for
this milestone, and outlines future co-design work to be performed by application developers, programming
environment developers, compiler writers, and hardware vendors.



Auspices

Lawrence Livermore National Laboratory is operated by Lawrence Livermore National Security, LLC, for the
U.S. Department of Energy, National Nuclear Security Administration under Contract DE-AC52-07NA27344.
LLNL-TR-677453.

1



Contents

1 RAJA Chapter from Milestone Report 3
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.1 RAJA Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.2 Decoupling Loop Body from Loop Traversal . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.3 RAJA Encapsulation Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.4 Basic Traversal Methods and Execution Policies . . . . . . . . . . . . . . . . . . . . . 6
1.1.5 IndexSets and Additional Traversal Features . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 CoMD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.1 CoMD Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.2.2 CoMD Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.3 Porting to RAJA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
1.2.4 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.2.5 Productivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
1.2.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.3 Kripke . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.1 Kripke Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
1.3.2 Evaluation of Various Programming Models . . . . . . . . . . . . . . . . . . . . . . . . 22
1.3.3 Original Kripke Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3.4 CoE OpenMP and CUDA Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.5 TLoops Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
1.3.6 RAJA Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.3.7 OCCA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
1.3.8 Performance Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.3.9 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
1.4.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
1.4.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2 Tri-lab L2 Milestone Conclusions 36

3 Technical Lessons Learned and Issues Encountered 37
3.1 CUDA Unified Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.2 GPU floating point atomics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2



Chapter 1

RAJA Chapter from Milestone Report

1.1 Introduction

Many science and engineering HPC applications, including ASC codes, have used the portable and standard
MPI (Message Passing Interface) library [19] successfully for over two decades to achieve highly scalable
distributed memory parallel execution. Typically, such codes encapsulate MPI data structures and library
calls in routines that are called to perform application-specific inter-process data communication and syn-
chronization at points as needed for each numerical algorithm. Using this approach, domain scientists focus
on writing serial code that runs on each MPI process without needing detailed knowledge of the underlying
parallel operations. In recent years, the diversity and magnitude of fine-grained intra-node parallelism avail-
able on HPC hardware has grown substantially. All indications suggest that this trend will continue into the
foreseeable future.

Ideally, applications will be able to continue to follow a similar encapsulation approach that would allow
domain scientists to profitably exploit the large amounts of available fine-grained hardware parallelism while
maintaining, in large part, the “look and feel” of serial code. This would enable applications to run on and
be tuned for different advanced architectures with an acceptable level of software disruption. Preserving
the advantages and hugely successful dynamics of MPI usage would substantially benefit large multiphysics
applications where software maintenance and the ability to quickly develop new algorithms and models is as
important as performance and platform portability.

The approach we are pursuing at LLNL toward this “ideal” is called RAJA. The overarching goals of
RAJA are to make existing production codes portable with minimal disruption and to provide a model for new
application development so that they are portable from inception. RAJA uses standard C++11 – C++ is
the predominant programming language used in LLNL ASC codes. RAJA shares goals and concepts found in
other C++ portability abstraction approaches, such as Kokkos [12], Thrust [8], Bolt [1], etc. However, RAJA
provides constructs that are absent in other models and which are used heavily in LLNL ASC multiphysics
codes. Also, a goal of RAJA is to adapt concepts and specialize them for different code implementation
patterns and C++ usage, since data structures and algorithms vary widely across applications.

In the next section, we present an overview of the RAJA abstraction model and describe various porta-
bility and performance features it supports. After that, we discuss integration of RAJA into two proxy
applications, CoMD and Kripke. In the context of those proxy apps, we evaluate RAJA in terms of ease of
integration/level of code disruption, architecture portability, algorithm flexibility enabled, and performance.
Finally, based on these assessments, we describe lessons learned, issues encountered, and future work.

1.1.1 RAJA Overview

Loops are the main conceptual abstraction in RAJA. A typical multiphysics code contains O(10K) loops in
which most computational work is performed and where most fine-grained parallelism is available. RAJA
defines a systematic loop encapsulation paradigm that helps insulate application developers from implemen-
tation details associated with software and hardware platform choices. Such details include: non-portable
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compiler and platform-specific directives, parallel programming model usage and constraints, and hardware-
specific data management. RAJA can be used incrementally and selectively in an application and works
with the native data structures and loop traversal patterns in a code.

A typical RAJA integration approach is a multi-step process involving steps of increasing complexity.
First, basic transformation of loops to RAJA is reasonably straightforward and can be even mundane in
many cases. The initial transformation makes the code portable by enabling it to execute on both CPU
and GPU hardware by choosing various parallel programming model back-ends at compile-time. Second,
loop execution policy choices can be refined based on an analysis of loops. Careful categorization of loop
patterns and workloads is key to selecting the best choices for mapping loop execution to available hardware
resources for high performance. Important considerations include: the relationship between data movement
and computation (operations performed per byte moved), control flow branching intensity, and available
parallelism. Earlier, we stated that ASC multiphysics codes contains O(10K) loops. However, such codes
typically contains only O(10) loop patterns. Thus, a goal of transforming a code to RAJA should be to
assign loops to execution policy equivalence classes so that similar loops may be mapped to particular
parallel execution choices or hardware resources in a consistent fashion.

Lastly, more rigorous algorithm, performance, and memory analysis can help to determine whether
employing more advanced RAJA features may further benefit performance. Some performance-critical algo-
rithms may require deeper restructuring, or even versions tuned for particular hardware architectures. It is
important to note that no programming model can fully obviate the need for in depth analysis if the goal is
to achieve the highest possible performance. Also, no programming model allows sophisticated algorithms
to be cast in a single form that yields the best performance across diverse hardware. RAJA can simplify the
ability to act based on sound analysis by enabling platform-specific choices to be localized in header files.
When this is done, such choices can be propagated throughout a large application code base without needing
to modify many sites within the code.

In the next several sections, we describe the encapsulation features of RAJA and how they cooperate to
manage architecture-specific concerns.

1.1.2 Decoupling Loop Body from Loop Traversal

Like other C++-based portability layer abstraction approaches, RAJA relies on decoupling the body of a
loop from the mechanism that executes the loop; i.e., its traversal. This allows the same traversal method
to be applied to many different loop bodies and different traversals to be applied to the same loop body for
different execution scenarios. In RAJA, the decoupling is achieved by re-casting a loop into the generally-
accepted “parallel for” idiom. To illustrate, consider a C-style for-loop containing a “daxpy” operation and
two reductions:

double∗ x ; double∗ y ;
double a , tsum = 0 .0 , tmin = MYMAX;
// . . .
for ( int i = begin ; i < end ; ++i ) {

y [ i ] += a ∗ x [ i ] ;
tsum += y [ i ] ;
i f ( y [ i ] < tmin ) tmin = y [ i ] ;

}

double∗ x ; double∗ y ;
RAJA : : SumReduction< r educe po l i cy , double > tsum ( 0 . 0 ) ;
RAJA : : MinReduction< r educe po l i cy , double > tmin (MYMAX) ;
// . . .
RAJA : : f o r a l l < e x e c po l i c y >( begin , end , [=] ( int i ) {

y [ i ] += a ∗ x [ i ] ;
tsum += y [ i ] ;
tmin . min ( y [ i ] ) ;

}

Listing 1.1: Basic RAJA loop transformation
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There are several key differences to note in the RAJA loop in Listing 1.1:

• The for-loop construct is replaced by a call to a traversal template method (RAJA::forall), where the
template parameter is the loop execution policy.

• The loop-body is passed to the traversal template as a C++ lambda function [2].

• The reduction variables are converted to RAJA objects templated on a reduction policy and reduction
data type.

It is important to note that in the original C-style for-loop, all loop execution details, such as iteration
order and data array element access, are expressed explicitly in the source code. Changing any aspect of
execution requires changes to this source code. Decoupling the loop body and traversal as in the RAJA
version, iteration orders, data layout and access patterns, parallel execution strategies, etc. can be altered
without changing the way the loop is written. Apart from the slight difference in syntax for the min reduction,
the loop body is that same as the C-style version. The C++ 11 lambda function capability undergirds a key
RAJA design goal – to enable portability with minimal disruption to application source code.

1.1.3 RAJA Encapsulation Model

In this section, we briefly describe four main encapsulation features in RAJA that can be used to manage
architecture-specific concerns. They are illustrated in Figure 1.1 using our earlier example loop with different
colors.

RAJA::Real_ptr x, RAJA::Real_ptr y ; 
RAJA::Real_type a ; 
RAJA::SumReduction<…, Real_type> tsum(0); 
RAJA::MinReduction<…, Real_type> tmin(MYMAX); 
… 
RAJA::forall< exec_policy >( IndexSet, [=] (Index_type i)  { 
     y[ i ] += a * x[ i ] ; 
     tsum += y[i]; 
     tmin.min( y[i] ); 
}  ); 

Figure 1.1: The four primary cooperating encapsulation features of RAJA: traversal methods and execution
policies (blue), index sets (purple), data types (red), and C++ lambda loop body (green).

• Traversals and execution policies [blue]. A traversal method specialized with an execution policy
template parameter defines how the loop will be executed. For example, a traversal may run the loop
sequentially, as multithreaded parallel loop using OpenMP [10] or CilkPlus [5], or may launch the
loop iterations as a CUDA kernel to run on a GPU [6]. We describe how this works in more detail in
Section 1.1.4.

• IndexSets [purple]. In Listing 2.1, “begin” and “end” loop bounds are passed as arguments to the
traversal method. While RAJA can process explicitly bounded loop iterations in various execution
schemes that are transparent to the source code, the RAJA IndexSet abstraction in Figure 1.1 enables
much more flexible and powerful ways to control loop iterations. IndexSets allow loop iteration order
to be changed in ways which can, for example, enable parallel execution of a non-data-parallel loop
without rewriting it. Typically, an IndexSet is used to partition an iteration space into Segments;
i.e., “chunks” of iterations. Then, different subsets of iterations may be launched in parallel or run
on different hardware resources. IndexSets also provide the ability to manage dependencies among
Segments to resolve thread safety issues, such as data races. In addition, IndexSet Segments enable
coordination of iteration and data placement; specifically, chunks of data and iterations can be mapped
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to individual cores on a multi-core architecture. While IndexSets provide the flexibility to be defined
at runtime, compilers can optimize execution of kernels for different Segment type implementation at
compile-time. For example, a Segment type implementation that processes contiguous index ranges
can be optimized in ways that an indirection Segment type implementation cannot. In Section 1.1.5,
we elaborate on a variety of key IndexSet features.

• Data type encapsulation [red]. RAJA provides data and pointer types, seen here as Real type
and Real ptr, that can be used to hide non-portable compiler directives and data attributes, such as
alignment, restrict, etc. These compiler-specific data decorations often enhance a compiler’s ability
to optimize. While these types are not required to use RAJA, they are a good idea in general for
HPC codes. They eliminate the need to litter a code with detailed, non-portable syntax and enable
architecture or compiler-specific information to be propagated throughout an application code with
localized changes in a header file. For any parallel reduction operation, RAJA does require a reduction
class template to be used. Template specialization of a reduction in a manner similar to the way a
traversal method is specialized on an execution policy type enables a portable reduction operation
while hiding programming model-specific reduction constructs from application code. We describe
implementation issues associated with reduction objects in Section ??

• C++ lambda functions [green]. The standard C++11 lambda feature captures all variables used
in the loop body which allows the loop construct to be transformed with minimal modification, if any
is required, to the original code.

The RAJA encapsulation features described here can be used in part or combined based on application
portability and performance needs. They may also be combined with application-specific implementations.
This allows a multi-tiered approach approach to performance tuning for a particular architecture. Most
loops in a typical HPC application can be parameterized using basic RAJA encapsulation features. Other
kernels may require a combination of RAJA entities and customized implementations suited to a particular
algorithm. A specific example of this is discussed in Section 1.3.

1.1.4 Basic Traversal Methods and Execution Policies

In this section, we make loop traversal specialization and execution policy concepts more concrete by showing
how a loop may be executed in different ways depending on the specialization. Recall the initial loop example
we described earlier.

double∗ x ; double∗ y ;
RAJA : : SumReduction< r educe po l i cy , double > tsum ( 0 . 0 ) ;
RAJA : : MinReduction< r educe po l i cy , double > tmin (MYMAX) ;
// . . .
RAJA : : f o r a l l < e x e c po l i c y >( begin , end , [=] ( int i ) {

y [ i ] += a ∗ x [ i ] ;
tsum += y [ i ] ;
tmin . min ( y [ i ] ) ;

}

Suppose that the policy template parameters are defined as typedefs in a header file. By changing the
parameter definitions, we can run the loop with different programming model backends or on different
hardware resources without changing the code in this example.

CPU Execution

RAJA provides a variety of traversal and execution policy options for CPU loop execution. The simplest
option is to execute a loop sequentially. To do this, we could define the execution policy template parameters
as:

typedef RAJA : : s e qu en t i a l e x e c po l i c y ;
typedef RAJA : : s eq reduce r educ e po l i c y ;
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When this is done, the traversal template that runs the loop is:

template< typename LB >
void f o r a l l ( s equent i a l , Index type begin , Index type end , LB body ) {
#pragma novector

for ( int i = begin ; i < end ; ++i ) body ( i ) ;
}

Note that we use the “novector” pragma to prevent the compiler from generating SIMD vectorization op-
timizations for this case. Changing exec policy to RAJA::simd allows the compiler to generate SIMD opti-
mizations if it decides to do so.

For OpenMP multithreaded parallel CPU execution, we could define the template parameters as:

typedef RAJA : : omp pa r a l l e l f o r e x e c po l i c y ;
typedef RAJA : : omp reduce r educ e po l i c y ;

The traversal method that runs the loop in this case is:

template< typename LB >
void f o r a l l ( omp pa ra l l e l f o r , Index type begin , Index type end , LB body ) {
#pragma omp p a r a l l e l for

for ( int i = begin ; i < end ; ++i ) body ( i ) ;
}

Accelerator Execution

There are multiple programming model options for executing code on an accelerator device, such as a GPU.
To offload the loop to run on a GPU using the OpenMP 4.1 accelerator model, we would define the template
parameters as:

typedef RAJA : : omp pa r a l l e l f o r a c c e x e c po l i c y ;
typedef RAJA : : omp acc reduce r educ e po l i c y ;

Now, the traversal method that runs the loop is:

template< typename LB >
void f o r a l l ( omp pa r a l l e l f o r a c c , Index type begin , Index type end , LB body ) {
#pragma omp ta rg e t
#pragma omp p a r a l l e l for

for ( int i = begin ; i < end ; ++i ) body ( i ) ;
}

Note that the RAJA template cannot explicitly setup the GPU device data environment with an OpenMP
map clause. Map clauses are used to specify how storage associated with specific named variables is moved
between host and device memories. Since a RAJA traversal is generic with respect to the loop body, it knows
nothing about the data used in the loop. The OpenMP 4.1 standard [4] fills gaps to support “unstructured
data mapping” that will allow one to set up the proper device data environment before offloading via a
RAJA traversal. We expect to manage such host-device data transfers in real application codes using a
similar encapsulation approach to the way MPI communication is typically hidden, and which we briefly
discussed earlier.

In the NVIDIA CUDA model, the notion of a loop is fundamentally absent. Instead, the algorithm for
a single “loop iteration” is executed as a CUDA kernel function that is launched over a thread block on a
CUDA-enabled GPU device. Each iteration executes on a different CUDA thread. To launch the loop as a
CUDA kernel, we define the template parameters as:
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typedef RAJA : : cuda acc e x e c po l i c y ;
typedef RAJA : : cuda reduce r educ e po l i c y ;

The following code snippets illustrate RAJA backend code for CUDA. So that the loop code continues to
look like a loop, we pass the loop body to the traversal template (B), which has the same arguments as other
traversals. methods. This template launches a GPU kernel template (A) that executes each loop iteration
on a separate GPU thread.

// (A) ke rne l f unc t i on template
template< typename LB >

g l o b a l void f o r a l l c u d a k e r n e l ( Index type begin , Index type len , LB body ) {
Index type i = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f ( i < l en ) {

body ( begin + i ) ;
}

}

// (B) t r a v e r s a l template that launches CUDA GPU kerne l
template< typename LB >
void f o r a l l ( cuda acc , int begin , int end , LB body ) {

s i z e t b l o ckS i z e = THREADS PER BLOCK;
s i z e t g r i dS i z e = ( end − begin + b lo ckS i z e − 1) / b l o ckS i z e ;
Index type l en = end − begin ;
f o r a l l c u d a k e r n e l <<<g r idS i z e , b lockS ize >>>(body , begin , l en ) ;
// . . .

}

To manage data transfers between host and device when using CUDA, we have multiple options. Using
CUDA UM, or Unified Memory, is the simplest and least intrusive method. With UM, memory allocations
are replaced with calls to cudaMallocManaged(), which allows data to be accessed in the same way on either
the host or device with no explicit transfer operations. However, this may not yield desired performance
in many situations. When this is the case, we can encapsulate CUDA memory copy routines in a manner
similar to how we would use OpenMP unstructured data mapping.

It is important to note that CUDA support for passing C++ lambda functions to code that executes
on a device is a new nvcc capability and is still under development. Currently, it is required to attach the
CUDA device qualifier to the lambda where it is defined. So the code in our example actually looks as
follows:

RAJA : : f o r a l l < e x e c po l i c y >( begin , end , [=] RAJA LAMBDA ( int i ) {
// . . .

} ) ;

where RAJA LAMBDA is a macro defined in a header file as:

#i f de f ined (RAJA USE CUDA)
#define RAJA LAMBDA d e v i c e
#else
#define RAJA LAMBDA
#endif

This macro usage makes the code somewhat clumsy and forces an application to make a compile-time
choice as to how the loop will execute. This limits RAJA flexibility and our ability to choose at runtime how
the loop will run or to run different IndexSet Segments on a CPU and a GPU in parallel, for example. We
hope this constraint will be removed in the future. NVIDIA developers used a RAJA variant of the LULESH
proxy-app as the first somewhat comprehensive DOE application to test the device lambda capability. We
are directly encouraging NVIDIA compiler developers to improve lambda support.
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1.1.5 IndexSets and Additional Traversal Features

Mesh-based multiphysics applications contain loops that iterate over mesh elements, and thus data arrays
representing fields on a mesh, in a variety of ways. Some operations involve stride-1 array data access while
others involve unstructured accesses using indirection arrays. Often, these different access patterns occur in
the same physics operation. For code maintenance, such loop iterations are usually coded using indirection
arrays since this makes the code flexible and relatively simple. In this section, we describe some key features
of RAJA IndexSets and how they can be used to manage complex loop iteration patterns and address a
variety of performance concerns. In particular, IndexSets provide a powerful mechanism to balance runtime
iteration space definition with compile-time optimizations.

A RAJA IndexSet is an object that encapsulates a complete loop iteration space that is partitioned into a
collection of Segments, of the same or different Segment types. Figure 1.2 shows two different types of simple
Segments, a “range” and a “list” that may be used to iterate over different portions of an array. A RAJA
RangeSegment object defines a contiguous set of iteration indices with constraints applied to the iteration
bounds and to the alignment of data arrays with memory constructs. For example, range Segments can
be aligned multiples of a SIMD or a SIMT width to help compilers generate more efficient code. A RAJA
ListSegment is a chunk of iterations that do not meet range Segment criteria. It is important to note, that,
with RAJA, we emphasize the tight association between a loop iteration and a “footprint” of data array
elements in memory.

Figure 1.2: RAJA “range” and “list” Segments iterate over subsets of array indices using different loop
constructs.

To illustrate some simple IndexSet mechanics, consider the following set of array indices to process.

int num elems = 21 ;
int elems [ ] = {0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 14 , 27 , 36 ,

40 , 41 , 42 , 43 , 44 , 45 , 46 , 47 , 87 , 117} ;

Such a set of indices may enumerate elements on a mesh containing a particular material in a multi-material
simulation, for example. The indices may be assembled at runtime into an IndexSet object by manually
creating and adding Segments to an IndexSet object. A more powerful alternative is to use one of several
parameterized RAJA IndexSet builder methods to partition an iteration space into a collection of “work
Segments” according to some architecture-specific constraints. For example,

RAJA : : Indexset segments = RAJA : : c r e a t e Index s e t ( elems , num elems ) ;

might generate an IndexSet object containing two range Segments ({0, ..., 7}, {40, ..., 47}) and two list Seg-
ments ({14, 27, 36}, {87, 117}).

When the IndexSet object is passed along with a loop body (lambda function) to a RAJA iteration
template, the operation will be dispatched automatically to execute each of the Segments:

RAJA : : f o r a l l < e x e c po l i c y >( Segments , [=] ( . . . ) {
// loop body

} ) ;

That is, a specialized iteration template will be generated at compile-time for each Segment type. Iteration
over the range Segments may involve a simple for-loop such as:
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for ( int i = begin ; i < end ; ++i ) loop body ( i ) ;

Iteration over the list Segments in a for-loop, with indirection applied:

for ( int i = 0 ; i < s e g l en ; ++i ) loop body ( Segment [ i ] ) ;

IndexSet builder methods can be customized to tailor Segments to hardware features and execution pat-
terns to balance compile-time and runtime considerations. Presently, IndexSets enable a two level hierarchy
of scheduling and execution. A dispatch policy is applied to the collection of Segments. An execution policy
is applied to the iterations within each Segment. Examples include:

• Dispatch each Segment to a CPU thread so Segments run in parallel and execute range Segments using
SIMD vectorization.

• Dispatch Segments sequentially and use OpenMP within each Segment to execute iterations in parallel.

• Dispatch Segments in parallel and launch each Segment on either a CPU or GPU as appropriate.

In Place SIMD

As we noted earlier, runtime Segment construction can impose constraints that complement compile-time
pragmas and optimizations, which can be hidden in RAJA traversals. Multiphysics codes often use indirection
arrays to iterate over: elements of an unstructured mesh, element subsets that contain a particular material
on a mesh, etc. For example, in a real ASC code running a large hydrodynamics problem containing ten
materials and over 16 millions elements (many multi-material), we have observed that most loops traverse
“long” stride-1 ranges. Figure 1.3 summarizes this particular case.

Range	
  length	
   %	
  loop	
  its.	
   Range	
  length	
   %	
  loop	
  its.	
  

>=	
  16	
   84%	
   >=	
  128	
   69%	
  

>=	
  32	
   74%	
   >=	
  256	
   67%	
  

>=	
  64	
   70%	
   >=	
  512	
   64%	
  

Figure 1.3: A summary of the percentage of total loop iterations performed within stride-1 ranges of various
lengths. Data from an LLNL ASC code running a large multi-material hydrodynamics problem.

Here, we see that 84% of loop iterations occur in stride-1 ranges of length 16 or more and 64% of
iterations occur in stride-1 ranges longer than 512. Since the complete iteration over the elements containing
each material are not contiguous, relatively expensive gather/scatter operations are needed to pack and
unpack element data to expose stride-1 iterations to a compiler. Using RAJA IndexSets, we can partition
the iterations into range and list Segments to expose the SIMD-vectorizable loop portions while leaving the
data arrays in place. This approach has the potential to extract substantial performance gains from a variety
of numerical operations while obviating the need for additional temporary arrays and data motion.

Loop Reordering and Tiling

RAJA IndexSets can expose available parallelism in loops that are not parallelizable as written. For example,
a common operation in a staggered-mesh code, sums zonal values to surrounding nodes as is illustrated in
the left image in Figure 1.4. IndexSets can be be used to reorder loop iterations to to achieve “data parallel”
execution without modifying the loop body code. Figure 1.4 shows two different ordering possibilities, (A)
and (B), in the center and right images. Different colors indicate independent groups of computation, which
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can be represented as Segments in indexSets. For option A, we iterate over groups (Segments) sequentially
(group 1 completes, then group 2, etc.) and operations within a group (Segment) can be run in parallel. For
option B, we process zones in each group (row) sequentially and dispatch rows of each color in parallel. For
a 3D problem in a production LLNL ASC code run on BG/Q, option A gives 8x speedup with 16 threads
over the original serial implementation. Option B provides 17% speedup over option A at 16 threads. It is
worth reiterating that no source code modifications are required to switch between these parallel iteration
patterns once RAJA in place.

Figure 1.4: Zone-to-node sum operations (left), ordering option A (center), and ordering option B (right).

RAJA Segments can also represent arbitrary tilings of loop iterations that can be tuned and sized for
specific architecture and memory configurations. Figure 1.5 shows two different element “tilings” that
represent different iteration and data orderings on a portion of a mesh. When loop iterations are encapsulated
in IndexSet Segments, instead of hard-coded in an application, data arrays can be permuted for locality and
cache reuse. For example, the canonical tiling in the upper part of Figure 1.5 can be transformed into the
“compact” tiling in the lower part of the figure.

Figure 1.5: RAJA Segments represent arbitrary “tilings” of loop iterations that in turn touch data on a
mesh. Colors represent Segments within an IndexSet. Numbers represent 1d array indices.

Segments can also work together with data allocation to further enhance optimization and performance.
A typical ASC code centralizes data allocation in macros or functions for consistent usage throughout a
code. Data allocation can be based on IndexSet configurations to apply optimization-enhancing alloca-
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tion techniques, such as “first-touch”, which can result in improved NUMA behavior during multithreaded
execution.

Dependence Scheduling

It is important to emphasize that once RAJA is in place, many aspects of execution may be tailored and
optimized by application developers. They can modify Segment dispatch and execution mechanisms in
traversal methods, or build custom IndexSets to explore alternative “work-around” implementations that
may solve problems when execution performance does not match expectations. Such complete control is not
found in monolithic programming models, typically.

To demonstrate the range of flexibility the that RAJA provides, we have developed a version of the
LULESH proxy-app that can be run in numerous ways using different IndexSet configurations and RAJA
execution policies without changing the application source code. Specifically, by changing one use case
parameter in a single header file, the code can be run in ten different ways. Each value of the parameter
triggers a different IndexSet construction process (as described earlier) and set of RAJA execution policies.
The execution modes include: different OpenMP variants using different data/loop iteration tilings and
parallel execution strategies, CilkPlus parallelism, and two different CUDA-based GPU variants.

The RAJA IndexSet-traversal model supports advanced features, such as task dependence scheduling,
that we demonstrate in one of the OpenMP variants of this code. In particular, IndexSet Segments can
be defined and arranged to encode dependence scheduling patterns that enable more efficient parallelism.
A particularly interesting performance comparison of three different variants is shown in Figure 1.6. Here,
we compare strong-scaling of each variant relative to the baseline (non-RAJA) OpenMP version using 1 to
16 threads on a single node of an ASC TLCC2 Linux cluster (two-sockets, each with an 8 core Intel Xeon
Sandy Bridge CPU). The blue curve shows that the basic RAJA OpenMP variant has a 10− 15% overhead
at small core counts compared to the baseline. An analysis of the Intel compiler assembly code reveals that,
when OpenMP is combined with the RAJA C++ abstraction layer, certain optimizations are not performed.
Beyond 4 threads, the RAJA version scales well and outperforms the baseline due to some memory usage
optimizations we have done. While these optimizations are not directly due to RAJA, without it parts of the
code would have to be rewritten to enable the same improvements. A CilkPlus variant (red curve) does not
have the same low thread count overhead, but does not scale as well as the OpenMP variant – the OpenMP
and CilkPlus variants are identical except for the RAJA execution policy. Finally, the purple curve shows
the performance achieved when RAJA “lock-free” Segment dependence scheduling is used. Effectively, this
mechanism allows us to replace fine-grained gather-sum synchronization with coarser-grained semaphore
synchronization between tiles that eliminates unnecessary memory movement.

Figure 1.6: A strong-scaling runtime comparison of three different LULESH variants to the baseline (non-
RAJA) OpenMP version.

The dependence scheduling is controlled by a simple semaphore mechanism applied per Segment, as shown
in the code sample below. To manage Segment dependencies, three pieces of information are required. First,
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a “reload” value defines the number of dependencies that must be satisfied before a Segment can execute. As
each dependency is satisfied the semaphore value is decremented by one; when it reaches zero, the Segment
can execute. Until then, the thread “yields” the CPU resource. After a Segment is dispatched to execute,
its semaphore value is reset to the reload value. Second, an “initial” value is an override for the reload value.
A subset of Segments must be “primed” to execute; ideally, a number of Segments at least as large as the
maximum number of threads available should be able to execute immediately. The semaphore value for such
Segments is initialized to zero to indicate that they can execute immediately. Semaphore values for all other
Segments are initialized to their reload values. Third, “forward dependencies” are the set of Segments that
must be notified when a Segment execution completes. Here, notification means that the semaphore value
in each forward Segment is decremented by one.

#pragma omp p a r a l l e l for schedu le ( static , 1)
for ( int i = 0 ; i < num seg ; ++i ) {

IndexSetSegIn fo ∗ s e g i n f o = i s e t . getSegmentInfo ( i ) ;
DepGraphNode∗ task = s eg i n f o−>getDepGraphNode ( ) ;

while ( task−>semaphoreValue ( ) != 0 ) {
s c h ed y i e l d ( ) ;

}

//
// execute segment i . . .
//

i f ( task−>semaphoreReloadValue ( ) != 0 ) {
task−>semaphoreValue ( ) = task−>semaphoreReloadValue ( ) ;

}

i f ( task−>numDepTasks ( ) != 0 ) {
for ( int i i = 0 ; i i < task−>numDepTasks ( ) ; ++i i ) {

int seg = task−>depTaskNum( i i ) ;
DepGraphNode∗ dep = i s e t . getSegmentInfo ( seg )−>getDepGraphNode ( ) ;

s yn c f e t ch and sub (&(dep−>semaphoreValue ( ) ) , 1) ;
}

}

} // end loop over index s e t segments

In Section 1.2, we will show the performance benefit that can be achieved using similar Segment scheduling
mechanisms in the CoMD proxy-app. There, we create Segment task graphs to define dependency scheduling
for tile Segments in a wave-front algorithm.

Fault Tolerance

Although fault tolerance was not part of this L2, we have explored encapsulating a fine-grained, transient
fault recovery mechanism in RAJA traversal templates. The ability to support such a capability in a portable
and transparent manner is potentially very powerful and could help to resolve critical usability/productivity
issues on future platforms.

The simplified code example below shows the basic elements of the idea:

void f o r a l l ( po l i cy , Index type begin , Index type end , LB body ) {
bool r epeat ;
do {

r epeat = fa l se ;

// Execute loop
for ( Index type i i = begin ; i i < end ; ++i i ) {

body ( i i ) ;
}
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i f ( Trans i ent Fau l t ) {
c a ch e i n v a l i d a t e ( ) ;
r epeat = true ;

}
} while ( r epeat ) ;

}

Here, the data cache is invalidated and reloaded from memory and the loop is re-executed whenever a
transient fault is signaled. This requires that each loop in a code where this mechanism is applied be
idempotent; that is, it can be run any number of times and produce the same result. This requires read-only
and write-only arrays (no read-write arrays), which can increase memory usage and bandwidth requirements
slightly. The effort to achieve a full level of idempotence depends on how a code is implemented.

Note that this mechanism cannot handle hard faults or those that occur between loops. But, the vast
majority of work in a typically multiphysics code occurs in the loops. So we believe an approach like this
would allow a code to recover from most transient fault conditions in a very localized way. In particular, the
recovery cost for a fault addressed by this method is commensurate with the scope of the fault. That is, a
code can recover with minimal localized disruption without needing to coordinate with other loops or code
operations or needing a full restart.

A complete, robust implementation of this approach would benefit from additional hardware and O/S
support. Specifically, processors could emit signals for specific fault conditions (as some Intel chips currently
do) and the O/S could be specialized to process them in a way that an application could respond. Never-
theless, we have simulated this mechanism in LULESH and have found that the software and performance
impact of the method to be acceptable for that case. Specifically, making the code idempotent required minor
changes to a small fraction of loops and these changes added a small runtime overhead, 2 − 5% depending
on thread count. In addition, when manually injecting a large number of faults ( 50 in a 120 second run),
total runtime was increased by roughly half a percent when compared to no faults.

In the next two sections, we discuss transforming the CoMD and Kripke proxy applications to use RAJA.
We evaluate RAJA in terms of ease of integration/level of code disruption, architecture portability, algorithm
flexibility enabled, and performance.

1.2 CoMD

We ported CoMD to RAJA to evaluate the following:

• The amount of effort and code changes needed for the port;

• The performance of the initial (no tuning) port;

• The ability to add new schedules;

• Portability.

1.2.1 CoMD Description

CoMD is a proxy-app for a broad class of molecular dynamics simulations developed through the ASCR
ExMatEx [3] co-design center led by Los Alamos. Figure 1.7 shows two large-scale MD simulations. In
particular, CoMD considers the simulation of materials where the interatomic potentials are short range
(e.g., uncharged metallic materials). In that case the simulation requires the evaluation of all forces between
atom pairs within the cutoff distance. The performance of the simulation is then dependent on the efficiency
of 1) identifying all atom pairs within the interaction radius and 2) computing the force between the atom
pairs. For the proxy app, only the simple Lennard-Jones (LJ) and Embedded Atom Method (EAM) potentials
are considered.

Figure 1.8 shows a sketch of a set of atoms, with a typical interatomic potential with a finite cutoff radius.
The problem is then reduced to computing the interactions of the atom in question with all the other atoms
within the shaded circle, rather than with all the other atoms in the system.

14



Figure 1.7: Two examples of such large-scale MD simulations, SPaSM and ddcMD, simulating solid and
liquid problems.

Figure 1.8: Cut-off distance in CoMD.

Inter-node Work Decomposition

CoMD utilizes a Cartesian spatial decomposition of atoms across nodes, with each node responsible for
computing forces and evolving positions of all atoms within its domain boundaries. As atoms move across
domain boundaries they are handed off from one node to the next.

Intra-node Decomposition

CoMD assumes a cutoff distance for the interatomic potentials which is much smaller than the characteristic
size of the spatial domain of the node. To allow efficient identification of the atoms pairs which are within
the cutoff distance, the atoms on a node are assigned to cubic link cells which are slightly larger than the
cutoff distance. Thus, an atom within a given link cell only needs to test all the atoms within its own cell
and the 26 neighboring link cells in order to guarantee that it has found all possible interacting atoms. In
contrast to some codes where the atoms are assigned to link cells only during the force computation, CoMD
uses the link cells as the basic data structure for storing the atoms.

Figure 1.8 shows a sketch of the link cell decomposition of atoms with a finite cutoff. Searching all the
neighboring link cells guarantees that all atoms within the shaded circle are checked.

Inter-node Communication

Since atoms interact with all atoms within the cutoff radius, atoms near the domain boundaries need in-
formation from adjacent nodes. The atoms state data for these atoms is placed in halo (ghost cell) regions
around the local spatial region. These regions are decomposed into halo link cells, just as occurs in the
interior domain. For the LJ potential, only the atom positions need to be communicated prior to force
computation. For EAM, a partial force term also needs to be communicated, interleaved with the force
computation step.
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The halo exchange communication pattern takes advantage of the Cartesian domain decomposition and
link cell structure. Each node sends to its 26 neighbors in 6 messages in 3 steps, first the x-faces, followed by
the y-faces, then z-faces. This minimizes the number of messages and maximizes the size of the messages.
This requires that the message traffic be serialized with the steps processed in order.

1.2.2 CoMD Implementations

The reference implementation of CoMD is coded in C. The atom data is stored in a partial array of structures
format, utilizing separate 3-vectors for position, velocity and force, and flat arrays for most other variables
such as energy. Internode decomposition is via encapsulated MPI communication. Since the local work is
purely serial, we make use of force symmetry (Fij = - Fji) to reduce the amount of computation to the
minimum. A pure serial code (without MPI) can be built by switching a flag in the makefile. In this case
the halo regions are populated by copying data from the opposite boundary (assuming periodic boundary
conditions).

OpenMP Implementation

The OpenMP implementation parallelizes the force loop, which is the majority of the computational work.
In order to ensure thread safety, this version does not use force symmetry, but rather each atom in the
pair computes Fij separately and updates only their own force term. This results in 2x the amount of
computation in exchange for speedups due to shared memory threading - an unfortunate tradeoff that we
address with RAJA described later in this section.

The force computation loops pseudocode is described as follows:

f o r a l l l o c a l l i n k c e l l s
f o r each atom in l o c a l l i n k c e l l

f o r a l l ne ighbor l i n k c e l l s
f o r each atom in neighbor l i n k c e l l

. . .

1.2.3 Porting to RAJA

Because RAJA requires the use of a C++ compiler, minor modifications to CoMD source code were necessary
to enable compilation with the C++ compiler (mostly type casts).

There are two RAJA implementations of CoMD:

1. An implementation that is functionally equivalent to the OpenMP implementation of the mini-app;

2. An implementation that performs each force computation once, and thus has to ensure that there are
no data races when updating atom values by using dependence checks.

Basic port of CoMD to RAJA

The general code structure of CoMD remains the same when the loops in CoMD are replaced with RAJA
abstractions.

Original CoMD code:

// loop over l o c a l boxes
#pragma omp p a r a l l e l
for ( int iBox=0; iBox<s−>boxes−>nLocalBoxes ; iBox++) {

int nIBox = s−>boxes−>nAtoms [ iBox ] ;
// loop over ne ighbor boxes o f iBox
for ( int jTmp=0; jTmp<nNbrBoxes ; jTmp++) {

int jBox = s−>boxes−>nbrBozes [ iBox ] [ jTmp ] ;
int nJBox = s−>boxes−>nAtoms [ jBox ] ;
// loop over atoms in i B o x
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for ( int iO f f =MAXATOMS∗ iBox ; iOf f <(iBox∗MAXATOMS+nIBox ; iO f f++) {
// loop over itoms in jBox
for ( int jO f f=MAXATOMS∗ jBox ; jOf f <(jBox∗MAXATOMS+nJBox ; jO f f++) {

// phys i c s

RAJA version:

// loop over l o c a l boxes
RAJA : : f o r a l l s e gmen t s <LinkCel l >(∗s−>i sLoca l , [=] (RAJA : : IndexSet ∗ iBox ) {

// loop over ne ighbor boxes o f iBox
RAJA : : IndexSet ∗ iBoxNeighbors =

static cast<RAJA : : IndexSet∗>(iBox−>getSegment (0 )−>ge tPr iva t e ( ) ) ;
RAJA : : f o r a l l <l inkCellWork >(∗ iBoxNeighbors , [=] ( int jO f f ) {

// loop over atoms in iBox
RAJA : : f o r a l l <l inkCellWork >(∗ iBox , [&] ( int iO f f ) {

// phys i c s ( minimal changes to code )

The main change to the source code was to replace OpenMP link cell traversal with RAJA::forall segments.
Once in place, the RAJA interface hides many low level implementation details that otherwise would need
to be repeated for multiple loops in the code.

Once RAJA was inserted, it was easy to try different parallel algorithms in key kernels. We explored
different IndexSets and schedules defining different policies, without any additional code changes.

Options for LinkCells:

• seq segit (Sequential)

• omp parallel segit (Parallel OpenMP)

• omp taskgraph interval (Task graph with round robin)

• omp taskgraph segit (Task graph blocked)

Options for IndexSets:

• Linear (no dependencies)

• WaveFront (linkCell dependent waits)

LinkCellWork is a composed type: ExecPolicy<seq segit, simd exec>.

With some constraints, the developer can use a combination of execution options.

Reduction operations in RAJA are simple

Original CoMD:

r e a l t v0 = 0 . 0 , v1 = 0 . 0 , v 2 = 0 . 0 , v 3 = 0 . 0 ;

// sum the momenta and p a r t i c l e masses
#pragma omp p a r a l l e l for r educt i on (+: v0 ) reduct i on (+: v1 ) reduct i on (+: v2 ) reduct i on (+: v3 )
for ( int iBox=0; iBox<s−>boxes−>nLocalBoxes ; ++iBox ) {

for ( int iO f f=MAXATOMS∗ iBox , i i =0; i i <s−>boxes−>nAtoms [ iBox ] ; ++i i , ++iO f f ) {
v0 += s−>atoms−>p [ iO f f ] [ 0 ] ;
v1 += s−>atoms−>p [ iO f f ] [ 1 ] ;
v2 += s−>atoms−>p [ iO f f ] [ 2 ] ;

int i S p e c i e s = s−>atoms−>i S p e c i e s [ iO f f ] ;
v3 += s−>s p e c i e s [ i S p e c i e s ] . mass ;
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}
}

RAJA version:

ReduceSum<ReducePolicy , r e a l t > v0 ( 0 . 0 ) , v1 ( 0 . 0 ) , v2 ( 0 . 0 ) , v3 ( 0 . 0 ) ;
// sum the momenta and p a r t i c l e masses
RAJA : : f o r a l l <atomWork>(∗s−>i sLoca l , [&] ( int iO f f ) {

v0 += s−>atoms−>p [ iO f f ] [ 0 ] ;
v1 += s−>atoms−>p [ iO f f ] [ 1 ] ;
v2 += s−>atoms−>p [ iO f f ] [ 2 ] ;

int i S p e c i e s = s−>atoms−>i S p e c i e s [ iO f f ] ;
v3 += s−>s p e c i e s [ i S p e c i e s ] . mass ;

}) ;

ReducePolicy options:

• seq reduce

• omp reduce

• cuda reduce

The algorithm in the loop body is the same for Original and RAJA code. Reductions are supported
through a simple change to scalar type .

RAJA enables custom schedules and dependencies

We developed a custom schedule for CoMD that uses a dependence graph to guarantee that there will
be no data races between the threads while computing forces once per pair of atoms, and avoiding data
privatization required for the OpenMP version of CoMD.

The wavefront algorithm is described as follows:

1. Assign IndexSet segments to threads (spatially partition simulation space).

2. Define segment dependencies, including periodic boundaries, to guarantee no data races by neighboring
threads.

3. Order segments as a wavefront to minimize waiting for dependencies to complete.

Figure 1.9 demonstrates the wavefront schedule for an iteration of CoMD. The red lines indicate how
LinkCells are divided between threads. We show the currently processed LinkCells in green, and the LinkCells
that are waiting on other LinkCells to be executed in red. As the threads process LinkCells, they write to
their neighbors. Once the LinkCells are processed and no longer need to write to their neighbors’ data, the
dependencies are satisfied. When the iteration is finished, we reset the schedule and the dependencies to
their initial state.

IndexSets support complicated schedules and dependency management. We use dependencies to remove
data races.

1.2.4 Performance

Node-level performance data was collected using the following machine configurations:

• Intel Xeon x86 experiments ran on a Linux cluster with nodes consisting of two Intel E5-2680
processors running at 2.8 GHz, each with 10 cores, with 24GB main memory per node. We used GCC
4.9.2 and Intel 15.0.133 compilers.
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(f) Step 5
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(a) Step 6
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(d) Step 9
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(e) Step 10
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(f) Step 11

Figure 3: Task Sets That Must Be Executed Independently of Each Other
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(a) DStep 12
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(f) Step 17

Figure 4: Task Sets That Must Be Executed Independently of Each Other

Figure 1.9: Wavefront Schedule

• IBM Power8 results were run on POWER8 processor itself, manufactured on a 22 nm process, with
12 eight-way multithreaded cores running at 4 GHz. We used xlC and clang++ compilers.

• Intel Xeon Phi experiments ran on Compton Intel Sandy Bridge and Knights Corner. We utilized
the 57-core 1.1GHz KNC-C0 with 6GB/RAM processes, using Intel 15.2.164 Compiler.

• NVIDIA GPU results ran on a 16 core Intel Xeon CPU with 4 Tesla K80 graphics boards, using a
single Tesla graphics board.

The following figures compare performance of CoMD to performance of the two CoMD-RAJA versions
on the tested platforms. Baseline implementation is the implementation of CoMD from GitHub, with the
type casts to make it possible to compile it with a C++ compiler so that we are able to compare the results
using the same compiler for all the versions. RAJA-reference is the initial RAJA port of CoMD, which is
functionally equivalent to the Baseline implementation. RAJA-schedule is the wavefront schedule version of
CoMD, performing force computations once; without RAJA, this new schedule would require a code rewrite
of CoMD.

Figure 1.10: CoMD on x86, LJ force computation. Problem size 131K atoms.

Figure 1.10 shows the figure of merit, microseconds per atom, for the LJ kernel on x86 platform with GNU
and Intel compilers for a problem size of 131K atoms. Figure 1.11 shows the figure of merit, microseconds
per atom, for the EAM kernel on x86 platform with GNU and Intel compilers for a problem size of 131K
atoms. Execution time decreases up to 16 processes because there are only 20 physical processes. On a
higher process count, hyperthreading does not hurt the performance significantly.
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Figure 1.11: CoMD on x86, EAM force computation

Figure 1.12: CoMD on Power8 with xlC and Clang compilers, LJ and EAM forces

Figure 1.12 shows the figure of merit on Power 8 with IBM and Clang compilers, for both the LJ and EAM
kernels and a problem size of 1M atoms. Power 8 we ran on is early release hardware and software with
a number of unresolved issues, e.g., OpenMP reductions do not currently work with the Clang compiler.
Execution time decreases up to 16 processes because there are only 20 physical processes. Results show
performance continues to improve with threads added as long as more physical processes are available.

Figure 1.13 shows the figure of merit on MIC with Intel compiler, for both the LJ and EAM kernels and
a problem size of 1M atoms. Results show performance continues to improve with threads added as long as
more physical processes are available.

Figure 1.14 shows the figure of merit of RAJA-reference on GPU with NVIDIA compiler relative to the
baseline Intel compiler, for a problem size of 2K and 16K atoms. We were not yet able to run the main force
loop on the GPU. However, RAJA allows the flexibility to use different execution policies for different loops
within an application, so we ran the force loop on the CPU and the rest of the loops on the GPU. Running
some loops on the CPU and others on the GPU resulted in data transfers between the CPU and the GPU,
resulting in poor performance of the mini-app overall.

1.2.5 Productivity

We enabled compilation of CoMD with a C++ compiler, primarily by adding type casts. This change
impacted 47 lines of code. Figure 1.15 shows the number of changes we made to the source code to convert it
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Figure 1.13: CoMD on MIC with Intel compiler, LJ and EAM forces. Problem size 1M atoms.

Figure 1.14: CoMD on GPU with NVIDIA compiler

to RAJA, both in terms of the number of statements changed and the number of lines changed. The number
of lines modified to support RAJA was 2%.

1.2.6 Summary

Overall, minimal changes to CoMD source code were necessary to make it run with RAJA (2% of the lines of
code modified.). Without further source code changes, we were able to experiment with different schedules,
including a schedule that allows performing half the computation of an OpenMP version by guaranteeing
no data races, which without a RAJA abstraction layer would require a code rewrite. RAJA provides
programming model specific reductions and the flexibility to easily run different loops in the code differently.
Performance depends greatly on inlining.

1.3 Kripke

1.3.1 Kripke Description

Kripke is a simple, scalable, 3D Sn deterministic particle transport code. Its primary purpose is to research
how data layout, programming paradigms and architectures effect the implementation and performance of
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Figure 1.15: CoMD productivity metrics.

Sn transport. A main goal of Kripke is investigating how different data-layouts affect instruction, thread
and task level parallelism, and what the implications are on overall solver performance.

Kripke supports storage of angular fluxes (Ψ, or Psi) using all six striding orders (or ”nestings”) of Di-
rections (D), Groups (G), and Zones (Z), and provides computational kernels specifically written for each
of these nestings. Most Sn transport codes are designed around one of these nestings, which is an inflexi-
bility that leads to software engineering compromises when porting to new architectures and programming
paradigms.

Early research has found that the problem dimensions (zones, groups, directions, scattering order) and
the scaling (number of threads and MPI tasks), can make a profound difference in the performance of each
of these nestings. To our knowledge this is a capability unique to Kripke, and should provide key insight
into how data-layout effects Sn solver performance. An asynchronous MPI-based parallel sweep algorithm is
provided, which employs the concepts of Group Sets (GS) Zone Sets (ZS), and Direction Sets (DS), borrowed
from the Texas A&M code PDT.

As we explore new architectures and programming paradigms with Kripke, we will be able to incor-
porate these findings and ideas into our larger codes. The main advantages of using Kripke for this ex-
ploration is that it’s light-weight (ie. easily refactored and modified), and it gets us closer to the real
question we want answered: “What is the best way to layout and implement an Sn code on a given
architecture+programming-model?” instead of the more commonly asked question “What is the best way to
map my existing Sn code to a given architecture+programming-model?”.

More info: https://codesign.llnl.gov/kripke.php

1.3.2 Evaluation of Various Programming Models

We evaluated the Sweep Kernel in Kripke using various different programming models and abstractions.
We focused our attention on the Sweep Kernel because its deep loop nesting and semi-sequential nature
makes achieving high performance difficult. For these reasons, the sweep kernel is a major concern when we
examine writing discrete ordinates transport codes using programming model abstractions. We first provide
an overview of the variants we evaluated, and then provide some more detailed descriptions.

• Original hand coded serial code The original version of Kripke uses explicity coded kernels for
each of the six possible data layouts (permutations of directions, groups and zones).

• TLoops This variant uses C++ template metaprogramming to abstract the loop nesting order and
the data layouts. Data layout and loop nestings are chosen by template parameters, so only one source
code version of each kernel is needed to model all six permutations.

• Sierra Center-of-Excellence (OpenMP, CUDA) This variant developed within the Sierra Center
of Excellence, and implements the “hyperplane sweep method”. No programming abstractions were
used, only hand tuned algorithms written directly in OpenMP and CUDA.
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• RAJA (Serial, OpenMP, CUDA) Two approaches were taken with RAJA, but both allow a single
kernel to be targeted for serial, OpenMP and CUDA execution. The data layout ZDG was selected for
this work.

The first approach used a vector of IndexSets, with one IndexSet per hyperplane. Each Segment
represents a single zone, and the set of directions and groups in that zone. A custom “forall” execution
policy was created which provided the nested loops over directions and groups.

The second approach used a single IndexSet, with each Segment representing a hyperplane. RAJA
supplied execution policies were used to iterate over zones, and the direction and group loops were not
abstracted but rather provided within the kernel body.

• OCCA DSL (OpenMP) OCCA [7] is a programming model a Domain Specific Language which is an
annotated extension of C. OCCA uses source-to-source translation, which hides the abstractions in the
programming model from the underlying C compiler, which should reduce or eliminate the “overheads”
that we see from models like RAJA.

1.3.3 Original Kripke Details

In the base version of Kripke, we explicitly write kernels for each of the 6 data layouts. Hand optimizations
are limited to the use of the “restrict” keyword, and loop invariant hoisting transformations (discussed
below). Since there is no programming model abstractions used (aside from OpenMP directives), there are
no abstraction overheads. This version of Kripke should be the easiest for the compilers to optimize, and
should therefore be the fastest serial variant.

Manual writing of kernels allows for inter-loop logic to be placed. This allows for fetching values from
memory, array index calculations, and other floating point operations, to be “hoisted” to the outermost loop
nesting in which they remain invariant.

For example, if we look at the loop:

double ∗ r e s t r i c t a = . . . ;
double ∗ r e s t r i c t b = . . . . ;

for ( int i = 0 ; i < ni ;++ i ) {
for ( int j = 0 ; j < nj;++ j ) {

a [ i ∗nj+j ] += b [ i ] ∗ 2 .0 ∗ c ;
}

}

The value of b[i] is invariant over the inner-loop, so it can be hoisted to before the j loop. The value of 2.0∗c
is invariant over both loops, so it can be hoisted to before the i loop. And the calculation of i + j ∗ ni can
be separated and partially hoisted. The result is:

double c2 = 2.0∗ c ;
for ( int i = 0 ; i < ni ;++ i ) {

double b i = b [ i ] ;
double ∗ r e s t r i c t a i = a + i ∗nj ;
for ( int j = 0 ; j < nj;++ j ) {

a i [ j ] += b i ∗ c2 ;
}

}

This manual hoisting is a common practice when writing kernels by hand, and often has a profound affect on
performance. The above code will typically generate fewer instructions, and allow more compilers to apply
SIMD instructions for the inner loop. Modern compilers can perform many of these hositing transforma-
tions themselves, but their ability to match a programmers manual hoisting varies greatly from compiler to
compiler.

To maintain a consistent level of optimization across kernels in Kripke, we only employ loop-invariant
hoisting transformations and the use of the “restrict” keyword. We never have aliased pointers in Kripke,
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so the liberal use of “restrict“ is always safe, and is the only way to achieve consistent generation of SIMD
instructions by the compilers.

1.3.4 CoE OpenMP and CUDA Variants

Figure 1.16: Hyperplane sweep method.

This variant is a cumulation of effort by Leopold Grinberg (IBM) and Steven Rennich (NVidia) under
contract with the Sierra Center of Excellence at LLNL. They implemented a hyperplane sweep method,
as seen in Figure 1.16, in both OpenMP and CUDA. Transport solves have “upwind” dependencies based
on the direction of particle flow, which causes the sweep (or wavefront-like) pattern. Each hyperplane is
an independent set of unknowns, which allows for threading over zones in a hyperplane. Hyperplanes have
dependencies upon their upwind neighbor, requiring sequential solves of these hyperplanes.

For this variant, no programming abstractions were used, only tuned algorithms written directly in
OpenMP and CUDA. The goal of this work was work out a “lower-bound” of performance that we could
expect when we start applying programming model abstractions to target platforms such as Sierra/CUDA.

For the CUDA implementation, a combination of explicit data movement and zero-copy are used between
the host and accelerator. In both implementations, pinned memory is used on the CPU.

This CoE OpenMP hyperplane implementation is used as a starting point for our RAJA implementation.

1.3.5 TLoops Variant

We explored using C++ templates and lambda expressions to abstract multiply-nested loops, much in the
way RAJA abstracts single loops. A template parameter is used to permute the loop-nesting order of 3
loop execution policies, which are described using functors. The loop body is passed in as a C++11 lambda
expression, making the nested loop function look like a C++ loop:

. . .
SweepLoopVars vars ;
LoopDGZ<NEST> loop ;
loop ( LoopLocalDirs ( dims ) , LoopLocalGroups ( dims ) , LoopSweepZones ( gr id data , extent ) , vars ,
[= ] ( SweepLoopVars &v) {

// Fetch Co e f f i c i e n t s , and compute i n d i c e s
double xco s dx i = 2 .0 ∗ d i r e c t i o n [ d ] . xcos / dx [ v . i + 1 ] ;
int p s i i d x = layout . idxPs i ( dims , v . d i r , v . group , v . zone ) ;
. . .

// Apply diamond−d i f f e r e n c e r e l a t i o n s h i p f o r
// zone , d i r e c t i o n and group
. . .
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}) ;

The data layout of each multi-dimensional variable is also abstracted by using “layout” objects, which
perform array index calculations. These layout objects are also templated on the same parameter as the
loop-permutation, which allows for the variables and loops to be permuted in unison.

Only one version of each kernel is needed to provide each of the six data layouts, but we lose the manual
loop invariant optimizations and have to rely on compiler optimizers.

1.3.6 RAJA Variant

Two approaches examined with RAJA:

• One IndexSet per hyperplane, using a custom execution policy. The nested direction and group loops
are handled by the execution policy, hiding all loops from the kernel writer.

• One IndexSet, with one Segment per hyperplane. Directions and group loop are inside the kernel body.
This uses only built-in RAJA execution policies, and is the most straight forward to implement.

For RAJA targeting CUDA, memory movement is handled entirely through NVidia’s Unified Memory
(UM) system. The current support through UM is currently only though software, and is probably less
efficient than what we will see on Sierra. In order to separate the cost of memory movement from the
efficiency of the kernels, we have two data points for the RAJA+CUDA variant: One that keeps all of the
data on the GPU (the “nomove” variant) and one that moves the data before and after the sweep kernel is
called.

One IndexSet per Hyperplane

The RAJA approach defined one IndexSet per hyperplane slice. Each segment in an IndexSet represents one
Zone, and each element in the segment represnts one (Group,Direction) tuple. The Lambda is then called
for every (Zone, Group, Direction) tuple, allowing for the greatest flexibility in how the execution policy is
implemented.

for ( int s l i c e = 0 ; s l i c e < extent . hp s e t s . s i z e ( ) ;++ s l i c e ) {

IndexSet &s l i c e s e t = extent . hp s e t s [ s l i c e ] ;

// Get po i n t e r s to data
double ∗ SRESTRICT p s i l f = i p l a n e . ptr ( ) ;
. . .

// Launch RAJA sweep ke rne l on s l i c e
f o r a l l <SweepExecPolicy >( s l i c e s e t ,

[=] KDEVICE ( int i , int j , int k , int z , int d , int group , int o f f s e t ) {

// Fetch a l l cons tant s (15 doubles )
double xcos = d i r e c t i o n [ d ] . xcos ;
. . .

// Apply diamond−d i f f e r e n c e r e l a t i o n s h i p f o r
// zone , d i r e c t i o n and group
. . .

}) ;
}

This approach has the advantage of allowing a custom execution policy to easily map the kernel to either
OpenMP or CUDA in a native way. For OpenMP, threads are used across the zones in a hyperplane. For
CUDA, a sequence of kernels are launched for each hyperplane, and the directions and groups are mapped
to threads and blocks, giving each unknown it’s own thread.
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The drawbacks to this approach include:

1. All constant values are all fetched each time the inner loop-body is executed. For a CUDA execution
policy, this may be unavoidable (without an explicit CUDA implementation). For a serial or OpenMP
execution policy, the compiler should be able to expand the lambda expression, and determine which
fetches should be factored out into outer loop nestings. However this is not happening and produces
significant impact on performance.

2. Different data layouts require explicit re-writing of the kernel. This kernel assumes the data layout is
psi[Z][D][G]. While it is possible to re-write the forall execution policy to support psi[Z][G][D], it is not
possible to move Zones into an inner stride due to the structure of the outer for loop.

One IndexSet, Explicit Direction and group Loops

We explored an alternative implementation using RAJA in which the IndexSet described just the zone
iteration pattern. We used each segment of the IndexSet to represent one hyper-plane, where each Segment
contained the indices of each zone in the hyperplane. Since the “forall” only iterates over zones, we needed
to explicity look over directions and groups inside of the lambda kernel.

IndexSet &z on e i s e t = . . .

// Get po i n t e r s to data
double ∗ SRESTRICT p s i l f = i p l a n e . ptr ( ) ;
. . .

// Launch RAJA sweep ke rne l on s l i c e
f o r a l l <ZoneSweepExecPolicy >( z on e i s e t ,

[=] KDEVICE ( int zone ) {

for ( int d = 0 ; d < num direc t ions ;++ d) {
// Fetch a l l cons tant s (15 doubles )
double xcos = d i r e c t i o n [ d ] . xcos ;
. . .

for ( int group = 0 ; group < num groups;++ group ) {
// Apply diamond−d i f f e r e n c e r e l a t i o n s h i p f o r
// zone , d i r e c t i o n and group
. . .

}
}

}) ;
}

This approach had the benefit of utilizing the built-in RAJA execution policies, using a sequential iteration
over segments, and an OpenMP iteration within a segment. Performance of this approach was identical to
the initial approach.

The main drawback is that it does not map well to CUDA, since it is impossible to map the direction
and group loops to threads. This leads to a major loss of parallelism compared the the “one IndexSet per
hyperplane” method.

Restrict and Device Keywords

Let’s use the following example code to motivate the following points:

for ( int s l i c e = 0 ; s l i c e < extent . hp s e t s . s i z e ( ) ;++ s l i c e ) {
IndexSet &s l i c e s e t = extent . hp s e t s [ s l i c e ] ;

double ∗ r e s t r i c t p s i p t r = sdom−>ps i−>ptr ( ) ;
. . .
f o r a l l <SweepExecPolicy >( s l i c e s e t , [=] d e v i c e ( . . . ) {

p s i p t r [ i ] = . . .
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}) ;
}

If we compile the code with nvcc, the restrict keyword causes a lambda template deduction error. This
is most likely due to the beta-release status of NVIDIA’s device lambda capture mechanism.

If we compile the code with a host compiler, such as icpc or g++, the device keyword is not recognized,
and the code will not compile.

We can’t have it both ways. We want restrict for good CPU performance (ie SIMD generation), but we
need the use the device keyword to target GPUs with nvcc. The current solution is to use macros, which
turn on either the device or the restrict keyword, depending on what device is being targeted. This forces
a compile time choice of the targetd device, which precludes the use of runtime scheduling decisions. This is
important because the choice of whether to run on the CPU or GPU may depend on parameters that cannot
be determined at compile time, such as problem size.

1.3.7 OCCA

OCCA provides a domain-specific-language that is compiled (JIT) into C++, then compiled into machine
code with a users compiler (GCC or ICC, etc). Porting of Kripke to OCCA was work completed by David
Medina during a summer 2015 internship at LLNL, is the product his PhD thesus research and is available
at http://libocca.org/

OCCA has the advantage of adding the abstractions we are looking at with RAJA, etc., but produces
C++ code without complex template constructs. It has the potential to reduce the burden on the compiler,
which may result in better performance.

The OCCA DSL is an extension of C which uses annotations to describe loop-nesting orders, data layouts,
and how loops map to different threading models (such as OpenMP or CUDA):

ke rne l void sweep ( . . .
double ∗ r e s t r i c t rhs @(dim(PSI DIM) , idxOrder (PSI IDX) ) ,
double ∗ r e s t r i c t p s i @(dim(PSI DIM) , idxOrder (PSI IDX) ) ,
double ∗ r e s t r i c t p s i l f @(dim(PSI LF DIM) , idxOrder (PSI IDX) ) ,
double ∗ r e s t r i c t p s i f r @(dim(PSI FR DIM) , idxOrder (PSI IDX) ) ,
double ∗ r e s t r i c t p s i bo @(dim(PSI BO DIM) , idxOrder (PSI IDX) ) ,
const double ∗ r e s t r i c t s i g t @(dim(SIGT DIM) , idxOrder (SIGT IDX) ) ) {

for ( int k ; . . . ; . . . ; loopOrder ( sw KOrder ) ) {
for ( int j ; . . . ; . . . ; loopOrder ( sw JOrder ) ) {

for ( int i ; . . . ; . . . ; loopOrder ( sw IOrder ) ) {
for ( int g ; . . . ; . . . ; outer , loopOrder ( sw GOrder ) ) {

for ( int d ; . . . ; . . . ; inner , loopOrder ( sw DOrder ) ) {
// Fetch a l l cons tant s (15 doubles )
double xcos = d i r e c t i o n [ d ] . xcos ;
. . .

// Apply diamond−d i f f e r e n c e r e l a t i o n s h i p f o r
// zone , d i r e c t i o n and group
. . .

}
}
}

}
}

}
}

OCCA has the same “kernelization” issues that TLoops and RAJA have, forcing the compiler to do all of
the loop-invariant optimizations. Since the OCCA runtime generates the intermediate C++ compiled kernel,
we could “intercept” the C++ code and manually add back in the loop invariant optimizations. The results
shown in Figure 1.17 show the original Kripke results, the OCCA results (without manual optimizations),
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Figure 1.17: Performance of OCCA Kripke implementation, with and without manual “prefecth”.

and the OCCA results with these manual “prefetch” optimizations. From these results we can directly see
that adding these optimizations reclaim all of the lost performance incurred by moving from hand-coded
C++ to the OCCA DSL. These results give us hope that either: the compiler vendors could add these
optimizations to their compilers (which would benefit everyone), or that DSL’s like OCCA could add these
optimizations for the compilers. Furthermore, it shows that using an abstraction or DSL could have a zero-
overhead impact at worst, and performance improvements if the DSL can give the compiler information that
it might not otherwise be able to determine for optimization.

1.3.8 Performance Results

Figure 1.18: Performance of RAJA Kripke implementation across multiple architectures.

In Figure 1.18 we show the performance of the RAJA Kripke variant across several different architectures.
The K20xm variant is using the “nomove” option to eliminate host-to-gpu memory movement. The Power8
is running 1 hardware thread per core, due to platform support issues on LLNL’s rzmist machine.

Not suprisingly, we were able to achieve roughly the same performance between the CoE and RAJA
OpenMP variants, as seen in Figure 1.19. Since the RAJA variant was based on the CoE OpenMP varient,
the only code modifications were replacing the “for” loops with a “foreach” RAJA function call.
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Figure 1.19: Comparison of CoE and RAJA OpenMP implementation on x86-64.

The serial performance of Kripke when switching from hand-coded loops, to TLoops abstraction and to
RAJA demonstrates some of the performance issues we have run into (Figure 1.20. It’s currently unclear
why the TLoops abstraction performs better than the RAJA abstraction, since they both have the same
inner lambda expression, however the TLoops variant has a much more complex layer of abstraction on the
loop execution policy.

Figure 1.21 shows that we can achieve almost the same performance as the CoE GPU code when we
are not dealing with memory movement. The hand coded CoE CUDA makes heavy use of manual data
movement and zero copy, while the RAJA version uses Unified Memory and relies on the runtime to perform
all of the data movement. The CoE CUDA version of the sweep kernel took 3 months of effort, while the
RAJA variant was implemented by someone (without prior RAJA experience) in 3 hours. Furthermore, the
RAJA version uses the same code to be targeted for both serial, OpenMP and CUDA execution.

Not suprisingly, like on the x86-64 platform, were able to achieve roughly the same performance between
the CoE and RAJA OpenMP variants, as seen in Figure 1.22.

1.3.9 Lessons Learned

Kernelization of nested loops pushes loop invariants into the inner-most loop body. From timing analysis,
it appears that many compilers struggle to make the same loop invariant optimizations that humans can
make, which causes excess memory and floating point operations. We believe that it should be possible to
improve compiler optimizations to alleviate these inefficiencies.

RAJA has distinct productivity advantages over using programming models, like OpenMP and CUDA,
directly. The CoE CUDA version of the sweep kernel took 3 months of effort, while the RAJA variant was
implemented by someone (without prior RAJA experience) in 3 hours.

OpenMP and CUDA language incompatibilities make runtime CPU versus GPU scheduling choices im-
possible. This is specifically due to the non-standard restrict and device keywords causing compiler specific
incompatibilities. We believe that simple language modifications could remedy this.

More investigation is needed to extend RAJA to support deeply nested kernels. Merging concepts from
TLoops into RAJA is something we plan to explore in the future.

1.4 Conclusions

We assert that this report shows that RAJA has demonstrated significant progress toward several key design
goals. Most notably, RAJA enables CPU-GPU portability in diverse applications with modest changes to
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Figure 1.20: Comparison of serial performance of various Kripke variants.

the source code. Here, we have shown using CoMD (Section 1.2) and Kripke (Section 1.3) that basic RAJA
transformations allow OpenMP CPU and CUDA GPU execution without further code changes. In particular,
algorithm restructuring and multiple code versions are not required. In several cases, including other RAJA
assessments not discussed in this report, we have found that RAJA actually can make application source
code easier to understand, more flexible, and less error-prone.

RAJA also provides portable reduction operations that obviate the need for coding variations to work
with different programming model back-ends (CoMD discussion in Section 1.2). In other contexts, we have
shown that multiple different RAJA reductions can be combined in the same loop execution context along
with other operations. Often, parallel programming models constrain programmers to write reductions as
distinct parallel constructs.

RAJA IndexSets provide a powerful balance between runtime flexibility and compile-time optimizations.
That is, traversal specializations for different segment types are generated and optimized at compile-time,
while IndexSet segments can be defined and configured at runtime (i.e., code paths through compile-time
specializations). In Section 1.1.5, we presented several examples that show additional capabilities of RAJA
IndexSets and traversal methods and their potential to enable significant performance improvements. These
included:

• Partitioning an iteration space into IndexSet segments can enable “in place” SIMD vectorization for
unstructured mesh operations by exposing stride-1 index ranges without resorting to gather/scatter
operations.

• Reordering loop iterations using an IndexSet can enable a non-thread safe algorithm to run in parallel
without rewriting it (e.g., accumulating mesh element data to surrounding nodes). While rewriting
such an algorithm will likely yield better performance, the performance gains resulting from basic
parallel execution can be significant.

• IndexSet segments can represent arbitrary tilings of loop iterations that can work together with data
allocation to improve NUMA (Non-Uniform Memory Access) behavior and increase performance (e.g.,
LULESH OpenMP variants).

• IndexSets support task dependency scheduling of segments which can be used to coarsen the granularity
of multithreading fork-join operations (e.g., LULESH “lock free” dependence graph) or ensure that data
races do not occur (e.g., CoMD wave-front schedule).

These items and others show that complex algorithm restructuring can be performed behind an abstrac-
tion layer like RAJA which simplifies the exploration of implementation alternatives without disrupting
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Figure 1.21: Comparison of CUDA (K20xm) performance of Kripke CoE and RAJA variants.

application source code.

1.4.1 Lessons Learned

A variety of valuable lessons were reinforced and/or learned as a result of this L2 effort. An especially
important point is that it is difficult to draw firm conclusions about a “best approach” to the performance
portability challenge for production ASC applications based on experimentation with proxy applications
using early release hardware and software. Proxy apps are necessarily small and incomplete representations
of real multiphysics applications. It is unclear how tuning a simplified algorithm in isolation will affect
aggregate performance of a full application. We have found that test-bed platforms are sometimes unstable
and have idiosyncrasies that make them hard to work with and which need to be understood. Also, compilers
struggle to optimize well in when faced with newer language features, such as C++ lambda functions, and
software abstractions. In addition, programming model implementations are immature (e.g., OpenMP 4.x,
CUDA host-to-device lambda kernel launch, etc.). Lastly, good memory and performance analysis tools
are essential. In general, tool support must improve to work more seamlessly with software abstractions to
make it easier to analyze how codes run on machines with heterogeneous processors and complex memory
hierarchies.

Although it is well-known, our studies for this L2 show that data placement and motion must be managed
more carefully in HPC applications than ever before to achieve high performance. For example, memory
pools are essential for handling temporary data, as exemplified in a number of studies of LULESH, which
like many of our true applications - performs a number of dynamic memory allocations and frees each
timestep. Due to memory constraints, a typical multiphysics code allocates and frees temporary arrays
repeatedly during each timestep. We have observed that replacing this behavior with a memory pool in
LULESH can more than halve the runtime. For all of our GPU runs in this effort, we relied exclusively on
CUDA Unified Memory [14]. This greatly simplifies CPU-GPU programming by allowing a single pointer to
access “managed” memory, pages of which are automatically transferred between host and device memory
spaces as needed. The current software implementation of unified memory works pretty well, and we expect
performance to improve with hardware support through NVIDIA’s NVLINK architecture (e.g., in Pascal
and Volta architectures). However, we expect that explicit data transfers done properly will almost always
yield the best performance and so we do not believe we can avoid them entirely in the future. In Section ??,
we elaborate on additional issues and considerations for using CUDA Unified Memory.

Before we describe future work, we feel it is instructive to discuss some issues related to passing data
objects, such as C++ class instances, to CUDA device kernels when they are created on the host. In
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Figure 1.22: Comparison of Power8 performance of various Kripke variants.

particular, objects must be passed to the device by value and their state must be preserved across kernel
invocations. The code snippet below shows a motivating use case. Here, we perform sum and min reductions
on a GPU using a RAJA traversal. The reduction variables (i.e., class objects) are initialized on the host,
passed to a device kernel via the forall() method, and then used to retrieve the reduced values back on the
host. Note that since there are two IndexSet segments and the loop contains over a million iterations, the
kernel will be launched multiple times to execute the entire loop. The example is somewhat contrived, but
nevertheless illustrates several salient points.

#define TEST VEC LEN 1024 ∗ 1024

int main ( int argc , char ∗argv [ ] )
{

double ∗dvalue ;

//
// A l l o ca t e a managed memory array and i n i t i a l i z e a l l va lue s to 0 .0
//
cudaMallocManaged ( (void ∗∗)&dvalue , s izeof (double ) ∗TEST VEC LEN,

cudaMemAttachGlobal ) ) ;
for ( int i =0; i<TEST VEC LEN; ++i ) {

dvalue [ i ] = 0 .0 ;
}

//
// Create an index s e t with two range segments
//
RAJA : : RangeSegment seg0 (0 , TEST VEC LEN/2) ;
RAJA : : RangeSegment seg1 (TEST VEC LEN/2 + 1 , TEST VEC LEN) ;

RAJA : : IndexSet i s e t ;
i s e t . push back ( seg0 ) ;
i s e t . push back ( seg1 ) ;

//
// Set a random minimum value at a random l o c a t i o n in the array
//
std : : random device rd ;
std : : mt19937 mt( rd ( ) ) ;
s td : : u n i f o rm r e a l d i s t r i b u t i o n <double> d i s t (−10 , 0) ;
s td : : u n i f o rm r e a l d i s t r i b u t i o n <double> d i s t 2 (0 , TEST VEC LEN−1) ;
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double min value = d i s t (mt) ;
int min loc = int ( d i s t 2 (mt) ) ;

dvalue [ min loc ] = min value ;

//
// Create min and sum reduct i on ob j e c t s and perform the r educ t i on s
// on the GPU by launching k e rn e l s v ia a f o r a l l t r a v e r s a l
//
RAJA : : ReduceMin<RAJA : : cuda reduce , double> dmin (DBL MAX) ;
RAJA : : ReduceSum<RAJA : : cuda reduce , double> dsum ( 0 . 0 ) ;

RAJA : : f o r a l l <RAJA : : cuda exec >( i s e t , [=] d e v i c e ( int i ) {
dmin . min ( dvalue [ i ] ) ;
dsum += dvalue [ i ] ;

} ) ;

s td : : cout << ”\n min , sum , value = ”
<< dmin << ” , ” << dsum << ” , ” << min value << std : : endl ;

return 0 ;
}

There are several problems that could occur in this example if the reduction class initialization and copy
operations are not implemented properly. First, passing the reduction objects by value to the traversal
template and subsequently to the GPU kernel launch (which, again, is required) generates multiple object
copies, some on the host and some on the GPU. Each function call that accepts an object by value is a
potential place where object state could become out-of-sync. Also, kernel invocation against a class object
could be pre-empted by the class destructor. So the original objects, or their copies, could fall out of
scope completely and be destoyed. This could result in no GPU code being executed, or an inability to
retrieve the reduction values back on the host. Second, when multiple kernels are run, one kernel could
complete and call a destructor prematurely while another is running. This can happen even when a call to
cudaDeviceSynchronize() is made in the destructor. Third, default copy constructors only support shallow
copies. We need to maintain non-trivial state in the reduction objects to hold partially reduced values so
the reduction can finalize properly across thread blocks. To avoid performance issues, we want to avoid deep
memory copies and still make this work.

The key to making this all work properly is proper use of the C++ RAII (Resource Acquisition Is
Initialization) idiom. This requires a custom copy constructor and a boolean class member to explicitly
track whether an object has been created as a copy and only allow the original contructor and destructor to
acquire and release resources [11]. The following code snippet shows the basic mechanics of this using the
RAJA CUDA min reduction class as an example.

The constructor executes only on the host; it records the fact that it is not a copy and sets some simple
POD data members to managed state that is shared across reduction objects. The copy constructor and
destructor can execute on either the host or device. The copy constructor, which is the only mechanism
allowed to create object copies, copies the POD members and records the fact that each copy is indeed a copy.
The destructor releases its hold on the shared data, but only when called on the host. For completeness,
we note the basic properties of the reduction method accessor operator. The operator used to access the
reduced value finalizes the reduction and executes only on the host. The reduction method operates only on
the device and updates the reduced value in a unique location for each thread block. The basic elements of
this implementation are important to keep in mind when implementing other code where objects are shared
between host and device.

template <typename T>
class ReduceMin<cuda reduce , T>
{
public :

//
// Constructor takes d e f au l t va lue ( d e f au l t c t o r i s d i s ab l ed ) .
// Ctor only execute s on the host .
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//
expl ic it ReduceMin (T i n i t v a l )
{

// Constructed ob j e c t i s not a copy !
m is copy = fa l se ;
m reduced val = i n i t v a l ;

//
// Set po i n t e r s and o f f s e t s i n to memory block shared by reduct i on ob j e c t s
//
m myID = getCudaReductionId ( ) ;
m blockdata = getCudaReductionMemBlock ( ) ;
m b l o cko f f s e t = getCudaReductionMemBlockOffset (m myID) ;

cudaDeviceSynchronize ( ) ;
}

//
// Copy c to r execute s on both host and dev i ce .
//

h o s t d e v i c e ReduceMin ( const ReduceMin<cuda reduce , T>& other )
{
∗ this = other ;
m is copy = true ; // Flag ob j e c t as a copy

}

//
// Destructor execute s on both host and dev i ce .
// Dest ruct ion on host r e l e a s e s the unique id and shared memory block
// f o r o the r s to use .
//

h o s t d e v i c e ˜ReduceMin<cuda reduce , T>()
{

i f ( ! m is copy ) {
#i f ! d e f i n ed ( CUDA ARCH )

re leaseCudaReduct ionId (m myID) ;
#endif

}
}

//
// Operator to r e t r i e v e reduced min value ( be f o r e ob j e c t i s dest royed ) .
// Accessor only ope ra t e s on host .
//
operator T()
{

cudaDeviceSynchronize ( ) ;

// F i n a l i z e r educt i on and s e t m reduced val . . .

return m reduced val ;
}

//
// Update reduced value in to the proper shared memory block l o c a t i o n .
//

d e v i c e ReduceMin<cuda reduce , T> min(T va l ) const
{

// . . .
}

private :
// . . .

} ;
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1.4.2 Future Work

Beyond completing the L2 milestone requirements, it is important that our work can make a a positive
impact on real application codes, which is a key goal of co-design.

To make such an impact, the results, lessons learned, and issues encountered in our various studies must
be propagated to application code teams and used to educate other developers. Specific issues we intend
to focus on in discussions with code teams in the near term at LLNL include: addressing thread safety to
enable fine-grained parallelism, general best practices for performance, proper usage of parallel programming
models and software abstractions, and ways to bridge gaps between compiler and runtime deficiencies and
application constraints.

Moving forward, we will continue to refine and extend RAJA concepts using additional proxy-app ex-
plorations as well as integration experiments with LLNL ASC codes. For example, we will explore ways to
coordinate RAJA IndexSet configurations with centralized memory management routines in these codes. We
will also continue working with compiler and hardware vendors and programming model standards commit-
tees to improve support for DOE HPC needs. We have been actively discussing issues discussed in ?? and
others with several vendors over the past couple of years issues and have been making steady progress toward
solutions. Tri-lab co-design and Center-of-Excellence activities also play a central role. To be most effective,
vendor engagement should be a unified DOE effort. We firmly believe could be resolved with proper invest-
ments (e.g., support contracts) and engagement with compiler vendors and programming model committees.
Joint L2 milestone efforts such as this help increase inter-lab collaboration on common issues and move us
toward common solutions.
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Chapter 2

Tri-lab L2 Milestone Conclusions

While this L2 milestone was designed so that each individual laboratory could further explore the potential
of the programming models they focused on, and the conclusions specific to each of those models were
elaborated upon in each chapter, the collaborative nature of the effort uncovered several common themes
about lessons learned that we capture here as overall conclusions to the effort.

While it was clear that these models can and do provide performance portability, these tools are simply
enablers of reaching that goal, not magic bullets that developers can naively adopt and expect immediate
positive results. With time, these tools will continue to improve and harden to the point that developers
who have a good understanding of how the languages features and underlying runtime systems are being
used will find them much easier to use, but as with any complex and general-purpose solution, we are just
beginning to approach that target. The lessons of co-design are clear - that these middleware layers must
collaborate early and often with both the compiler and hardware vendors on one side, and a diverse set of
applications on the other to optimize this process.

Training and documentation on the use of these models is also a critical next step in their development,
and we are just beginning this process. In particular, the Kokkos team has a formal release process as
part of the Trllinos suite of tools, is offering hands-on training sessions, and continuously improving the
documentation. The RAJA team is developing a formal release process as part of their ATDM CS toolkit,
developing additional documentation, and working closely with developers inside the LLNL production code
teams on developing a core set of training materials. Likewise, the Legion team at Stanford has had training
sessions, hack-a-thons with LANL and others, a user guide, and a number of examples from which developers
can start to learn how to think about developing code using these task-based models. In all cases, improved
access to online forums and wikis through which developers can share their experiences are another important
goal.

However, training in the specifics of these models (particularly RAJA and Kokkos) are not sufficient. For
shared memory programming with threads, developers must still understand how to write correct thread-safe
code. For example, neither RAJA or Kokkos will automatically parallelize a loop that is inherently thread
unsafe. Training in at least the basics of OpenMP, and preferably CUDA, are important prerequisites to using
these tools, which can then take correct thread-safe code and enable portability and increased performance
on multiple architectures.

Finally, the collaboration amongst the ASC labs has demonstrated that co-design with vendors does
work, and is most effective when the labs can speak with a common voice about issues. This has been
particularly valuable in the conversations with compiler writers, who are just now recognizing the power of
C++ features, how we intend to use them, and what they must do to ensure that expected optimizations
are not being flummoxed by these newer and non-traditional uses of the language.

In conclusion, the ASC tri-labs will continue to develop and advance these programming models through
the co-design process: working together to identify common issues, with vendors to improve compiler tech-
nology and hardware features planned in their roadmaps, and with application teams to make these models
usable and effective in a production environment. A followon ASC L2 milestone between the three labs is
planned for FY16 which will take the lessons learned from this year, and demonstrate their use in either our
production integrated codes or new ATDM next-gen code projects.
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Chapter 3

Technical Lessons Learned and Issues En-
countered

In this section, we describe some detailed lessons learned on advanced architectures through the execution of
this L2. The data provided here is too detailed for the main report, but may be of value to others interested
in these programming models.

It is clear that both RAJA and Kokkos performance and flexibility depends strongly on good compiler
and programming model support. During the course of this L2, and in other work, we have identified
various issues that need to be addressed and/or which require deeper investigation to understand better.
The following is a partial list of some key concerns:

• C++ abstractions typically add a 5− 10% performance overhead, which often varies by compiler and
code context.

• Optimizations, such as SIMD vectorization, are often disabled when OpenMP is enabled.

• The restrict pseudo-keyword is only honored in very specific scopes, which also vary by compiler
since restrict is not part of the C++ standard.

• The CUDA device attribute must be attached to a lambda function where it is defined to be used in
a GPU kernel, which clutters application code, forces execution decisions to compile-time, and limits
RAJA flexibility by forcing compile-time decisions about whether to run on the CPU or GPU.

• OpenMP 4.0 lacks unstructured data mapping support [18], which impedes its viability as a useful
accelerator backend for abstraction- based models like RAJA that provide generic loop traversal tem-
plates which know nothing about the details of the loop body they are executing. OpenMP 4.1 is
expected to address this [4].

Next, we discuss several CUDA topics and present issues to be aware of and best practices.

3.1 CUDA Unified Memory

Initialization. Managed Memory is setup via two constructs, either utilizing the CUDA API call cud-
aMallocManaged() or by defining a global variable using the CUDA managed keyword. Similar to the
C malloc() routine, cudaMallocManaged() does not initialize the allocated memory. We recommend using
cudaMemset() to explicitly set the memory to 0 on the GPU device.

We have also observed slowdowns when initializing Managed Memory on the host, although the memory
was allocated on the device (i.e., with CUDA VISIBLE DEVICES set). As usual, it is best to defer data
movement between host and device until absolutely necessary. We discovered this while attempting to
generate a “single-source” code base which initially had the host assigned to consistently initialize allocated
memory.
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Synchronization. When both CPU and GPU are executing concurrently, the GPU has exclusive access to
managed memory while a kernel is running. To avoid a segmentation fault, wait until the GPU completes
it work and call cudaDeviceSynchronize(), or cudaStreamSynchronize() and cudaStreamQuery() assuming a
return value of cudaSuccess.

Performance. When using CUDA Unified Memory (i.e., “managed memory”), it is important to set the
environment variable CUDA VISIBLE DEVICES to target a specific GPU device (e.g., 0 or 1). Otherwise, a
large performance penalty can result. Indeed, we have observed slowdowns by more than a factor of 20 in a
CUDA variant of LULESH without this environment variable set properly. When the environment variable
is not set, managed memory is allocated on the host allocation and setup in zero-copy (pinned) memory
mode which means that GPU memory accesses are limited to PCI-express performance.

Much useful advice for CUDA GPU programming can be found on the NVIDIA Parallel FORALL Blog.
For example, one useful pro-tip states: “Unified Memory requires that all GPUs support peer-to-peer memory
access, but this may not be the case where GPUs are connected to different I/O controller hubs on the PCI-
Express bus. If the GPUs are not all peer-to-peer compatible, then allocations with cudaMallocManaged()
falls back to device-mapped host memory (also known as “zero-copy” memory). Access to this memory is
via PCI-express and has much lower bandwidth and higher latency. To avoid this fallback, you can use
CUDA VISIBLE DEVICES to limit your application to run on a single device or on a set of devices that are
peer-to-peer compatible” [13].

CUDA VISIBLE DEVICES Settings.
The environment variable CUDA VISIBLE DEVICES discussed above can be used to target a single or

multiple GPU devices [15]. Options include:

CUDA_VISIBLE_DEVICES=1 // Only device 1 will be visiable
CUDA_VISIBLE_DEVICES=0,1 // Devices 0 and 1 will be visible
CUDA_VISIBLE_DEVICES=‘‘0,1’’ // Same as above, quotation marks are optional
CUDA_VISIBLE_DEVICES=0,2,3 // Devices 0, 2, 3 visible; device 1 is masked

CUDA will enumerate the visible devices starting at zero. In the last case above, actual devices 0, 2, 3 will
appear numbered as 0, 1, 2. If you set the order to 2, 3, 0, those devices will be enumerated as 0, 1, 2. If some
value given to CUDA VISIBLE DEVICES is that of a device that does not exist, all valid devices with IDs before
the invalid value will be enumerated, while all devices after the invalid value will be masked. To determine
the device IDs available on your system, you can run the NVIDIA deviceQuery executable included in the
CUDA SDK.

3.2 GPU floating point atomics

Constraints. While atomic functions that update a 32 or 64 byte word via read-modify-write are extremely
convenient and simple to use, they present a significant performance challenge. On current Kepler-based
Tesla GPU cards, atomics for double-precision floating point must be implemented (i.e., emulated) based on
atomicCAS (atomic compare-and-swap) routines; this can slow an application significantly if it uses such an
operation frequently. Single-precision atomics on Kepler are supported by hardware. But, even they should
be used sparingly, if at all. Nonetheless, atomicCAS can be used to implement other atomic operations, such
as a double-precision atomic add.

Compare-and-Swap Loop Design Pattern. The following two code-blocks illustrate an atomicCAS
compare-and-swap loop design pattern. Jeff Preshing has a good explanation on his blog regarding this
pattern and lock-free programming [16, 17]. The CAS loop repeatedly attempts to update a value at an
address until it succeeds. Failure generally means that another thread succeessfully wrote to the memory
address. When this occurs, the old value is updated from shared memory, and the loop repeats.

d e v i c e double atomicAdd (double∗ address , double va l )
{

unsigned long long int∗ a d d r e s s a s u l l = (unsigned long long int ∗) address ;
unsigned long long int o ld = ∗ add r e s s a s u l l , assumed ;
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do {
assumed = old ;
o ld = atomicCAS( add r e s s a s u l l , assumed ,

doub l e a s l o ng l ong ( va l + l ong l ong a s doub l e ( assumed ) ) ) ;
// Use i n t e g e r comparison to avoid hang in case o f NaN (NaN != NaN)

} while ( assumed != old ) ;
return l o n g l ong a s doub l e ( o ld ) ;

}

// emulate atomic add f o r doubles
d e v i c e inl ine void atomicAdd (double ∗ address , double value )

{
unsigned long long o ldva l , newval , readback ;
o ldva l = doub l e a s l o ng l ong (∗ address ) ;
newval = doub l e a s l o ng l ong ( l o ng l ong a s doub l e ( o ldva l ) + value ) ;
while ( ( readback = atomicCAS ( ( unsigned long long ∗) address , o ldva l , newval ) ) != o ldva l )
{

o ldva l = readback ;
newval = doub l e a s l o ng l ong ( l o ng l ong a s doub l e ( o ldva l ) + value ) ;

}
}

Performance Comparison with Emulated Atomics. The following list summarizes throughput mea-
surements for a reduction operation running on a GPU node (specifically, a K20 XM card on the LLNL
IPA system). In particular, it illustrates typical performance degradation when using emulated atomics.
The operation performs a sum reduction over a double array of length 1024 * 1024 * 32. Reduction is
communication intensive (bandwidth limited) and so is measured in GB/s.

THREADS_PER_BLOCK 1024
Float : 4.58 GB/s
Double: 0.522 GB/s (main slow down due to software emulated atomicAdd)

THREADS_PER_BLOCK 512
Float : 13.42 GB/s
Double: 0.06GB/s

THREADS_PER_BLOCK 256
Float : 1.7 GB/s
Double: 0.023 GB/s

Benchmark: No atomic double
THREADS_PER_BLOCK 1024
Double: 6.79 GB/s

Avoiding Atomics. The previous results show that, when we remove atomics altogether, we achieve
performance for the double precision sum reduction on par with float, where atomics for floats are supported
in hardware and thus are very fast. The technique for removing atomics altogether in a reduction mainly
involves a bit more book-keeping and finishing off the computation on the host. Here, each thread block uses
a unique memory location for its update, which obviates the need for atomic operations. The intermediate
updates from all thread blocks are now stored in device global memory can then be scanned by the host to
generate the final reduced value.

Another technique found on the NVIDIA Parallel FORALL Blog entitled, Optimized Filtering with Warp-
Aggregated Atomics [9] shows warp aggregation, which can reduce the number of atomic calls by up to 32X
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and achieves impressive speedups. The warp aggregation technique allows threads in a warp to perform local
updates (to shared memory for example), and then assigns one thread to aggregate the result and update
global memory. The following two figures from [9] show the potential impact on performance if atomics are
not used sparingly and carefully.

Figure 3.1 shows the precipitous drop in bandwidth proportional to number of atomics executed, or
fraction of positive elements in an array, where the filter performs an atomic add operation when an element
is positive. Figure 3.2 illustrates a profound performance improvement when using warp-aggregation, which
dramatically reduces the number of atomic calls.

Figure 3.1: Drop in bandwidth is proportional to atomics executed [9].

Figure 3.2: Reducing the number of atomic operations significantly improves performance [9].
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