lasdi.latent_space ================== .. py:module:: lasdi.latent_space Attributes ---------- .. autoapisummary:: lasdi.latent_space.act_dict Classes ------- .. autoapisummary:: lasdi.latent_space.MultiLayerPerceptron lasdi.latent_space.Autoencoder Functions --------- .. autoapisummary:: lasdi.latent_space.initial_condition_latent Module Contents --------------- .. py:data:: act_dict .. py:function:: initial_condition_latent(param_grid, physics, autoencoder) Outputs the initial condition in the latent space: Z0 = encoder(U0) .. py:class:: MultiLayerPerceptron(layer_sizes, act_type='sigmoid', reshape_index=None, reshape_shape=None, threshold=0.1, value=0.0, num_heads=1) Bases: :py:obj:`torch.nn.Module` .. py:attribute:: n_layers .. py:attribute:: layer_sizes .. py:attribute:: fcs :value: [] .. py:attribute:: reshape_index :value: None .. py:attribute:: reshape_shape :value: None .. py:attribute:: act_type :value: 'sigmoid' .. py:attribute:: use_multihead :value: False .. py:method:: forward(x) .. py:method:: apply_attention(x, act_idx) .. py:method:: init_weight() .. py:class:: Autoencoder(physics, config) Bases: :py:obj:`torch.nn.Module` .. py:attribute:: qgrid_size .. py:attribute:: space_dim .. py:attribute:: n_z .. py:attribute:: encoder .. py:attribute:: decoder .. py:method:: forward(x) .. py:method:: export() .. py:method:: load(dict_)