lasdi.latent_dynamics.sindy =========================== .. py:module:: lasdi.latent_dynamics.sindy Classes ------- .. autoapisummary:: lasdi.latent_dynamics.sindy.SINDy Module Contents --------------- .. py:class:: SINDy(dim, nt, config) Bases: :py:obj:`lasdi.latent_dynamics.LatentDynamics` .. py:attribute:: fd_type :value: '' .. py:attribute:: fd :value: None .. py:attribute:: fd_oper :value: None .. py:attribute:: ncoefs .. py:attribute:: coef_norm_order :value: 1 .. py:attribute:: MSE .. py:method:: calibrate(Z, dt, compute_loss=True, numpy=False) loop over all train cases, if Z dimension is 3 .. py:method:: compute_time_derivative(Z, Dt) Builds the SINDy dataset, assuming only linear terms in the SINDy dataset. The time derivatives are computed through finite difference. Z is the encoder output (2D tensor), with shape [time_dim, space_dim] Dt is the size of timestep (assumed to be a uniform scalar) The output dZdt is a 2D tensor with the same shape of Z. .. py:method:: simulate(coefs, z0, t_grid) Integrates each system of ODEs corresponding to each training points, given the initial condition Z0 = encoder(U0) .. py:method:: export()